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Abstract

Object detection in real-time is an
important aspect in robotics, surveillance
and autonomous systems. Nevertheless,
to be able to have speed and accuracy on
embedded
constraints is still a challenge. This study
examines the lightweight object detection
models made on deep-learning platform,
namely YOLOvV8-N and MobileNet-SSD,
which are going to be deployed on the
Raspberry Pi 4 and Raspberry Pi 5
hardware. We compare strategies of
optimization, pruning and sensor fusion
methods in order to improve detection in
dynamic environment. On experimental
outcomes, it is shown that lightweight

devices with  resource

architectures are capable of achieving
accuracy and real-time responsiveness,
and are, therefore, appropriate to the
perception of mobile robots.

Keywords—object detection, Raspberry
Pi, YOLO, MobileNet-SSD, real-time
vision, embedded hardware

I. Introduction

we are living in Al Era and we would like
to use Al everywhere. After some time
robots and autonomous vehicles becomes
reality but to implement all these, we are
still facing issues in moving Object
Detection and Identification.

Object detection is a system that allows
machines to see and comprehend the
environment.  Conventional  models
demand strong GPUs, and it is not easy to
deploy them on edge devices. This paper
centers on object detection in dynamic
settings in real-time with mobile-friendly
deep learning models on the embedded

system platform, like Raspberry Pi.

II. System Architecture

We are using very simple architecture so
that any we can implement easily with
low power and small machines.

The suggested system will be composed
of the input of cameras, the initial
processing, the lightweight detection
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models, the tracking modules, and the
decision logic. The architecture is
modular based on efficient use of memory
and real time performance in inference.

Camera/Sensor Input

|

Lightweight Model (YOLOV8-N/
MobileNet-SSD)

|

Object Detection Output

|

Tracking & Decision Module

Figure 1: System Architecture.

I1I. Lightweight Detection Models

YOLOV8-N and MobileNet-SSD are
chosen because they are efficient.
Techniques Pruning techniques and
quantization Pruning techniques and
quantization are used to minimize the cost
of computation without loss of accuracy.
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Figure 2: FPS Comparison of Lightweight
Models on Raspberry Pi.

Accuracy is very important, we can
compromise it.

IV. Processing Pipeline

The pipeline includes frame acquisition,
preprocessing, inference, post-
processing, and output for decision
modules. Lightweight detector model and
Labeling the Objects with Bounding
Boxes with different colors to recognize

the static and moving objects.

PAGE NO: 294



COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

Input Frame

l

Preprocessing

l

Lightweight Detector Model

Bounding Boxes and Labels

Figure 3: Real-time processing pipeline.
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V. Experimental Results & Discussion

Benchmarking of Raspberry Pi reveals
that MobileNet-SSD is faster in terms of
FPS whereas YOLOVS-N offers greater
accuracy in detecting small objects.
Additional sensor data is also useful in
enhancing robustness.

VI. Mathematical Analysis

v Intersection over Union (oU):

1B
[ - Bl

iijrJ'I-f |

v Detection Accuracy (mAP@3():
mAPAS) =3 Y AP(IoU > 03)
v YOLO Computational Cost (FLOPs):
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» Latency Approximation on Raspberry Pi5:
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VII. Algorithms

Algorithm 1: Real-Time Object
Detection on Raspberry Pi 5 Using
YOLOvVS-N
- Initialize YOLOVS8-N (quantized)
model M on ONNX/NCNN backend.
- While video is active:
1. Frame <« Capture
2. Frame < Resize (640%640)
3. Frame < Normalize
4. D « M(Frame) (Forward inference)
5. B_raw « ExtractBoundingBoxes(D)
6. B < Apply-NMS (IoU threshold =
0.45)
7. Display(Frame, B)

Algorithm 2: Object Tracking Using
Kalman Filter + IoU Association

- For each previous track, predict with
Kalman Filter

- Compute IoU and assign with
Hungarian Algorithm

- Update tracks, create new tracks for
unmatched, remove expired tracks
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