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Abstract

This article deals with a single server queue. Arrivals are in batches,
follows compound Poisson process with each batch size is a random
variable follows a discrete distribution. The customers are served singly,
they wait in a queue of infinite capacity, if the service is not immediate.
The server takes compulsory vacation after completing service, the server may
breakdown while doing service. The service time, vacation time and repair
time, all follows different general distributions. The number of
breakdowns follows a Poisson distribution. After breakdown, the repair is
carried out but repair is not immediately carried out, called a delay period
it follows general distribution. Also, the completion of compulsory
vacation, the vacation may be extended follows general distribution. The
model is completely analysed using supplementary variable technique in
steady state. Numerical illustrations are also provided. In addition, control
chart analysis for number of customers in the system has been included.
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1. Introduction

Many researchers consider vacation queues with variant vacation policies
namely single vacation, Bernoulli’s vacation, multiple vacation, compulsory vacation etc.
A huge amount of vacation models is defined and analyzed by researchers. For a
detailed survey one can refer Doshi (1986) and Takagi (1991). In a similar way many
researchers working on bulk queue (either bulk arrival and /or bulk service). Some
important reference in this area are Armero and Conesa (2000), Arumuganathan and
Ramaswami (2005), Chang et al., (2004), Fakinos (1991), Srinivasan et al., (2002), Sumita
and Masuda (1997), Ushakumari and Krishnamoorthy (1998), Stadje (1989), Ramaswami
(1980), Lucantoni (1991) and many others.

The other topic in queueing theory, which has immediate practical
application is queue with breakdown, also called queue with unreliable server. Many researchers
have contributed on queue with unreliable servers and some noteworthy works are Ke (2005)
and Wang (1995,1997).

When a system suddenly stops functioning due to a failure, most of the
works available in the literature assume that the repair process on the system starts
immediately, However Khalaf et al., (2012) analyzed a batch arrival breakdown and delay
time. The concept of extended vacations and delay in starting the repair process, some
authors introduced the idea of a stand-by server in some of the system (Madan, 1995)
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2. The Model

A single server queue has been considered. In which the customers arrive in batches of
random size X , with probability Pr{X = j} = C; . The batch arrival follows Poisson
process with parameter A . The customers arrive for service, if service is not
immediate, they will wait in a waiting line of an infinite capacity. The customers are
served singly. The service time follows general distribution with distribution function
B(x). The services are given First Come First Service basis. At each service completion
the server takes vacation of random length, follows general distribution with distribution
function G;(x) . The system may breakdown at random and the number of breakdowns
follows Poisson process with parameter a . Once the system breakdown, the customer
whose service is interrupted goes to the head of the queue. After breakdown, there is a
potential delay before the repair period starts. The delay period follows general
distribution with distribution function D(x) . After the delay time the server is send for
repair, the repair period follows general distribution with distribution function R(x) .
After a vacation period, the server has the option of taking an extended vacation with
probability . The extended vacation period follows general distribution with distribution
function G,(x) . When the server is on vacation or repair, there is a standby server, the
server serves with distribution function negative exponential of rate u,. The mathematical
model is defined using the notations given in the following table 2.1.

Table 2.1: Notations

Notations Description
A Arrival rate
X Arrival batch service
G Pr{X = j}
B(x) Service time distribution
G1(x) Vacation time distribution
a Breakdown rate
D(x) Delay time distribution
G, (x) Extended vacation time distribution
R(x) Repair time distribution
y Probability of taking extended vacation
1, Stand by server’s servjce rate
£(t) The server state at time t
10, (%) Hazard rate funcFlon of service time
0, (x) Hazard rate functlon of vacation tl.me '
6, (x) Hazard rate function of ‘extended vacation time
y(x) Hazard rate funct1.0n of repair time
B(x) Hazard rate function of delay time

Since G;(x),G,(x),B(x),D(x) and R(x) are cumulative distribution
functions, we have
G1(0) = G,(0) =B(0) =D(0) =R(0) =0
G1() = G5(0) = B() = D(®) = R(0) =0

The Hazard rate function of service time, vacation time, extended vacation time, repair
time, delay time are defined as

_ dB(x) _dGi(x) _dGy(x) _ dR(x) _ dD(x)
p(x) = =B ,01(x) = 16,00 62 (x) = m,y(x) = 1——R(x)"8(x =100
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We define the following generating functions,

P(z;x) = Z P,(x)z" \V(z;x) = Z V,(x)z™,R(z; x) = Z R,(x)z"
n=0 n=0 n=0

S(z;x) = Z S,(x)z™ U(z; x) = Z Up(x)z™
n=0 n=0

Define M (t) be the number of customers in the queue at time t and the server state &(t),
the server state at time t.
0, serverisidle at time t
1, server is busy at time t
2, server is on vacation at time t
3
4

§(t) =

, server is on extended vacation at time t
server is in delay at time ¢

5, server is in repair at time ¢
{M(t),&(t):t = 0} is a bivariate Markov process, where c(t) = 0, b;(t), b,(t), b3(t), b,(t)
, bs (t)
The following probabilities are defined for the mathematical analysis
Q(t) = Pr{M(t) = 0;c(t) = 0}

B,(x;t) = Pr{M(t) =n;t < b;(x) <t +dt}

V,(x;t) = Pr{M(t) = n;t < b,(x) <t + dt}

Spl;t) = PriM(t) =n;t < b3(x) <t +dt}

U,(x;t) = Pr{M(t) = n;t < b,(x) <t + dt}

R,(x;t) = PriM(t) = n;t < bs(x) <t + dt}
The steady state probabilities are as t — oo

B(x; ) = P(x); Va(x5 1) = Vo (x); Sp(x5t) = Sp(x); Un(x;8) = Up(x);

Rn(x;t) = Ry (x);

Based on the arguments in Cox (1955), the following differential-difference equations
are obtained

— Po(x) = —(A+ 13 (x) + @) Py (x) 2.1)
ZP(x) = =+ 13 () + @)P () + ATy CiPyey (1), forn > 1 2.2)
ZVo(x) = =X+ 6, () + i)Vo(x) + 1tz Vi (x) 2.3)
LV (@) = (A + 0:() + o)V () + ATy CiVmy (1) + 3V . forn = 1 2.4)
—Ro(x) = —(A+y(x) + t2)Ro(x) + 1 Ry(x) (2.5)
2 Ra(x) = (A +¥(0) + )R (x) + ATIy CiRyoy () + taRp, forn > 1 (2.6)
2 Sp(x) = —(A+ 6,(x) + @)Sp (%) 2.7)
= Sa(x) = —(A+ 0,(x) + @), (X) + AT, €Sy (1), forn = 1 (2.8)
—Up(x) = 0 (2.9)
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ZUn(0) = =(A+ BGO)Un(x) + AT CiUno; (), forn = 1 (2.10)
Q= fooo Ry(x)y(x)dx + (1 —p) fooo Po()py () + (1 —1) fooo Vo(x)8, (x)dx +
[Y S0 ()0, (x)dx (2.11)

The Boundary conditions are

P.(0) = (1 —-p) fooo Pry1(Op ()dx + (1 — 1) fooo Vi1 (x)6;1 (x)dx +

Jy Sne1(0)02()dx + [ Rpya )y (x)dx + ACy11Q, forn > 0 (2.12)
Va(0) = p [ Py ()1 (x)dx, forn = 0 (2.13)
Sn(0) =7 [V ()6 (x)dx, forn = 0 (2.14)
Un(0) = [, Ppos()adx = aPy_ (x), forn > 1 (2.15)
R, (0) = [ Up ()B(x)dx, forn > 1 (2.16)
R,(0) = U,(0) =0 (2.17)

Mu1t1p1y1ng equation (2.2) by z" and applymg Yim—q1, WE have

aan(aoz —(/1+u1(x)+a)ZP(x)z ”ZZ“’ (07"
n=1

n=1i=

Addmg the above equation with equation (2. 1) we have

Zp (0)z" = —(/1+y1(x)+a)ZP (0)z" +AZZCPn (02"

n=1i=

Integrating of above equation with respect to x with the limits from ‘0’ to 'x’, we have
P(z; x) = P(z; 0)el=-+@+AC@Ix= 5 i (wu (2.18)

Mu1t1p1y1ng equation (2.4) by z" and applymg Yim=q1, WE have

az v, (07" ——(/1+91(x)+uz)z (7" +AZZCVn (02"
n=1

n=1i=

+1; Z Vn+1(x)Zn

Adding the above equation W1th equatlon (2. 3) we have

aaxz V, (x)2" ——(A+01(x)+u2)z  (x)zn +AZZCVn ()2

n=0 n=1i=

+1; Z Vn+1(x)Zn

Integrating of above equation with respect to x with the limits from ‘0’ to 'x’, we have

u x
V(zx) = V(z O)e[—(/1+u2)+lc(z)+72]x— Ji 61w du (2.19)
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Mu1t1p1y1ng equation (2.6) by z" and applymg Yim—q1, WE have

aZRn(x)z ——(A+y(x)+uz)ZR (07" +AZZCRn (07
n=1

n=1i=

+1; Z Rn+1(x)Zn

Addmg the above equation W1th equatlon (2. 5) we have

ZR (x)z" ——(A+y(x)+u2)ZR (x)z" +AZZCRn (02"

n=1i=

Uz z Rpp1(x)z"
Integrating of above equation with respect to x with the limits from ‘0’ to 'x’, we have
R(Z' x) — R(Z O)e[_(/1"‘#2)"'/1(:(2)"'%]95_]‘;6V(u)du (220)

Multiplying equation (2.8) by z" and applying Yim—q1, WE have

N s Gz = —(a+ ez(x))zs (2" +AZZCSn (07"
n=1

n=1i=

Addmg the above equation with equatlon (2.7), we have

ZS (0)z" = —(/1+92(x))25 ()2 +AZchn (02"

n=1i=

Integrating of above equation with respect to x with the limits from ‘0’ to 'x’, we have
S(z;x) = S(z; 0)e"A+ACENIx=J; 82w du (2.21)

Multiplying equation (2.10) by z™ and applying Ym=1) we have

2N vy Gy = —(/1+ﬁ(x))z Un(0)2" ”ZZC Upei (2"
n=1

n=1i=

Addmg the above equation with equatlon (2.9), we have

ZU (xX)z" _—(,1+/;(x))ZU (x)z" +AZZCU L (07"

n=1i=
Integrating of above equation with respect to x with the limits from ‘0’ to ‘x’, we have

U(z; %) = U(z; 0)el-+AC@x=J5 pandu (2.22)

Multiplying equation (2.12) by z™ and applying ).;—,, we have
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P(20) = 1_Tp f Pz 0 ()dx + ; f V00, () dx
0 0

+ljoo5(z; x)0,(x)dx +lj R(z; x)y(x)dx +&C(Z)Q
zJ, zJ, z

- 1;—" Jy Po(@)ps (x)dx — % Jy Vo (x)6; (x)dx

=2 [ So()8;()dx — = [ Ro(x)y (x)dx (2.23)
Substituting the value of equation (2.11) in (2.23), we have
1- *© 1—r[® 1r®
P(0) = —2 [ Pz 00 (x)dx + —f V(2 %), (x)dx + —j 0,(x)
Z Jo Z Jo ZJo
S(z;x)dx + éfooo R(z; x)y(x)dx + %Q(c(z) -1) (2.24)

Multiplying equation (2.13) by z" and applying Y-, we have
V(z;0) = pfo i (x)P(z; x)dx (2.25)

Multiplying equation (2.14) by z" and applying }:n—,, we have
S(z;0)=r fooo 0, (x)v(z; x)dx (2.26)

Multiplying equation (2.15) by z™ and applying }:n—,, we have
U(z;0) = a(2)P(2) (2.27)

Multiplying equation (2.16) by z™ and applying Y-, we have
R(z;0) = fooo)/(x)U(z; x)dx (2.28)

Integrating equations (2.18) partially with respect to ‘x’, with the limits from ‘0’ to ‘x’, we
have

P(z; x)dx = P(z; 0)e *Jo mWau (2.29)
where, L = [-(A + a) + 1C(2)]

Multiplying equation (2.25) by 4 (x) and integrating partially with respect to ‘x’, with the
limits from ‘0’to ‘o0, we have

J.” P(z: x)ps (x)dx = P(z; 0)B*(L) (2.30)

Integrating equation (2.25) partially with respect to ‘x’, with the limits from ‘0’ to ‘o0’ we
have

P(2) = [ P(z:x)dx = P(z;0) =2 2.31)

Integrating equation (2.19) partially with respect to ‘x’, with the limits from ‘0’ to x’, we
have

V(z x)dx = V(z; 0)e4*~Jo 01(wdu (2.32)
where, A = [—(1 + pup) + AC(2) + %]

Multiplying equation (2.28) by 8, (x) and integrating partially with respect to ‘x’, with the
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limits from ‘0’to ‘o0’, we have
Jy V(2 x)8,(x)dx = V(z; 0)G; (A) (2.33)

Integrating equation (2.28) partially with respect to ‘x’, with the limits from ‘0’ to ‘o0’ we
have
[1-G1(A)]

v (2.34)

V(z) = fooV(Z; x)dx =V(z;0)
0

Integrating equation (2.20) partially with respect to ‘x’, with the limits from ‘0’ to ‘x’, we
have

S(z; x)dx = S(z; 0)eH*~Jo 62(wau (2.35)
where, H = [-1 4+ AC(2)]

Multiplying equation (2.31) by 6, (x) and integrating partially with respect to ‘x’, with the
limits from ‘0’to ‘o0’, we have
Iy S(z;%)8,(x)dx = S(z; 0)G3 (H) (2.36)

Integrating equation (2.31) partially with respect to ‘x’, with the limits from ‘0’ to ‘o0’ we

have
1-G3(H)]

S(2) = J; S(z:x)dx = §(z 0) =% (2.37)

Integrating equation (2.21) partially with respect to ‘x’, with the limits from ‘0’ to x’, we
have

R(z; x)dx = R(z; 0)eAx~Jo vadu (2.38)

Multiplying equation (2.34) by y(x) and integrating partially with respect to ‘x’, with the
limits from ‘0’to ‘o0, we have
J," R(z;x)y(x)dx = R(z; 0)R"(A) (2.39)

Integrating equation (2.34) partially with respect to ‘x’, with the limits from ‘0’ to ‘’, we

have
1-R*(A)]

R(2) = [ R(zx)dx = V(z,0) =% (2.40)

Integrating equation (2.22) partially with respect to ‘x’, with the limits from ‘0’ to ‘x’, we
have

U(z; x)dx = U(z; 0)eH*~Jo Badu (2.41)

Multiplying equation (2.37) by f(x) and integrating partially with respect to ‘x’, with the
limits from ‘0’to ‘o0’, we have

[ Uz 0)B(x)dx = U(z; 0)D* (H) 2.42)

Integrating equation (2.37) partially with respect to ‘x’, with the limits from ‘0’ to ‘’, we

have
1-D*(H)]

e [
J, Uz x)dx =U(z0) — (2.43)
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Substituting the values of equations (2.30), (2.33), (2.36), (2.39) in (2.24), we have
1- 1—r 1
P(z;0) = —pP(Z' 0)B*(L) + —V(Z' 0)G;(A) + ;S(z; 0)G;(H)
+- R(z 0)R*(A) +2¢ (c(z) -1) (2.44)

Substituting the value of equation (2.30) in (2.13), we have

V(z;0) = pP(z;0)B*(L) (2.45)
Substituting the value of equation (2.33) in (2.14), we have

S(z;0) =1V (z;0)G;(A) (2.46)
Substituting the value of equation (2.45) in (2.46), we have

S(z;0) =rpP(z;0)B*(L)G;(A) (2.47)
Substituting the value of equation (2.31) in (2.15), we have

U(z;0) = azP(z; 0) =22 (2.48)
Substituting the value of equation (2.42) in (2.16), we have

R(z;0) =U(z;0)D*(H) (2.49)
Substituting the value of equation (2.48) in (2.49), we have

R(z;0) = azP(z; 0) =2 pe (i) (2.50)

Substituting the value of equation (2.45) , (2.47), (2.50) in (2.44), we have
P(70) = “HE 2.51)
where, ] = [zL — L(1 —p)B*(L) — L(1 —r)pB*(L)G;(A) — LrpB*(L)
G1(A)G;(H) — z[1 - B*(L)]D*(H)R"(A)

Now we have to find H(z) by adding equations (2.31), (2.34), (2.37), (2.40), (2.42), we have

H(z)=P(2z)+V(z)+R(2)+S(z) + U(2)

H(z) = P(z; 0)m (2.52)
where, K = AH[1 — B*(L)] + LH pB*(L)[1 — G} (A)][1 — B*(L)]aHD*(H)[1 — R*(A)] +
rpLAB*(L)G;(A)[1 — G;(H)] + aZA[1 — B*(L)][1 — D*(H)]

Substituting the value of equation (2.51) in (2.52), we have

AQ(C(2)-1)K
H(z) = QAZT (2.53)

where,n; = AQ(C(z) —1);n, =K; d; =A;d, =H;d; =]

3. Some performance measures
The following performance measures are derived for the model discussed in section 2

PAGE NO: 255



COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

1. Idle probability
Q=32 3.1)
where, iy = 12¢%{d,'d,'d;'}?

i, = 12q%*{d,'d,'d;'}* + 3A(2 — q — Aq)q*n,'""d,'d,'d5' + 2Aqn,"'d,'d,'d;" —
3Aqn2”d1”d2,d3, _ 3Aqn2”d1,d2”d3’ _ 3/1qn2”d1,d2,d3”

2. Mean number of customers in the queue

DIIINIV_NIIIDIV

M=H@)=H (1) ="

(3.2)

M 6d,'d,'d;' (6n,"n,"” + 4n,'n,""") — 3n,'n,""(12d,"d,'d;" + d,'d,"'d;s" + d,'d,'d;5"")
B 4(6d,'d,'d;")?
where, dj = AE[X] + uy; dy = AE[X]; df =d} = A(E[X]? — AE[X]); n} = Qd);
3 = dse; + apB*(@)E[V][di] + arpB*(a)E[S]d; + aE[U]d%e;
+aE[R]die; + aB*(a) n{ = Qd3,

d; = d, + dyB*(a) + d}B*(a) + d}B*(a) — 2d,B"" () + d}, + 2d}
pB*()E[V]d; + 2apB"" (a)d3E[V]d; — apB*(a)E[V?][d}]?
+apB*(a)E[V]AE[X?] — apB*(a)E[V]d) + 2dyrpB*(a)E|[S]

d}, + 2arpB'"* (a)[d,'1?E[S] — arpB*(a)E[V]E[S]d,d} — arp
(AE[X1®)B*(a)E[S?] + arpB*(a)E[S]AE[X?] — arpB’" (a)E[S]
d, + 3aE[U]dy + 2aE[R]d; — aE[U?]AE[X]? + aE[U]AE[X?]
2aE[U)d5E[R] — d] — aE[R?][AE[X] + u,)* + aE[R]AE[X?]
E[R] — aE[R]d} + 2aB"" (a)d), — 2aB*(a)E[U]d, — 2aB*(a)
E[R]d{—2aB"*(a)AE[X]? + aB*(a)E[U?]AE[X]? — aB*(a)
E[U]AE[X?] + aB*(a)E[U]dy + 2aB*(a)E[U]|d%E[R]d] + «
B*(a)E[R?][d}]? — aB*(a)E[R]AE[X]* + aB*(a)E[R]d,

n; = 2didye; + 2adje,E[R]d] + 2rpadiB*(a)E[S]d} + 2adie E[U]d5;

ny' = 3d{dye; + 3d;d} e, — 6d;[d;]?>B"" () + 6[d;]*pB*(a)E[V]d}

+3ad!pB*(a)E[V]d] + 6a[d|]?pB" (a)E[V]d] — 3ad,p [d}]?
B*(a)E[V?] + 6adye E[R]d] + 3ady e;E[R]d] — 6a[d,']* d}
E[R]B""(a) — 6a[d};]?e,E[U]E[R]d; — 3ad,e, E[R?] [d}]? + 3
adye E[R] dy + 6rp[d;]*diE[S] B*(a) + 3rpadiE[S] B*(a)d}
+6arp[dy)*diE[S]B"" (a) — 6arp[di]2E[S]E[V]B*(a) d), — 3a
rpd;B*(@)E[S?][d}]? + 3arpd;B*(a)dE[S] + 6die E[U] d}
+2ad e;E[U]d, — 6ad B (a)E[U][d}])? — 3ad;e  E[U?][d}]?
+3ad; e, E[U]dY

3. Variance number of customers in the queue
V=H"(1)+H'(1) - [H'(1)]? (3.3)
1 _ 17 _ hq
H (Z) - H (1) - 840(DIII)3 (34)
where, hy = 74[D""']?NY — 105[D""D'VN'V] — 84[D""DVYN""] + 10[D""]*N"V
+105[D"V]2N""
5 =3d! + e, —ey;B*(a) —3dyYB"" (a)d}) — 3d’23B”*(a) — 3d5d{
B" (@) + 3dy pB*(a)E[V]d} + 6[d3]*pB" (0)E[V]d} — 3dzp
B*(a)E[V?][d1]? + 3d;pB*(a) E[V]dY + 3apB"" (a)[d;]?
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E[V]d; + 3apB' (a)d{E[V]d; — 3apB' (a)d,E[V?][d}]?
+3apB"* (a)d,E[V]d) + apB*(a)E[V3][d;]® — 3apB*(a)
E[V?]did] + apB*(a)E[V]e,3drpB*(a)E[S]d} + 6[d5]3
pB" ()E[S] — 4[d3]*rpB*(a)E[V]diE[S] — 3[d;]*rpB*(a)
E[S] + 3d, rpB*(a)E[S]d} + 3arpB""(a)[d5]12E[S] + 3ar
pB" (a)d{E[S]d}, — 3arpB'* (a)[d}]® E[V]E[S]d} — 3arp

B (a)[d5]3E[S?] + 3arpB’ (a) E[S]d,d} + arpB*(a)E[V?]
[d1]°E[S]d; — arpB* (a)E[V]dy E[S]d; + 2arpB* () E[V][d1]?
E[S?][d3]? — 2arpB*(a)E[V]diE[S]dY + arpB* () E[S®][d3]°
—3arpB*(a)E[S?]d,dy] + arpB*(a)E[S]e, — 3aE[U?][d}]?
+3aE[U]d} — 6aE[U]d,E[R]dy — 3a[d{]?E[R?] + 3aE[R]d}
+aE[U3][d}]? — 3aE[U?]dydy + 3aE[U%][d5]?E[R]d] + a
E[Ule, — 3aE[U]d{E[R]d}] + 3aE[U]d%E[R?][d1]?> — 3aE[U]
dyE[R]d}[d}]® + aE[R?] — 3aE[R?]d d] + aE[R]e, + a[d}]?
B"*(a) + 3aB"* (a)dy — 6aB’" (a)[d}]?E[U] — 6aB'* (a)d,d;
E[R] + 3aB*(«)E[U?][d}])? — 3aB*(a)E[U]d} + 6aB*(a)
E[U]E[R]d} + 3aB*(a)E[R?][d}]? — 3aB*(a)E[R]d} — 3a
B""(a)[d;]?E[U]d; — 3aB"" (a)[d2]*E[R]d} — 3aB" (a)dy
E[Uld), — 3aB’" (a)d}d;E[R] — 3aB’ ()E[U?][d}]® — 3a

B (a)E[U]d,d} + 6aB' (a)[d,]?E[U]E[R]d} + 3aB' (a)
E[R?]d,d; — 3aB'" (a)E[R]d,d} — aB*(a)E[U3][d}]® — a
B*(a)E[U?]d}d) — aB*(a)E[U][d}]® — 3aB*(a)E[U]E[R]
didy — 2aB*(a)E[U?][d5])?E[R]d] — 3aB*(a) E[U]E[R?]d}
[d1]? + 3aB*(a)E[U]E[R]d,d} — aB*(a) E[R3][d1]® + 3«
B*(a)E[R?]d}d} — aB*(a)E[R] e,

4. Numerical Illustrations:

The model analysed in this article is numerically analysed by assuming the
general distribution has negative exponential distribution with following suitable parameters.

Using the formulas: E[X] = q,E[V] elE[S] o E[R] yE[U] B'E[X ] oy
2 -6, 26, 2—y 2-8
E[V?] = LE[S?] = ,E[R?] = ,E[R?] = ,
[V<] 5.2 [S°] 6.2 [R”] /2 [R"] 52
2} ‘ —H N 244
B*(a) = ,B" (@) =———=,B" () =—7—
a+ (a + uy)? (a+m)?

In section 3, the following performance measures are calculated
1. Idle probability
—h
Q=7
where, i; = 12¢%{d,'d,'d;'}?

iz = 12q2{d1'd2'd3'}2 + 3&(2 - q— Aq)qzné’,d1’d2,d3’ + ZAqn2,,d1’ dzl
d3’ _ qun2”d111d2’d3l _ qunzlldlldzlld:;’ _ 3Aqn211d1’d21d3”
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2. Mean number of customers in the queue

_ 6d,'d,'d;'(6n,"n,"” + 4n,'n,"") — 3n,'n,"" (12d,"d,'d;" + d,'d,"'d3" + d,'d,'d;5"")
B 4(6d,'d,'d;")?
where, dy = 2,9, = (A +quy)idy =2 dy = dy = 2212 gy = 2o
J1=010:y; g1= a+tu;92= A+ quz); 93 =2 —q);ga= 2 —y);
gs=2—01);96=2—0,);97=(2—B)ij2 = 0,°0,°B*y% jz = 0,0,° %y
s = 0:20:8%% js = 6.°6,7By%; o = 670,72y df = 2
Ay = aljy + apuig,6;8y + adrpu, 6, By + a?16,6,y + a?g,60,0, + auj;
A, = 2qg5)> + 193952 + M1qgajz + 22%) + 22pui g2 94 3 + alpisgs gi js
+22°1pus g1 Ju + @ATPU1Gagr Ja + 3aAqgijs + 2ag.gije + @Agsgijs +
adgsgijet2auAjs + 2apuiAg,je + aﬂ1129791912922 ¥? + apiAqgqjs +
2“#1/19291912922,81’ + 05#1949%91912922 B? + 21129946
Az = 119391 J2 + 2appiAgs js + apu1gsgs 9.10.” BAy? + apuAqgy js + 2a
o A%y + Aarppy g291616,87y* + arppy A2 geg161° By * + Aarpuigs Ja
+aA?g,g26,%0,°y% + 2a1g, 976,70, By + agsg?g26:°6,° B + argijs
+20é¢lli1/1]'2 + 2aquiAgy js + 2aqii1 9291 jo + Ap1Agsgr s + apiAg3 i Je
1

ny, =——
q°91]1
By = 2alg, j; + 2adpu,g,0,Py + 2a*160,0,8g, + 2rpau, A6, By g, +

ng' =2 =2 g~ q)

By = 3aA’r1 gy j1 + 3adg;1191 1 + 6A° U1 j1 + 6A*Dqu1 9,943 + 3apusd
9291713 + 3aA*puir1g1j3 + 6a*Aqg291je + 3% Aga11 91 jo + 6%y
92j6 + 30?211 g1j6 + 67D 11 G291 o + 3rpap;A°r1 g1js + 3arpu A
92191 Ja + 60492991 js + 2052127"191]'4 + 6“#11292 Js + 3a2g2r1g1j5

B3 = 6a2*pii1 g, j» + 3aApq gsg36,° B2y + 6022 g,9:6,°0,% By + 3a*Ag,

9%91912922,32 + 6arpu  A* g, jut 6arpAu, g,956010,8%y? + 3arpuy A g,

9691912,82]/2 + 3052/12929197912922]/2

3. Variance number of customers in the queue
V=H"(1)+H 1) - [H D]

n 14 h
H"(2) = H"(1) = g0

where, d3’ = LG, r, =[6—6q+q*; r3=[6-66, + 912];

q3g3iky’

re =[6—60, + 6,°];r5 = [6 — 68 + B?]; 16 = [6 — 6y +¥2];

k, = 912923B3V3F ks = 91392253]/3;"4 = 913923,327321‘5 = 913923,831’2

Cy = 3Aqrik g7 + Aryk1 g7 + 3Au1993k1 97 + 6Au1 ki1 gy + 3puskari g2 g7 +
3Apquikari g7 + 6aqpuiAtk,g, + 3apAus gsg193610:° B3y + 6apuyrs
91936,° B3y + apAuyryki g3 + 32rpuskarigs + 6arpu A3ks + 3arpu,
22969161°0,8%y> + arpAu,qgs 93 9561°0,8%y® + 2arpqui 4> g, 96976,
0.8y + arpu 31,970, B3y + arpuy Aryky g3 + 6aqriki g3 + a2’gs
6:°6,°y3rs + 35“97’”1‘913923)/39% + 35“11297929%913923,8]/2 + alryky
g3 +3a29.93 936:°0,° By + areg3q%0:°6,° Bgi + adryksg3 + 2ap, A
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gk, + 6au;A%qg,ks + 6adu1qg,ks gy + 3au12g,q°60,°6,°y g7 + 6aq
11929%6,°0,°By? + 3ap,949290:°0,° B3y g7 + 3auAry g1k, + 3au
g2T1ks g1 + 3apAqrikag, + 3auAriqksg, + 3“#1/1977"1(]9138233)/39%
+3a,u1/1qg3gfk4 + 2apAq* gik, + 3“#17Lg%k4r1 + 3“#194927"1913923
B3yvgi + 3Aqau gsksgi + 24q* au ks gi

C; = 31qgsk193 + 24q% g3 + i Aky1o97 + 2297k, g% + 623117k, + 62%puy

929:ks + 3pu19s979396,0,°B3y® + 3apuqgari g1k, + 3apqu, A
rik,g% + 3apquuAgsg,r19%610.° B3y + 31qk1 9393 + 2Aq% g3k, + 3r
pquyAriky g% + 6/137"19#115391"" ‘Mzrpﬂlgzgfelzezzﬁgyg + 323 rp
ﬂ1969%9139233)/3 + 3“7"1951111/”‘37”1%1 + 3arpu Aksr g, + arpugAr
92601°0,° B3y + 2arpuyg,11qg?6, 0,2 B3y® + 3arpuiAger19261°6,
B3y® + 3arpquiAgsk,g; + 2arpui gk, g3 + 6alqg,g;0,°0,° By ?
+3a9.950%9761°0,° B3y + 3qadgsk,gi + 2Aqak, + 3ag,930:°6,°
,32]/27”1 + 3“/1519%91392332)/27”1 + 3a 94927’195913923ﬁ3)/ + 31q
gsksgi +22aq?g30,°0,° B3y + 3“%1‘]’3’191"1 6au, qriksgs +36a411
/13]‘1 + 6au;Agrks + 305#1/13979191 0, ,8]/3 + 6“#112929191 0, ,82
Y2+ 3aullqg43gl%2913923ﬁ3y + au1/13r5%59;923y + au Aryk,g?
+3ap191921161° 62" BAy* + 2ap,1%g,9,0,°6,° By?gf + 3ap,Ag,
92920,°0,° B2y + aui1692930,°0,° B3 + apy Aryks g?

The calculated values are tabulated in the table 4.1 and 4.2.
Table 4.1: 1dle Probabilities Table 4.2: Performance measures
(@=3.99,8=359y9=390606 =08 06,.=07,g=07,p=0.9, u1 =4.79, u» =4.98, r=10.9)

2 o 2 M \Y

1.1 | 0.06467 1.1 | 1.01586 | 82.9070
1.2 | 0.05987 1.2 | 1.01524 | 85.3896
1.3 ] 0.05570 1.3 | 1.01481 | 87.9581
1.4 | 0.05203 1.4 | 1.01452 | 90.6041
1.5 | 0.04879 1.5 | 1.01433 | 93.3212
1.6 | 0.04590 1.6 | 1.01420 | 96.1037
1.7 |0.04330 1.7 | 1.01411 | 98.9476
1.8 | 0.04095 1.8 | 1.01405 | 101.8492
1.9 | 0.03882 1.9 | 1.01401 | 104.8060
2.0 | 0.03687 2.0 | 1.01398 | 107.8156

In table 4.1, for various arrival rates, the idle probabilities are calculated.

As the arrival rate increases, the frequency of server becomes idle also increases. In the
table 4.2, the performance measures, the mean number of customer and the variance
number of customers are calculated and presented. As the arrival rate increases, the mean
values decrease steadily. The variance increases considerably.

5. Control chart analysis

Statistical process control is very much useful in studying quality control of a
system. Many methods are proposed and analyzed by researchers; one is using control
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chart analysis. A few common characteristics of control chart analysis, whatever may be
the type, contains upper and lower control limits. The quality of the data is measured
using the limit values. In this analysis there is a control line, which is usually considered
to be the target value. Statistically controlled system, the observations lie nearer to
the control limit (CL) and within the Upper control limit (UCL) and Lower control limit
(LCL). The upper control limit and the lower control limit are measured by the
following formulas:
CL=M; UCL=M+3VV; LCL=M — 3V

For our model the control limits are calculated for mean number of customers in

the system by assuming the batch size follows decapitated geometric distribution
ar=a(l-a)¥"Lk=012..0<a<1

2(1-a)

.1 .
The first moment is — and the second moment is ——

The calculated values are tabulated in the table 5.1

Table 5.1: Control limits
(@=3.99,8=359=39606 =08 6=07,g=07,p=0.9, u1 =479, u» =4.98, r=0.9)

A CL UCL LCL
1.1 1.01586 28.3318 0
1.2 1.01524 28.7372 0
1.3 1.01481 29.1506 0
1.4 1.01452 29.5703 0
1.5 1.01433 29.9952 0
1.6 1.01420 30.4239 0
1.7 1.01411 30.8558 0
1.8 1.01405 31.2901 0
1.9 1.01401 31.7264 0
2.0 1.01398 32.1642 0

The table 5.1, shows the control limit for various values of arrival rate. For
lower limit, the calculated values are negative, in terms the values are taken as zero.

6. Conclusion

In this paper a single server batch arrival queue has been considered. In addition, the
server takes compulsory vacation during service, the server may breakdown. Except inter
arrival time and inter breakdown period random variable all other random variables in
this model are generally distributed. That is the inter arrival time and inter breakdown
period are negative exponential distributions. The model is analyzed in steady state by
applying probability generation function method. In addition, statistical quality control
process is carried out by the way of control chart analysis for mean number of customers
in the system. Some numerical illustrated are obtained. The model can be extended by
assuming general inter arrival time and/are generally distributed inter breakdown
period.

PAGE NO: 260



COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

References

(1]

(2]

(3]

(4]

[3]

[6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Armero, C. and Conesa, D., Prediction in Markovian bulk arrival queues, Queueing
Systems: Theory and Applications, 34, 327-350, 2000.

Arumuganathan, R. and Ramaswami, K.S., Analysis of a bulk queue with state

dependent arrivals and multiple vacations, Indian Journal of Pure and Applied
Mathematics, 36, 301-317, 2005.

Chang, S.H., Choi, D.W. and Kim, T.S., Performance analysis of a finite-buffer
bulk arrival and bulk service queue with variable server capacity, Stochastic
Analysis and Applications, 22, 1151-1173, 2004.

Cox, D.R., The analysis of non-Markovian stochastic processes by the inclusion of
supplementary variables, Mathematical Proceedings of the Cambridge
Philosophical Society, 51, 433-441, 1955.

Doshi, B.T., Queueing systems with vacations: a survey, Queueing Systems, Vol.
1(1), 29-66, 1986.

Fakinos, D., The relation between limiting queue size distributions at arrival and
departure epochs in a bulk queue, Stochastic Analysis and their Applications, 37,
327-329, 1991.

Ke JC. Modified T vacation policy for an M/G/1 queuing system with an
unreliable server and start up, Mathematical and Computer Modelling, 41, 1267-77,
2005.

Khalaf, R.F., Madan, K.C and Lucas, C.A, On an M¥/G/1 Queueing system with
random breakdowns, server Vacation, delay time and a standby, International
Journal of Operational Research, 15(1), 2012

Lucantoni, D.M., New results on the single server queue with a batch Markovian arrival
process, Stochastic Models, 7, 1-46, 1991.

Madan, K.C., A bulk input queue with a stand-by, South African statistics, 29,
1-7,1995

Ramaswami, V., The N/G/1 queue and its detailed analysis, Advances in Applied
Probability, 12(1), 222-261, 1980.

Srinivasan, L., Renganathan, N. and Kalyanaraman, R., Single server, bulk arrival,
Bernoulli feedback queue with vacations-some performance measures, International
Journal of Information and Management Sciences, 13, 45-54, 2002.

Stadje, W., Some exact expressions for the bulk-arrival queue M*Y/M/1, Queueing
Systems, 4, 85-92, 1989.

Sumita, U. and Masuda, Y., Tandem queues with bulk arrivals, infinitely many
servers and correlated service times, Journal of Applied Probability, 34, 248- 257,
1997.

Takagi, H., Queueing Analysis, A Foundation of Performance Evaluation, Vol. 1:
Vacation and Priority Systems, Part 1, Elsevier Science Publishers, Amsterdam,

PAGE NO: 261



COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

1991.

[16] Ushakumari, P.V. and Krishnamoorthy, A., On a bulk arrival bulk service infinite
server queue, Stochastic Analysis and Applications,16,585-595,1998.

[17] Wang, K.H., Optimal operation of a Markovian queuing system with a removable
and non-reliable server, Micro Electronics Reliability, 35,1131-36,1995.

[18] Wang, K.H., Optimal control of an M/Ei/1 queuing system with removable service
station subject to breakdown, Operational Research Society,48,936-42,1997

PAGE NO: 262



