A review on dual-axis solar tracking system

P. Sivaprasad, P. Dilleswara Rao, P. Vimala, P.Vignesh Department of Mechanical, GMR Institute of Technology, Rajam, India-532127 Dr. Prasanth Kumar Choudhary Assistant Professor, Department of Mechanical, GMR Institute of Technology, Rajam, India-532127

Abstract

PV systems are now thought to be the most effective renewable energy source for producing power. the value of solar energy as an environmentally friendly, sustainable, and cost-free energy source. With an emphasis on solar tracking systems, it talks about the continuous investigation and study into improving solar energy harvesting techniques. An overview of solar PV cells, their building materials, various solar PV system types, and solar tracking systems is given in this article. It highlights the efficiency and benefits of dual-axis tracking solar systems over single-axis and fixed systems by focusing on their design and performance analysis. Through this research, solar energy usage is continuously improved. Dual-axis tracking systems not only increase energy efficiency but also help to decrease the total amount of acreage needed for solar power.

Keywords—Solar energy, Solar tracking, Dual axis, Arduino, *Light* dependent resistors (LDRs), *Servo* motors, Tracker mount, Driver, Efficiency

1.Introduction

An innovative device called a solar tracking system is made to maximize the effectiveness of solar panels by reorienting them to track the sun's path across the sky during the day. Compared to stationary solar panels, this tracking optimizes the quantity of sunlight captured, increasing energy production. One of the most important technologies in the development of solar energy is solar tracking systems. These systems increase energy output and support the

more general objectives of sustainability and energy efficiency by utilizing the sun's full potential. The use of solar tracking systems is anticipated to increase as costs come down and technology advances, contributing to the trend toward renewable energy sources.

These semiconductor-based panels are used in photovoltaic systems to directly convert sunlight into electrical power. A dual axis monitoring system that tracks the sun's movement both vertically and horizontally allows panels to maintain the perfect angle to the light. Panels move from east to west each day to follow the path of the sun across the sky. The panels adjust to the height of the sun as the seasons change. They will constantly be facing the sun thanks to this. These systems are especially effective in areas that receive a lot of sunlight or where the sun's position varies greatly during the year, such those near the equator.

In this work, we These semiconductor-based panels are used in photovoltaic systems to directly turn sunlight into power. In order to keep panels at the best possible angle to the light, a dual axis tracking system monitors the sun's movement both horizontally and vertically. To track the sun's journey across the sky, panels rotate every day from east to west. The height of the sun varies with the seasons, and panels adapt to match it. They will always be angled straight at the sun thanks to this. These systems work particularly well in bright regions or locations, like those close to the equator, where the sun's position fluctuates significantly during the year.

1.1. Requirement of Tracking System

The fact that the sun's position changes throughout the day and year necessitates the use of a sun-tracking system. Solar panels or solar collectors are used because being installed in one place does not provide enough sunlight to generate maximum energy. By tracking the motion of the sun through the sky, a sun-tracking system can keep solar panels or solar collectors oriented towards the sun, maximizing the amount of sunlight received and thus increasing energy output

Figure1: Single axis solar tracking system

Solar panels on single-axis trackers revolve in a single direction, typically east-west or northsouth. Throughout the day, the systems change the panels' angle to track the sun's path across the sky. They are a popular option for large solar farms since they are easier to use, less costly, and use less energy than dual-axis systems. They do not account for seasonal variations in the sun's position, despite the fact that they greatly increase energy output (30–35% more than fixed systems). 25–35% more energy is produced than with fixed panels. less expensive and complicated than dual-axis systems. Ideal for locations that receive steady sunlight all year round. unable to adapt to the sun's seasonal variations in angle (greater in summer, lower in winter). A little less effective

Figure2: Dual axis solar tracking system

Solar panels can follow the sun both vertically (as the sun's height changes over the year) and horizontally (as it moves from east to west) thanks to dual-axis trackers, which offer two degrees of rotation. This maximizes energy absorption guaranteeing that panels are always facing the sun. Dual-axis systems work well in areas with different seasonal patterns of sunshine. When compared to fixed systems, they can enhance energy production by 40–45%. However, because these systems require more sensors, motors, and upkeep, they are more costly and complex. makes sure the panels are always facing the sun in order to maximize the amount of sunlight that is captured. 40–45% more energy is produced than with fixed panels. Perfect for areas that receive different amounts of sunlight throughout the year.

2.Literature Review;

This is the literature survey of those below research papers. which we studied about dual axis of solar tracking system.

Control of Single-Axis and Dual	The study focuses on utilizing Dual Axis Solar
Axis Solar Tracking System [1].	Tracking (DAST) and Single Axis Solar Tracking
	(SAST) to increase the stability and efficiency of solar
	systems.
	The project's primary control and simulation tools are
	Arduino and MATLAB/SIMULINK.
	By measuring the sun's position throughout the day,
	solar tracking devices assist solar panels in generating
	the most power possible.
DUAL AXIS SOLAR	MATLAB/SIMULINK is used in the design and
TRACKING SYSTEM WITH	simulation of the solar tracking systems in order to
MONITORING [2].	study and analyse their performance.
	Sensors, motors, and an Arduino microcontroller are
	used in the development of a dual-axis solar tracking
	system prototype.
	The solar panels' position is continuously adjusted by
	Light Dependent Resistors (LDRs), which sense the
	strength of the sun.
	To assess efficiency gains, the dual-axis tracking
	system's performance is contrasted with that of single-
	axis and stationary solar systems.
	To maximize the solar panels' energy output,
	algorithms such as Maximum Power Point Tracking
	(MPPT) are used.
Performance Investigation of	A low-cost dual-axis solar tracker that is installed on a
Low-Cost Dual-Axis Solar	moving platform and maintains the solar panel's
Tracker using Light Dependent	perpendicularity to the sun by means of PI-controlled
Resistor [3].	linear actuators and a specially designed sunlight

	concer The device increases the effective of all
	sensor. The device increases the efficiency of solar
	energy generation for cars, boats, and other mobile
	platforms by achieving a tracking error of roughly 2
	degrees.
Dual axis solar tracker with IoT	It uses Arduino to create a dual-axis solar tracker with
monitoring system using Arduino	an Internet of Things monitoring system that tracks
[4].	the position of the sun in order to maximize solar panal efficiency.
	The efficiency increased by 45.11%, according to the
	results, demonstrating how well the dual-axis design
	maximizes energy output.
	A dual-axis solar tracker that optimizes solar energy
	collecting and offers real-time performance data for
	analysis was successfully produced by the project by
	integrating sensor-based control, Arduino
	programming, IoT monitoring, simulation, and real-
	world testing.
Performance evaluation of	High-efficiency heterojunction intrinsic thin-film
standalone double axis solar	(HIT) solar modules with a sophisticated dual-axis
tracking system with maximum	MLD solar tracker make up the system.
light detection MLD for tele	Daily data over a four-month period, including
communication towers in Malaysia	average power output and battery state of charge, is
[5].	analysed in relation to various weather conditions in
	order to evaluate the performance.
	The amount of solar radiation captured, global solar
	irradiation, and ambient temperature are among the
	statistics that have been gathered.
Design of Arduino-Based Dual	A power output increase of about 20%. The findings
Axis Solar Tracking System [6].	demonstrate that by guaranteeing that solar panels
	receive the most sunshine possible throughout the day,
	the dual-axis system can greatly increase solar panel

	A dual-axis sun tracking system with an Arduino
	microcontroller is used in the paper. The system
	employs two linear actuators to modify the position of
	the solar panel and five light-dependent resistors
	(LDRs) to measure the intensity of the sunshine.
	These components are used in the hardware design to
	build the tracking system, while C++ programming is
	used in the software development to operate the
	system.
Real building implementation of	In order to maximize building thermal regulation, this
a deep reinforcement learning	article employs a three-step process. In order to
controller to enhance energy	balance speed and transparency, the thermal dynamics
efficiency and indoor	of the building are first simulated using a grey-box RC
temperature control [7].	model.
	The model uses resistors (thermal resistance) and
	capacitors (thermal mass) to simulate heat flow and
	storage. Second, to maximize comfort and energy
	efficiency, a DRL control agent is trained in a
	simulated environment.
	Lastly, real-world environments are used to test the
	operation of both the RBC and DRL controllers.
Simple design and implementation	The memory dominantization that the solar treation are duese
of solar tracking system two axis	The paper demonstrates that the solar tracker produces
with four sensors for Baghdad city	greater power when compared to a stationary solar
[8].	panel.
[-].	The system has two modes of operation: direct sun
	tracking using LDR sensors and a fallback mode that
	keeps the system still in bad weather.
	The findings show that by maintaining photovoltaic
	(PV) panels' alignment with the sun for maximum
	power extraction, the solar tracker increases the
	energy efficiency of these devices.

	1
State-of-the-art in solar water heating (SWH) systems for sustainable solar energy utilization: A comprehensive review [9].	The article examines the latest developments in Solar Water Heating (SWH) systems, emphasizing important parts such as storage tanks and solar collectors (FPC, ETC, and CPC). It also discusses how nanofluids may improve thermal efficiency. It has been demonstrated that nanofluids such MWCNTs, CuO, and AlO ₃ greatly enhance collector performance, with efficiency gains of up to 35% in FPCs and 12.4% in ETCs. By lowering heat losses, the addition of Phase Change Materials (PCMs) to collectors and storage tanks improves thermal performance even more.
Dual-Axis Solar Tracker for Using in Photovoltaic System [10].	Compared to a properly aligned static solar panel, the device increases energy output by 9.87%. This illustrates the benefit of continuously monitoring the sun's location in real time. In comparison to a fixed panel setup, the study emphasizes that the dual-axis tracker technology improves solar exposure and boosts the system's total energy efficiency by continuously altering the panel's position.
Analysis and Testing of Dual Axis Solar Tracker for Standalone PV Systems using Worm Gear [11].	The application of automated dual-axis tracking systems that maximize solar energy collecting by combining motorized mechanical systems, solar sensors, and microcontroller-based control units. When compared to fixed solar panels, these systems showed notable increases in energy output, usually between 31-42% higher energy generation. According to the study, dual-axis trackers are a promising way to improve solar energy harvesting since they are significantly more efficient than static systems at reorienting the panel in response to the Sun's location.

Review of dual axis solar tracking	In order to effectively capture solar energy and lessen
and development of its functional	the constraints of static solar panels, the research
model [12].	highlights the need of increasing the efficiency of
	solar tracking systems, especially dual-axis systems.
	Dual-axis tracking systems are already more effective
	than stationary systems, according to the analysis of
	existing technologies, but they can yet be made more
	effective. Higher energy yields and improved overall
	performance of solar power technologies may result
	from the coevolving design approach and the
	suggested functional model, which provide a means to
	build more effective systems.
A new two-axis solar tracker based	This study examines the viability of employing neural
on the online optimization method:	network modeling and optimization techniques (such
Experimental investigation and	as PSO) to precisely forecast the Sun's location in a
neural network modeling [13].	two-axis solar tracker system.
	Without depending on conventional models of solar
	movement, the system enhances solar energy capture
	by adjusting the Sun's position-related parameters
	(azimuth and zenith angles).
	For solar tracking systems, the combination of ANN
	modeling with online optimization offers a dynamic
	and effective solution that improves performance and
	speeds up response times.
	The outcomes highlight how this strategy could
	maximize solar energy harvesting in practical settings,
	especially in areas with solar data accessible, like
	Shiraz City.
Artificial intelligent control of	The study shows how well fuzzy logic controllers and
solar tracking system [14].	artificial neural networks (ANNs) work for regulating
6 7 L-J.	a two-axis solar tracker and process identification,
	Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î
	respectively.

	The performance of the solar tracker is greatly enhanced by the use of intelligent controllers, especially the fuzzy logic PID controller with self- tuning scaling factors, as opposed to traditional PID controllers. The research demonstrates the possibility of merging artificial intelligence (through ANNs) and advanced control systems (such fuzzy logic) to boost the accuracy and efficiency of solar tracking systems, leading to better solar energy use .
Sun flower mimic robot for dual axis solar tracking system [15].	By constantly modifying the solar panels to follow the sun, this system shows how contemporary technology using cameras, microprocessors, and motors can greatly improve solar power output and result in higher energy efficiency. The potential advantages of such tracking systems in solar power applications are shown by the 2-3% improvement in energy output.
Energy, exergy, economical and environmental analysis of photovoltaic solar panel for fixed, single and dual axis tracking systems: An experimental and theoretical study [16].	In comparison to fixed solar panels, the study finds that solar tracking systems—particularly dual-axis tracking—offer significant gains in energy yield, economic feasibility, and environmental sustainability. Dual-axis tracking systems are especially efficient, delivering notable CO2 emission reductions and increasing energy output by up to 25.5%. They are more expensive initially, but over time, the economic advantages make them a better choice, particularly in areas like Zakho with ideal climates.

A dual solar tracking system based	With LTFs for accurate tracking and microcontroller-
on a light to frequency converter	based control logic, the suggested PILOT-PANEL
using a microcontroller [17].	solar tracking system is incredibly effective,
	extracting up to 98.36% of the energy while requiring
	very little energy.
	The high current consumption and heating difficulties
	present in conventional LDR-based trackers are
	resolved by this method.
	The system offers a sustainable, energy-efficient way
	to maximize solar energy capture and shows
	significant gains over traditional solar tracking
	systems.
Comparative Analysis of Dual and	Cincle avia trackara and simular 1 (1)
Single Axis Solar Tracker [18].	Single-axis trackers are simpler but less accurate at
Single Axis Solar Tracker [10].	tracking the Sun because they only require two LDRs
	and a single servo motor.
	Conversely, dual-axis trackers provide more accurate
	tracking with the use of two servo motors and four
	LDRs, which enable the panel to adjust in both axes,
	enhancing overall energy capture.
	Both systems can successfully follow the Sun thanks
	to the microcontroller used in both tracker designs to
	interpret LDR data and regulate the servo motors, but
	the dual-axis system offers a higher level of solar
	energy efficiency.
Design and Practical	When compared to conventional fixed-position solar
Implementation of Dual-Axis Solar	panels, the suggested low-cost solar tracking system
Tracking System with Smart	with dual-axis movement and real-time monitoring
Monitoring System [19].	delivers notable energy efficiency gains.
	The system provides useful performance data and
	efficiently tracks the Sun's location through the use of
	a microprocessor, servo motors, LDRs, and wireless
	data transmission. This concept is a viable way to

	increase the efficiency of solar power generation
	because it is affordable, simple to deploy, and offers
	real-time insights.
Experimental and numerical study of a linear Fresnel solar collector	This study shows that a linear Fresnel solar collector
attached with dual axis tracking	can effectively produce thermal energy, and that using
system [20].	a dual-axis tracking system can significantly increase
	efficiency.
	The device can produce significant amounts of useful
	energy, according to the testing data, particularly
	those from May 27. Furthermore, the experimental
	results are further validated by the numerical analysis
	using CFD, guaranteeing that the collector's
	performance and design live up to expectations.
An intelligent fuzzy based tracking	Solar energy systems can use a very effective solar
controller for a dual-axis solar PV	tracking system that combines fuzzy logic control,
system [21].	dual-axis tracking, and PWM motor control. Because
	of its accuracy and versatility, the system is a good fit
	for residential and solar farm systems, where
	optimizing energy capture is essential to raising
	system efficiency and lowering energy expenses.
	Even more effective solar tracking systems may result
	from future implementations that better optimize the
	fuzzy controller and sensor placement. Furthermore,
	based on environmental variables, real-time
	modifications to the fuzzy logic rules might be
	implemented to improve system performance in
	various weather scenarios.
Arduino based Dual Axis Smart	This research methodology provides a small,
Solar Tracker [22].	affordable, and effective solar tracking device, which
	makes it appropriate for both practical and educational
	uses.
	An outstanding introduction to solar power

	optimization and automation can be obtained by
	combining an Arduino UNO, solar sensors, and servo
	motors to construct a straightforward yet incredibly
	efficient solar tracker that maximizes the power output
	of solar panels.
	This kind of system helps guarantee that solar energy
	stays a viable and affordable energy source, whether it
	is used for small solar farms or residential purposes.
Designing of dual-axis Solar	Using a dual-axis solar tracking system, this research
tracking system with remote	offers a very creative and economical way to improve
monitoring [23].	solar panel performance.
	The concept is small, effective, and simple to use
	thanks to the use of servo motors for movement,
	Beagle Bone Black for control, and LDRs for sunlight
	detection.
	Furthermore, the system's internet connectivity
	enables for remote monitoring, making it a perfect
	solution for both residential and business applications
	in places like India, where energy demand is
	expanding rapidly.
Dual axis solar tracking system	With the use of Arduino-controlled DC motors and
[24].	LDR-based light detection, the dual-axis solar
	tracking system effectively positions the solar panel
	for maximum sunshine exposure, increasing energy
	efficiency through continuous tracking.
	The system guarantees maximum solar energy capture
	and is easy to use and reasonably priced. Light
	Dependent Resistor (LDR)-based tracking with
	Arduino driving DC motors for solar panel orientation
	adjustment is the technique employed in this dual-axis
	solar tracking system.
	To ensure that the panel faces the sun for optimal

	energy capture, the system uses PWM signals to move
	the motors based on LDR inputs.
Implementation of Dual Axis Solar	The paragraph concludes by stating that the automated
Tracking System [25].	solar tracking system positions the solar panel for
	optimal sunlight capture using Arduino, LDRs, and
	stepper motors. This system is an economical way to
	generate solar energy since it maximizes the panel's
	vertical and horizontal movement, improving energy
	efficiency and lowering the number of solar panels
	required.
	Furthermore, the expensive price of solar tracking
	systems is a deterrent, particularly for larger families
	who might need to install more than one solar panel to
	meet their energy needs. Optimizing solar panel
	efficiency while controlling the expenses of the
	tracking system and the required number of panels is
	therefore a challenge.
Comparative evaluation of optimal	According to the study's final review, a one-axis
energy efficiency designs for solar	tracking system for photovoltaic (PV) modules driven
tracking systems [26].	by a solar-powered Stirling engine greatly increases
	the efficiency of solar energy gathering when
	compared to stationary PV systems.
	The system monitors the Sun's path throughout the
	day, which causes the module to get a significant
	increase in solar irradiation and produce more energy.
	An effective and economical method of solar tracking
	is offered by the combination of LDR sensors for
	determining the direction of the sun and a Stirling
	engine acting as a low-power tracking motor. This
	strategy is a viable way to improve solar power
	efficiency in areas with significant solar potential, as
	evidenced by the modeling and simulation done at

	Giza, Egypt.
	According to the study's findings, this By increasing
	the output of each solar panel, a tracking system can
	significantly improve performance and perhaps
	eliminate the need for additional panels.
Dual-axis solar tracking system	Precise tracking of the sun is made possible by the
with different control strategies for	combination of motor-driven mechanisms, feedback
improved energy efficiency [27].	control, and LDR sensors, which guarantees ideal
	alignment and maximizes power production.
	Furthermore, the system is a flexible and efficient
	solar energy generation tool due to its location-
	independent operation.
	The study of wind pressure impacts will help optimize
	the tracker design for durability, and the device
	demonstrated improved performance and increased
	current output. Future development for commercial
	applications is part of the scope, with the goal of
	increasing the productivity and efficiency of solar
	energy.
Performance Evaluation of the	In order to compare the power generation of the
Designed Two-Axis Solar	suggested tracking system with a fixed-tilt solar panel
Tracking System for Trabzon [28].	facing south, experimental investigations were carried
	out during three gloomy days.
	According to the trial results, the two-axis solar
	tracking system generates more energy than fixed-tilt
	systems, especially in areas like Trabzon that receive
	less sunlight.
	Optimizing solar energy utilization in cloudy or low-
	sunlight areas may be made possible by the system's
	capacity to detect the sun's daily movement and
	produce more power.
	The study demonstrates that, especially in foggy areas
	The study demonstrates that, especially in loggy aleas

	where fixed systems perform poorly, the two-axis STS
	is an economical and energy-efficient way to
	maximize solar energy output. In gloomy situations,
	this solar tracker design can be a perfect substitute for
	fixed systems, producing 24.7% more energy. Areas
	with less sunlight that provide significant
	advancements in solar energy production
Real Time Clock based Energy	The study comes to the conclusion that the
Efficient Automatic Dual Axis	asymmetric solar dish concentrator in conjunction
Solar Tracking System [29].	with the RTC-based dual-axis solar tracking system is
	a very effective solar energy solution.
	Its ability to enhance solar energy collecting is
	demonstrated by the 75% increase in thermal power as
	compared to fixed systems, especially in applications
	that need for high-temperature generation.
	For solar power systems in areas with varying solar
	conditions throughout the year, this design presents a
	potential option.
Simple design and implementation	The study's findings show that, with a 35% increase in
of solar tracking system two axis	energy output, the dual-axis tracker is noticeably more
with four sensors for Baghdad city	efficient than a fixed solar panel.
[30].	The energy difference between the tracker and fixed
	panel is negligible at midday since both systems
	efficiently capture energy when the sun is directly
	overhead, but the tracker performs best in the morning
	and evening when the sun is at a lower angle.
	Relatively speaking, the solar tracker is a cost-
	effective solution because it is relatively cheap to
	operate and maintain. Furthermore, unlike fixed
	systems, which have more limited efficiency, the dual-
	axis tracker may be mounted anywhere, guaranteeing
	excellent energy gain and increased mobility. All

	THE THE AND A CONSIDERED THE OTATEAXIS SOLAR TRACK THE SUSTEME.
	things considered, the dual-axis solar tracking system
	provides a significant boost in energy gathering and is
	a viable way to optimize solar energy generation in
	different geographical areas.
Advancing sustainable cooling:	The performance of a solar-powered thermoelectric
Performance analysis of a solar	refrigerator (SPTR) that uses solar energy for cooling
driven thermos electr2024ic	is examined in the research. To optimize solar energy
refrigeration system for eco-	capture, a dual-axis solar tracking system (STS) is
friendly solutions [31].	used.
	Both a fixed solar panel system (WST) and the dual-
	axis STS were used to evaluate the system in a local
	climate with an ambient temperature of 25°C. The
	findings showed that solar irradiance, system input
	power, panel surface temperature, and cooling rate all
	had a substantial impact on the SPTR's coefficient of
	performance (COP).
	In comparison to the fixed system, the directly
	coupled SPTR with a WST showed an improvement
	of 44–75%, with COP values ranging from 0.27 to
	1.19 and 0.39 to 2.07 for the STS. The cooling load
	was directly correlated with the refrigerated space and
	the thermo-electric characteristics of the
	thermoelectric modules (TEM), and the cooling rate
	was highest when the system was running with the
	STS on a bright, sunny day.
Comparative assessment of	In contrast, a two-axis solar tracker reduces operating
different solar tracking systems in	expenses by 4.8% and increases PV production by an
the optimal management of PV-	additional 3.2% when compared to a single-axis
operated pumping stations [32].	tracker.
	This benefit, however, is negligible in light of the two-
	axis system's higher cost and more complicated

	findings, a single-axis solar tracker is typically the
	more sensible and economical option for maximizing
	the efficiency and lowering the running costs of PV-
	powered pumping systems, even though a two-axis
	tracker offers somewhat more advantages. The study
	emphasizes how crucial it is to choose the best PV
	tracking system by weighing energy output,
	operational effectiveness, and financial viability.
Machine learning assisted	In order to forecast power output and formic acid
prediction of solar to liquid fuel	production under various situations, this study
production: a case study [33].	combined machine learning (Support Vector Machine)
	with a two-axis solar tracking system that converts
	solar energy into formic acid.
	By using formic acid as a storage medium, the study
	offers a viable way to get around the technological
	and financial constraints of two-axis solar tracking
	systems. This method contributes to more sustainable
	and profitable solar energy systems by increasing the
	efficiency of solar energy capture and establishing a
	financially feasible strategy to use excess solar power.
Methodology for the estimation of	The objective was to locate arable land areas between
cultivable space in photovoltaic installations with dual-axis trackers for their reconversion to agrivoltaics plants [34].	the solar collectors and the distance between them
	where the levels of sun irradiation would be enough
	for agricultural development.
	Using this simulation, the study suggests the best crop
	heights and cultivation techniques, calculating the
	proportion of accessible cultivable land based on crop
	height. In order to identify and demarcate areas
	appropriate for agricultural use, this study used a
	theoretical simulation of solar astronomy and the
	spatial geometry of a photovoltaic plant with dual-axis
	trackers.

Two-Axis Solar Tracker Analysis	According to the simulation regults by making sure
and Control for Maximum Power	According to the simulation results, by making sure
	the panel is positioned at the ideal angles all day long,
Generation [35].	such a system can greatly boost the energy yield.
	The goal of the research is to create a novel method
	for managing the motion of dual-axis solar trackers,
	which are intended to maximize solar panel
	orientation.
	The emphasis is on developing and putting into
	practice effective control algorithms that modify the
	panel's location in elevation (vertical rotation) and
	azimuth (horizontal rotation).
Novel high precision low-cost dual	This paper proposes a revolutionary solar tracking
axis sun tracker based on three light	system that does not require costly parts like lenses,
sensors [36].	motors, or feedback sensors. Instead, it uses common
	Light Dependent Resistors (LDRs) and 3D-printed
	components to achieve high-precision sun tracking.
	In order to follow the sun and focus light on a central
	LDR, the system moves Fresnel mirrors, keeping the
	angle between the incoming sun rays and the solar
	concentrator's target direction less than 0.26°.
Parametric comparison of a CPVT	The study finds that although automated two-axis
performance evaluation under	trackers are best suited for large-scale, high-efficiency
standard testing procedures-ISO 9806:2017 and IEC62108:2016 foranautomatedandmanual2-axis tracking solar system stand [37].	applications, manual systems can still be a practical
	and economical option in some situations, especially
	when the use of more costly automated systems is
	restricted by installation size or budgetary
	considerations.
	In order to achieve the best possible balance between
	energy production and financial efficiency, the
	decision between the two should be made based on
	project-specific factors including scale, costs, and
	operational requirements.

Review on sun tracking technology	Greater Efficiency: Because dual-axis solar tracking
in solar PV system [38].	systems watch the sun in both azimuthal and
	elevational directions, they are more efficient than
	single-axis and stationary systems. This ensures that
	the panels are oriented optimally throughout the day.
	The capacity to adjust to changing land features
	allows dual-axis tracking systems to maximize solar
	energy generation in a variety of geographic regions
	and topographies.
	Better Performance: New developments in dual-axis
	tracking systems have led to better performance,
	which helps to gather and generate solar energy more
	effectively.
	Long-Term Cost-Effectiveness: Although dual-axis
	tracking systems may initially cost more, their
	capacity to produce more energy makes them more
	affordable over time, providing faster returns on
	investment.
Self-shading of two-axis tracking	The study found that the form of the collector aperture
solar collectors: Impact of field	had a substantial impact on shading losses. Of all the
layout, latitude, and aperture	forms examined, square collectors had the most
shapes [39].	shading losses, whereas rectangular collectors had the
	lowest. This implies that the shape of the solar panel
	must be carefully considered in order to maximize
	solar power capture.
	The study also looked into the effects of rectangular
	arrays rotating less optimally. It was demonstrated
	that improperly oriented collectors led to greater
	shading losses, which in turn reduced the system's
	power output. This outcome highlights the importance
	of precise alignment and tracking in maximizing the
	efficiency of solar installations.

Techno-economic comparative	According to the study, VSAT is the most effective
study of grid-connected	tracking system in terms of yearly power generation
PV/reformer/FC hybrid systems with distinct solar tracking systems [40].	and energy penetration into the grid.
	The VSAT system performs better than the others in
	terms of producing the most energy and reaching the
	most PV penetration, even though HSAT and DAT
	are equally advantageous in some situations.
	However, each system's economic viability must be
	thoroughly evaluated, taking into account both the
	energy gain and implementation costs.
	In some situations, fixed tilt systems are typically
	more economical, while tracking systems—
	particularly VSAT—can offer notable performance
	advantages, especially in regions with abundant solar
	resources.

3.Methodology

3.1Materials

• LDR sensors, Stepper motors, Microcontroller, Solar panels, Voltage regulator, Limit switch, Adaptor, AC motor, PMDC Motor, BLDC Motor

3.2 Steps involved in dual axis solar tracking system

• **Program:** Launch the application, specify variables, and set up the input and output ports.

• Read sensors: Examine the light-dependent sensors' (LDRs') values.

• Examine sensors: To ascertain the location of the solar panels, examine the analog values.

- Verify voltages: Verify the fixed voltages in the design configuration.
- Tilt panels: Adjust tilting in accordance with voltages

• **Rotate panels:** Depending on the voltage differential between the LDR sensors, rotate the panels either clockwise or counterclockwise.

• **Stepper motor movement:** The microcontroller moves the stepper motors to a new location by turning on driver circuits.

Figure3: daily incident of solar intensity three systems

1. Black Line Dual Axis Tracking

• Justification: This system monitors the sun's position all day long, both vertically and horizontally. Consequently, it keeps the solar panels at the ideal angle to get the most sunlight.

• Finding: Throughout the day, the black line exhibits the maximum irradiance, peaking at midday. In comparison to the other methods, this shows the highest efficiency in capturing solar energy.

2. Green Dotted Line Single Axis Tracking

Justification: This system allows for a certain amount of alignment with the sun by tracking its movement along a single axis, which can be either vertical or horizontal.
Finding: The green dotted line is much higher than the fixed-axis system but marginally lower than the black line. When compared to the dual-axis system, it exhibits lower efficiency, but is still superior to a fixed panel in terms of effectiveness.

3. Fixed Axis (Dash-Dot Line in Pink)

• Justification: This system does not track the solar panels; instead, it maintains them at a constant angle. The panels are unable to dynamically adapt to the movement of the sun because they are set to the ideal tilt for a typical day.

• Finding: In the morning and late afternoon, when the sun's angle differs greatly from the fixed panel's orientation, the pink line exhibits the lowest irradiance. When the sun is above around noon, the irradiance peak at that time indicates some efficiency. An overview of the trends

• Less efficient than dual-axis tracking, but still more efficient than a fixed system, is the single-axis system.

• The dual-axis system performs better than the others in terms of continuously capturing solar energy throughout the day.

4.Applications

• Dual-axis solar tracking systems continuously align solar panels with the position of the sun to optimize energy generation from solar panels. The main applications are as follows:

4.1 Solar Power Plants at the Utility Scale

- Goal: To maximize the production of power in huge solar farms.
- Advantage: Because dual-axis trackers optimize energy production, they are appropriate for high-energy-demanding projects where space efficiency is crucial.

4.2 Solar Systems for Homes

• Goal: To help homeowners boost the effectiveness of their ground-mounted or rooftop solar panels.

• Advantage: Dual-axis tracking might be a wise investment in areas with significant solar energy potential, while being more costly than fixed systems.

4.3 Systems for Off-Grid Energy

• Goal: To provide electricity to isolated locations without grid connectivity, including islands, rural settlements, or research outposts.

4.4 Plants Using Concentrated Solar Power (CSP)

• Use: In CSP systems, sunlight is focused onto a small area by mirrors or lenses, producing heat that is used to produce electricity.

• Advantage: The efficiency of the thermal energy generating process is increased by precise alignment with the sun.

4.5 Solar Power

• Goal: Grows crops beneath or next to solar panels, combining agriculture with solar energy production.

• Advantage: Dual-axis trackers maximize sunlight and shade throughout the day, which promotes crop growth and energy production.

4.6 Commercial and Industrial Uses

• Goal: To supply energy to commercial buildings, manufacturers, and warehouses with high energy requirements.

• Advantage: Dual-axis tracking lessens dependency on traditional energy sources by ensuring increased power generation during the hottest parts of the day.

4.7 Projects for Research and Development

• Goal: To investigate cutting-edge solar systems or technologies in practical settings.

• Advantage: Researchers can evaluate the greatest energy potential and advance solar energy technology with dual-axis systems.

4.8 Solar-Powered Plants for Desalination

• Goal: To provide electricity for the desalination of water.

• Advantage: Guarantees that the most solar energy is captured to power the

5.Conclusion

Solar tracking technologies have emerged as a major development in photovoltaic (PV) systems due to notable improvements in energy capture and system efficiency. The relative advantages of several solar tracking schemes are discussed in review articles along with their applications in a range of settings, such as water pumping stations and standalone electricity generation systems. Because dual-axis trackers

maintain the optimum possible orientation toward the sun throughout the day and year, they perform better. This method is particularly useful for maximizing energy output in applications where efficiency is critical, such as large-scale power generating. Despite their greater initial costs and maintenance requirements, dual-axis trackers show energy benefits of 15% to 30% over fixed panels and single-axis systems. They are therefore ideal for regions with varying

Single-axis trackers, on the other hand, balance cost, complexity, and performance. They are widely utilized in applications like pumping irrigation water, where a 33% increase in energy production can lead to a significant decrease in operating expenses. Because these systems are simpler to install and operate than dual-axis trackers, they affordable for medium-sized businesses. are more The trials also demonstrate the versatility of solar trackers in integrating renewable energy sources into systems that are already in place. For example, incorporating solar trackers and variable-speed pumps into irrigation systems enhances water resource management, reduces dependency on the electrical grid, and maximizes energy efficiency. Furthermore, tracking systems' enhanced self-consumption ratios promote sustainable energy practices by lowering reliance on external power sources.

Economic and environmental variables have a significant impact on the adoption of solar tracking systems. Given the potential for long-term cost reductions and the reduction in greenhouse gas emissions, solar tracking is positioned as a critical component in the transition to renewable energy. However, the unique project parameters, geographic location, and budgetary constraints will determine whether to use fixed systems, single-axis, or dual-axis trackers.

References

1. Taha, M. T., Mohamed, E. O., Abdolsalam, A. M., & Taha, A. B. (2021, February). Control of Single-Axis and Dual-Axis Solar Tracking System. In *2020 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE)* (pp. 1-6). IEEE.

2. Jadhav, M. K. S., Suryawanshi, M. H. D., Dhangar, M. B. D., Vadnere, M. A. P., & Patil, M. R. B. (2020). DUAL AXIS SOLAR TRACKING SYSTEM WITH MONITORING.

3. Keo, C., Srang, S., & Seng, R. (2023). Performance Investigation of Low-Cost Dual-Axis Solar Tracker using Light Dependent Resistor. *International Journal of Robotics & Control Systems*, *3*(4).

4. Said, M. N. A. M., Jumaat, S. A., & Jawa, C. R. A. (2020). Dual axis solar tracker with IoT monitoring system using arduino. *Int. J. Power Electron. Drive Syst, 11*(1), 451-458.

5. Abdulmula, A. M., Sopian, K., Haw, L. C., & Fazlizan, A. (2019). Performance evaluation of standalone double axis solar tracking system with maximum light detection MLD for telecommunication towers in Malaysia. *International Journal of Power Electronics and Drive Systems*, *10*(1), 444.

6. Hashim, Y. (2020). Design of arduino-based dual axis solar tracking system. *Journal on Advanced Research in Electrical Engineering*, 4(2), 129-133.

7. Kumar, V., & Raghuwanshi, S. K. (2019, February). Design and development of dual axis solar panel tracking system for normalized performance enhancement of solar panel. In *Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India.*

8. Mustafa, F. I., Shakir, S., Mustafa, F. F., & Naiyf, A. T. (2018, March). Simple design and implementation of solar tracking system two axis with four sensors for Baghdad city. In 2018 9th International Renewable Energy Congress (IREC) (pp. 1-5). IEEE.

9. Al-Mamun, M. R., Roy, H., Islam, M. S., Ali, M. R., Hossain, M. I., Aly, M. A. S., ... & Awual, M. R. (2023). State-of-the-art in solar water heating (SWH) systems for sustainable solar energy utilization: A comprehensive review. *Solar Energy*, 111998.

10. Robles Algarin, C. A., Ospino Castro, A. J., & Naranjo Casas, J. (2017). Dual-axis solar tracker for using in photovoltaic systems.

11. Prakash, M. B., & Govindarajulu, K. (2022). Analysis and Testing of Dual Axis Solar Tracker for Standalone PV Systems Using Worm Gear. *Int. J. Mod. Trends Sci. Technol*, *8*, 1-8.

12. Mpodi, E. K., Tjiparuro, Z., & Matsebe, O. (2019). Review of dual axis solar tracking and development of its functional model. *Procedia Manufacturing*, *35*, 580-588.

13. Masoumi, A. P., Bagherian, V., Tavakolpour-Saleh, A. R., & Masoomi, E. (2023). A new two-axis solar tracker based on the online optimization method: Experimental investigation and neural network modeling. *Energy and AI*, *14*, 100284.

14. El Shenawy, E. T., Kamal, M., & Mohamad, M. A. (2012). Artificial intelligent control of solar tracking system. *Journal of Applied Sciences Research*, 8(8), 3971-3984.

15. Kumar, D. N., Sodisetty, V. P., & Kumar, C. V. Sunflower mimic robot for development of dual axis solar tracking system. *Int. J. Recent Technol. Eng*, 8(2), 554-557.

16. Alomar, O. R., Ali, O. M., Ali, B. M., Qader, V. S., & Ali, O. M. (2023). Energy, exergy, economical and environmental analysis of photovoltaic solar panel for fixed, single and dual axis tracking systems: An experimental and theoretical study. *Case Studies in Thermal Engineering*, *51*, 103635.

17. Ghassoul, M. (2021). A dual solar tracking system based on a light to frequency converter using a microcontroller. *Fuel Communications*, *6*, 100007.

18. Hoque, S. M. B., Das, B., Hasan, A., & Askary, A. (2019, December). Comparative analysis of dual and single axis solar tracker. In *Proceedings of the International Conference on Mechanical Engineering and Renewable Energy 2019* (pp. 11-13).

19. Hamad, B. A., Ibraheem, A. M., & Abdullah, A. G. (2020). Design and Practical Implementation of Dual-Axis Solar Tracking System with Smart Monitoring System. *Przeglad Elektrotechniczny*, 96(10).

20. Abdul-Ghafoor, Q. J., Abed, S. H., Kadhim, S. A., & Al-Maliki, M. A. (2024). Experimental and numerical study of a linear Fresnel solar collector attached with dual axis tracking system. *Results in Engineering*, *23*, 102543.

21. Batayneh, W., Owais, A., & Nairoukh, M. (2013). An intelligent fuzzy based tracking controller for a dual-axis solar PV system. *Automation in Construction*, *29*, 100-106.

22. Mishra, J., Thakur, R., & Deep, A. (2017). Arduino based dual axis smart solar tracker. *International Journal of Advanced Engineering, Management and Science*, 3(5), 239849.

23. Malge, S., Bhole, K., & Narkhede, R. (2015, May). Designing of dual-axis solar tracking system with remote monitoring. In *2015 International Conference on Industrial Instrumentation and Control (ICIC)* (pp. 1524-1527). IEEE.

24. Shang, H., & Shen, W. (2023). Design and implementation of a dual-axis solar tracking system. *Energies*, *16*(17), 6330.

25. Mohanapriya, V., Manimegalai, V., Praveenkumar, V., & Sakthivel, P. (2021, March). Implementation of dual axis solar tracking system. In *IOP Conference Series: Materials Science and Engineering* (Vol. 1084, No. 1, p. 012073). IOP Publishing.

26. Hafez, A. Z., Shazly, J. H., & Eteiba, M. B. (2015, April). Comparative evaluation of optimal energy efficiency designs for solar tracking systems. In *Proc. Of the third intl. cnf. on advances in applied science and environmental engineering* (pp. 134-141).

27. Mamodiya, U., & Tiwari, N. (2023). Dual-axis solar tracking system with different control strategies for improved energy efficiency. *Computers and Electrical Engineering*, *111*, 108920.

28. Mollahasanoglu, M., & Okumus, H. I. (2023). Performance evaluation of the designed twoaxis solar tracking system for Trabzon. *IETE Journal of Research*, 69(8), 5338-5350. 29. Subramaniam, V. (2018). Real time clock-based energy efficient automatic dual axis solar tracking system. *Engineering Journal*, *22*(1), 15-26.

30. Mustafa, F. I., Shakir, S., Mustafa, F. F., & Naiyf, A. T. (2018, March). Simple design and implementation of solar tracking system two axis with four sensors for Baghdad city. In 2018 9th International Renewable Energy Congress (IREC) (pp. 1-5). IEEE.

31. Qamar, A., Kanwal, A., Amjad, M., Farooq, M., Munir, A., Ahmad, S., & Abdollahian, M. (2024). Advancing sustainable cooling: Performance analysis of a solar-driven thermoelectric refrigeration system for eco-friendly solutions. *Case Studies in Thermal Engineering*, *60*, 104781.

32. Naval, N., & Yusta, J. M. (2022). Comparative assessment of different solar tracking systems in the optimal management of PV-operated pumping stations. *Renewable Energy*, *200*, 931-941.

33. Shahzad, M. W., Nguyen, V. H., Xu, B. B., Tariq, R., Imran, M., Ashraf, W. M., ... & Sheikh, N. A. (2024). Machine learning assisted prediction of solar to liquid fuel production: a case study. *Process Safety and Environmental Protection*, *184*, 1119-1130.

34. Varo-Martínez, M., Fernández-Ahumada, L. M., Ramírez-Faz, J. C., Ruiz-Jiménez, R., & López-Luque, R. (2024). Methodology for the estimation of cultivable space in photovoltaic installations with dual-axis trackers for their reconversion to agrivoltaic plants. *Applied Energy*, *361*, 122952.

35. Ozcelik, S., Prakash, H., & Challoo, R. (2011). Two-axis solar tracker analysis and control for maximum power generation. *Procedia Computer Science*, *6*, 457-462.

36. Boukdir, Y., & Omari, H. E. (2022). Novel high precision low-cost dual axis sun tracker based on three light sensors. *Heliyon*, 8(12).

37. Cabral, D., Kosmadakis, G., & Mathioulakis, E. (2024). Parametric comparison of a CPVT performance evaluation under standard testing procedures-ISO 9806: 2017 and IEC 62108: 2016-for an automated and manual 2-axis tracking solar system stand. *Energy Reports*, *11*, 1242-1255.

38. Awasthi, A., Shukla, A. K., SR, M. M., Dondariya, C., Shukla, K. N., Porwal, D., & Richhariya, G. (2020). Review on sun tracking technology in solar PV system. *Energy Reports*, *6*, 392-405.

39. Jensen, A. R., Sifnaios, I., Furbo, S., & Dragsted, J. (2022). Self-shading of two-axis tracking solar collectors: Impact of field layout, latitude, and aperture shape. *Solar Energy*, *236*, 215-224.

40. Dekkiche, M., Tahri, T., & Denai, M. (2023). Techno-economic comparative study of grid-connected PV/reformer/FC hybrid systems with distinct solar tracking systems. *Energy Conversion and Management: X, 18,* 100360.