COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

MTBTDet CNN: Manually Tunned Hyperparameters Convolutional Neural
Network for Detection of Brain Tumor

Kalpana Devi, Aman Kumar Sharma

* Department of Computer Science, Himachal Pradesh University, Summer Hill, Shimla 171005, India

ABSTRACT

Accurate detection and classification of brain tumors from MRI scans are vital for timely diagnosis and treatment
planning. Convolutional Neural Networks (CNNs) have demonstrated significant promise in this domain; however,
their performance largely depends on the careful selection of hyperparameters such as learning rate, optimizer,
activation function, pooling type, batch size, number of convolutional layers, and epochs. Most existing studies rely
on automated optimization techniques like genetic algorithms, grid search, or Bayesian optimization, which operate
as black-box approaches with limited interpretability, while others use arbitrary or partially tuned hyperparameters
without systematic experimentation. To address these gaps, this research conducts an extensive manual
hyperparameter optimization process across seven key parameters through six controlled experiments using a publicly
available Kaggle MRI brain tumor dataset comprising 3,000 MRI images of both tumorous and non-tumorous brain
classes. The results reveal that the Adam optimizer with a learning rate of 0.003 provides the best balance between
convergence stability and classification accuracy. Using this configuration, a customized CNN model named
MTBTDet CNN was developed for MRI-based brain tumor detection and classification. Experimental findings
demonstrate that the proposed model achieves superior performance across multiple evaluation metrics - including
accuracy (0.997), precision (0.993), recall (1.000), F1-score (0.997), and specificity (0.993), outperforming existing
optimization and manual tuning approaches, thereby validating the effectiveness of the proposed manual tuning
strategy.

Keywords: Hyperparameters; Optimization techniques; Manually tunned; Brain tumors; Detection; CNN

1. Introduction

An abnormal mass or development of cells in or close to the brain is called a brain tumor. The human body's organs and
tissues consist of small blocks called cells. These cells are divided to generate new cells during healing, growing, and
repairing in a controlled manner. The human body signals the cells about when to divide, grow, and stop growing [1].
But when the normal mechanism of the cells goes wrong i.e., they divide the cells in an uncontrolled manner called a
tumor. Both benign (noncancerous) and malignant (cancerous) brain tumors have existed. Primary brain tumors and
secondary brain tumors are the two primary forms of brain tumors. Of these tumors, about 70% are primary, meaning they
start in the brain itself. The remaining 30% are secondary, or metastatic, meaning they start in other body parts, such as the
liver, kidney, or lung, and then move to the brain [2]. Benign (noncancerous) primary brain tumors may grow slowly and press
on brain tissue while malignant (cancerous) primary brain tumors can grow rapidly and destroy brain tissue, causing damage.
Glioblastoma and medulloblastoma are examples of primary brain tumors. Metastatic brain tumors are considered malignant.
The symptoms of a brain tumor might vary depending on its, size, location, and speed of growth. Headaches, weakness, poor
coordination disturbed perceptions, and other symptoms are possible [3, 4].

Radiologists work on different medical imaging modalities to identify the tumor in brain images [5]. Information about human
body components is often obtained by using Magnetic Resonance Imaging (MRI) and Computerized Tomography (CT) scans.
An advanced technique of MRI generates high-quality 3D slices from multiple directions of the human body parts. Therefore,
the tumor of the most sensitive organ brain is analyzed by the MRI modality and hence has an essential factor in the diagnosis
of the tumor’s stage for deciding the correct treatment or therapy for the infected person [6, 7]. But the identification of brain
tumors before any treatment or therapy is quite difficult because of the different tumor sizes and shapes. MRI images can be
used in a variety of ways to identify brain cancers. Traditionally, healthcare professionals identify tumors by visually analyzing
medical images and accurately identifying tumor locations. Due to the presence of adjacent healthy tissues, tumor borders can
be challenging to discern. Manual identification takes a long time and may lead to misinterpretation of tumors. The reasons
for misinterpretation are that the human eye struggles to differentiate the various shades of gray visible in MRI and the noisy
MRIs due to the variations in imaging equipment and exhausted radiologists [8, 9]. Due to these challenges, conventional
tumor identification methods are gradually giving way to automated systems for classifying brain tumors. Methods based on
deep learning consistently exhibit strong efficacy in various image-processing applications in the medical field [10].

Automated brain tumor detection techniques can be built on machine learning (ML) and deep learning (DL). Manually creating
the extraction of features is the foundation of traditional machine learning techniques, which require that certain features be

PAGE NO: 223

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

taken out of training images before the learning process. This approach often requires expert intervention to identify crucial
features. However, when dealing with large databases, ML-based methods exhibit limited detection accuracy and are prone to
errors [11]. Algorithms based on deep learning have proven very efficient in addressing these issues across extensive
applications, including imaging in medicine. The Convolutional Neural Network (CNN) is a well-known deep learning model
because of its architecture of sharing the weights, which facilitates the automated extraction of both high- and low-level
features from training data. Thus, DL-based methods for brain tumor identification have drawn attention from scientists [6].
Creating a deep learning algorithm i.e., CNN is a multifaceted endeavor that encompasses several key components. These
include model selection, dataset collection and preparation, and hyperparameter optimization. Each of these elements
significantly influences the algorithm’s ultimate performance. Specifically, hyperparameter optimization is essential for fine-
tuning a CNN model by identifying optimal values for its hyperparameters during the learning phase.

Adapting the complexity of a CNN model to the specific task is crucial. A very simple model might not be able to extract all
the important information from the data, which would lead to underfitting and poor generalization. On the other hand, a model
that is too complicated could make the training set overfit and still have poor generalization. The recommended approach for
manual model tuning is to begin with a basic architecture, optimization of hyperparameters, and analyze its results using the
training set. If the model’s training metrics are unsatisfactory, consider adding more layers (increasing complexity) and
repeating the process. Alternatively, Neural Architecture Search (NAS) techniques can streamline this process, albeit at the
expense of additional computing time [12].

1.1. Hyperparameters of CNN

ImageNet Large Scale Visual Recognition Competition (ILSVRC) [13] is the popular CNN, which was the subject of intense
study in many different domains. The architecture of CNN affects performance when we apply it to our given problems, hence
a suitable design is required. Because of this, numerous research on CNN architecture design has been published [14 - 16]
comprises model parameters and hyperparameters. Weights and biases are examples of model parameters that let the model
adjust to the data. On the other hand, because they are unlearned from the training process, hyperparameters, which control
the entire training process, must be preset. The model's learning ability, complexity, and rate of convergence for model
parameters are all determined by the hyperparameters. Consequently, finding the optimal values for hyperparameters improves
efficiency and yields better results for the model [17]. A useful method for locating the ideal parameters in the recommended
CNN model is hyperparameter tuning. Additionally, as not all hyperparameters have the same effect on the training and testing
of the model's performance, the selection of hyperparameters for tuning has a substantial influence on the outcomes.
Hyperparameter tuning identifies the optimal parameter combination for the model, resulting in maximum performance [18].
The following hyperparameters must be configured before the CNN model is trained:

1.1.1. The Number of Convolutional Layers

Numerous parameters affect a convolutional layer; the most crucial ones are stride, zero padding, the height and width of each
convolutional filter, and the number of filters deployed to every layer. If there is no padding at all, the convolved image gets
smaller. The stride determines how much the kernel moves after each calculation. A neural network's depth is established by
the number of convolutional layers it contains. While deeper architectures have generally shown improved results, designs
with fewer layers have also been suggested. These shallower architectures show that a decently deep network can nevertheless
function when competing with more sophisticated versions, which is especially helpful for embedded systems with limited
computing capacity [19]. Generally, it is advisable to continue adding layers to a neural network until the test error plateaus.
However, this comes with the computational cost of training. Having very less layers can cause underfitting, while a larger
number of layers is usually safe when regularized properly [20]. The impulse response, also known as a mask or filter, is
multiplied by the input image in the convolution layer's operation. In this procedure, a two-dimensional (2D) convolution is
carried out. It does this by convolving in both the horizontal and vertical directions inside the 2D spatial domain, as stated as:

O(m,n) = (I)(m,n)F(m,n) = Z?:—k Zfz—k Ii,j X F(m—i,n—j) (D

where the 2-D input picture is represented by (I)nn). A 2-D picture is vertical for I and horizontal for m, n. The filter or
kernel that produces weights is represented by Fyy,), where k is the range and i, j spans the filter's dimensions.

1.1.2. Pooling Layers (PLs)
In CNN, pooling has a few key functions. Firstly, pooling makes the feature map smaller, which allows for less computation

during training. Secondly, pooling makes each neuron’s response field bigger, which improves recognition ability by enabling
every neuron to detect a greater area of the input image. Thirdly, pooling mitigates the adverse impacts caused by tiny

PAGE NO: 224

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

distortions and noise. As only the delegates’ values will remain after the poling, therefore the light noise can be eliminated.
Hence, pooling seeks to reduce calculations and enhance recognition performance at the same time [21].

e Max Pooling: Max pooling is a widely used pooling strategy that chooses the feature map's maximum element
sheltered by the filter, as illustrated in left side of Figure 1. Based on the stride and filter’s values or size, the output
obtained is a feature map, which contains the dominant features from the input [22]. Consequently, when it comes to
photos, Max Pooling supports keeping the input's lighter regions.

e Average Pooling: Average pooling determines the mean value of the pooled area [23], as illustrated in right side of
Figure 1. Unlike max pooling, which looks for the best features, average pooling finds a patch of features, uses that
patch to inform some calculations, and produces a smoother output. This may lead to the result by decreasing
accuracy. Usually, it depends on the use of the outcome and the consistency of the features (pixels).

1n2Avenage Pooling

2x2 Max Pooling

Fig. 1. The image illustrates the max pooling (left) operation using a 2x2 window on a 4x6 input matrix and get the 2x3 output matrix and
average pooling (right) operation using a 2x2 window on a 4x6 input matrix and get the 2x3 output matrix.

e Global Max and Global Average Pooling: Rather than selecting specific patches from the input feature map, global
pooling downsizes the whole feature map to only one value by calculating the maximum or average.

e Mixed Pooling: Max pooling and average pooling are the two conventional pooling operations that are mostly used
and fixed in an image or channel. Allowing the pooling operations to be coupled (max pooling and average pooling)
to learn about themselves is another logical extension of pooling operations [24].

1.1.3. Non-linear Layers/ Activation functions

Activation functions (AFs) typically come in after the convolutional layer, which results in non-linearity in each neuron's
output. Consequently, the network will be able to acquire a range of difficult jobs. Non-linear activation layers, also called the
learnable layers like convolutional and fully-connected layers, are applied in CNN design following all weighted layers.
Because of the non-linear performance of the activation layers, the aligning of input to output will be non-linear, allowing the
CNN to learn incredibly difficult jobs. The ability to distinguish is another key criterion for the activation function as it makes
it feasible to train the network through error back-propagation. This nonlinearity is essential since a model that solely employs
linear operations will be unable to adequately represent the complicated, non-linear behavior of many events in the actual
world. As a result, activation functions enable CNNs to mimic a greater variety of functions and become more expressive. In
general, the model's convergence and interpretation can be greatly impacted by the selection of activation functions in CNNs.
As, different functions have varying advantages and disadvantages, a key component of creating a successful CNN is selecting
the appropriate function for the given task [25-27]. The most frequently utilized activation function types in CNN are as
follows:

e Sigmoid: Real numbers are the AF's input, and the output can only be between zero and one and widely used for the
task of binary classification [28]. The S-shaped sigmoid function curve is mathematically represented as:

1
f(x)sigm = Tte—=

@
e Tanh: Since real numbers constitute its input, it is a hyperbolic tangent function like the sigmoid function, but it can
only produce a smooth output that is between -1 and 1[29]. It is represented mathematically as:

eX—e™*

fOtann = 5= 3)

eX+e

e ReLU (Rectified Liner Unit): The function that is most frequently utilized when using CNN is the ReLU AF. It converts
every value in the input to a positive integer. Its primary advantage over the other AF is the less computational load. It
is mostly used in the hidden layers as it solves the problem of vanishing gradient [30]. Mathematical representation this
function is:

f () rery = max(0, x) @)

PAGE NO: 225

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

In the context of using the Rectified Linear Unit (ReLU), several notable challenges can arise. For example, when the
negative input passes through a back-propagation method with a substantial gradient, which flows over the ReLU
function, it can lead to weight updates that deactivate the neuron. This phenomenon is commonly known as the ‘Dying
ReLU’ issue.

e Leaky ReLU: The Leaky ReLU AF makes sure that negative inputs are never entirely ignored, in contrast to ReLU,
which down-scales undesirable inputs. It is specifically designed to handle the problem of ‘Dying ReLU’ [28]. The
mathematical representation of Leaky ReLU can be shown as:

xifx>0})

f(x)LeakyReLU = {mx ifx <0
Where ‘m’ is a leak factor that has been set to be a very modest value for instance 0.01.
e PReLU (Parametric ReLU): The Parametric ReLU (PReLU) shares similarities with Leaky ReLU. However, its key
distinction lies in the dynamic leak factor, which adapts during the process of training the model. Mathematically
expression for the Parametric ReLU is:
f(*)prerv = {axxlg;xx 100} (6)

Where ‘a’ is the learnable weight.
1.14. Optimizers

One of the two main problems in the learning process is choosing the learning algorithm, often known as the optimizer. The
second is using various upgrades, such as momentum, AdaDelta, and Adagrad, in confluence with the learning technique to
enhance the output. The gradient descent algorithm continuously alters the network parameters during every training session
to reduce the training error. In particular, to calculate the gradient, or slope, of the cost function and update the parameters
accordingly, it must apply a first-order derivative to the network parameters. To reduce the error, the parameter is then modified
in the exact reverse direction as the gradient. The procedure of extending the gradient at each neuron to every other neuron in
the above layer is known as network back-propagation., which is how the parameter update process is carried out [31, 32]. The
mathematical representation of this operation is:

oL
Wije= Wijemr — AW e, Wie= ax wy; 7

The weight in this epoch of training is represented by Wt , whereas the weight from the previous (t-1) training epoch is

jt o
represented by W je-1. a is the learning rate and L is the prediction error or the loss. The following are many gradient-based

learning algorithms:

e Mini-Batch Gradient Descent (MBGD): MBGD approach breaks down the training samples into many mini-batches,
each of them is an undersized collection of samples that does not overlap [32]. The settings are then adjusted after the
gradient of each mini-batch has been calculated. This method's advantage relies upon a combination of the benefits of
both BGD (Batch Gradient Descent) and SGD (Stochastic Gradient Descent) approaches. As a result, it has extra
memory utility, higher computational efficiency, and consistent convergence as compared to SGD and BGD. However,
it produces noise due to which the convergence is a little bit slow [33].

e SGD with Momentum: The convolutional neural network's objective function is to utilize this technique. By
combining the calculated gradient from the earlier training phase, which is weighted using a quantity called the
momentum factor, it increases training speed and accuracy simultaneously. Instead of locating the global minimum, it
can occasionally become stuck in a local minimum. A primary drawback of gradient-based learning techniques is this
restriction. These problems frequently occur when there is a lack of convex surface (or solution space) for the problem.
Momentum is employed in conjunction with the learning method to overcome this, and its mathematical expression is
represented as:

We = Weg — AU
where vy = vy + (1=)V, L(w,_y) 3

where w;are the updated weights, with the learning rate « , the Loss_Function's gradient for the weights at time t - 1 is
represented by V,,L(w;_,), where B denotes the momentum coefficient and v, represents the momentum at time t.

PAGE NO: 226

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

The momentum factor i.e., B is kept between 0 and 1 to minimize inaccuracy. As a result, to reduce errors, the weight
update step size increases toward the minimum. The model can no longer avoid local minima at very low momentum
factors. On the other hand, a large momentum component makes convergence go more quickly. However, the model
may overshoot the global minimum if the learning rate (LR) is coupled with a high momentum component. Weight
updates are smoothed when the gradient direction varies constantly throughout training by using an appropriate
momentum factor, or hyperparameter.

e AdaGrad (Adaptive Gradient Descent): The AdaGrad method alters the learning rate for every weight depending on
the gradient magnitudes detected during training. Convergence is slower along steeper paths and faster along flat ones
made possible by this adaptation. The following is an expression of the AdaGrad-specific updating rule:

Wt = W1 — ViwLWe_1)

a
G+ €
Where, Gt = Grq + (Vo LW_1))?)]
Where € is a small constant that prevents division by zero and G, is the diagonal matrix of sums of squares of previous
gradients up to time t.

e RMSprop (Root Mean Squared Propagation): The RMSprop algorithm dynamically uses the average change of the
squared gradients to adjust the rate of learning for every weight. This adjustment keeps the learning rate from increasing
unnecessarily. The following is the RMSprop update rule:

a
ﬂGt‘l‘E

where Gy = G,y + (1 =) (Y, Lw;_1))? (10)

Wi = Weq — ViwLwe_q)

where f is the decay rate and G, is the moving average of the squared gradients up to time t.

e Adam (Adaptive Moment Estimation): The Adam optimizer, an effective algorithm in machine learning, combines
concepts from momentum and AdaGrad. It adapts the learning rate for a variety of neural networks. The following is
how Adam's update rule is expressed.

a A~

Wi = Weq — \/ﬁmt (11
Such that, My = lm;t
~P1

where m; = fyme_q + (1 — B1)VyL(We-1)

where v, = Bome_q + (1= B2)(Vy, L(we_1))?

The gradients' first and second-moment values are denoted by m, and v, the decay rates for the first and second
moments are represented by f; and f3,, the first and second-moment values are bias-corrected by 7, and ¥;, and € is a
small constant that prevents division by zero.

e Nadam (Nesterov Accelerated Adam): Nesterov-accelerated Adaptive Moment Estimation, or Nadam [34], is an
enhanced form of Adam momentum that leverages knowledge from NAG (Nesterov Accelerated Gradient). Nesterov
redefines momentum for non-random targets so that the momentum step is independent of the current gradient. The
gradient update produced by Nesterov’s momentum is superior to the classical momentum.

1.1.5. Learning Rate

To prevent adverse effects on the learning process, attention must be paid to selecting the learning rate and determining the
step size for parameter changes. The learning rate (LR) in an optimization algorithm governs the frequency of weight updates.
It controls how quickly the network adjusts its parameters during training. Figure 2 demonstrates the impact of various LRs
on gradient descent. A high learning rate promotes rapid convergence but can lead to unstable, oscillating training. Conversely,
a low LR ensures stable, smooth training but may slow convergence. To strike the right balance, it is essential to experiment
with various LRs and find the optimal trade-off between training speed and stability [35]. We have possibilities like a set

PAGE NO: 227

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

learning rate, that decreases gradually, momentum-based approaches, or adjustable learning rates, based on the optimizer.

Too Low Optimal Too High
LR LR LR

a b [

Fig. 2. The impact of different learning rates on gradient descent (a) a small LR needs numerous upgrades to achieve the minimum point. (b)
optimal LR smoothly reaches the minimum point (c) very large of a LR results in abrupt updates that induce diverse behaviors.

1.1.6. Batch Size

Another hyperparameter is the Batch Size (BS), which affects how many samples the network processes in a training iteration.
Larger BSs can enhance gradient estimate stability and training stability, but they come with increased memory demands and
potentially slower convergence. Conversely, smaller BSs reduce memory requirements and speed up convergence, but they
may yield noisier gradient estimates. To strike the right balance, it is crucial to test out different batch sizes and select the one
that optimally balances stability and speed. A common recommendation is using BS powers of two for more efficient code
execution [36].

1.1.7. Epochs

In machine learning, an epoch is a single pass of the learning process across the whole training dataset. Stated differently, the
neural network learns patterns from all the data samples within an epoch, and the model's weights and biases are changed
according to the computed loss or error. The model gains knowledge from the complete dataset like a full training cycle.
Remember that because the learning rate is a hyperparameter, choosing the right one is essential to preventing the learning
process from being adversely affected. Epochs represent how often the neural network processes the entire training dataset.
When a small discrepancy arises between training and test errors, it is advisable to raise the number of epochs.

1.2. Contribution or Novelty of Work

While numerous papers in the literature explore various approaches for setting convolutional neural network (CNN) hyperparameters,
none of them have proposed a universally applicable and robust systematic solution to this problem. Consequently, hyperparameter
optimization remains an ongoing challenge. In this work, we examine experimentally how different hyperparameters based on CNN
accuracy affect the results. This research tries to throw light on the practical implications of these hyperparameters and their effects on
model performance. Furthermore, an incorrect choice of a single hyperparameter (such as using a sigmoid activation function) can prevent
the neural network from converging, regardless of other hyperparameter settings. The heuristics can help guide hyperparameter selection
but do not guarantee optimal results. The behavior of a CNN is highly reliant on the specific dataset, which complicates the establishment
of a universally applicable theory for defining appropriate hyperparameters across all problems. The main contributions of this article
are:

o Find Research Gaps: Analyzing the research gaps in each study and comparing the methods of hyperparameter optimization
used in existing custom CNN models for the detection and categorization of MRI brain cancers.

o Selection of Hyperparameters: For the manual tuning optimization technique, seven hyperparameters with the range of values
such as gradient optimizers (SGDM, Adagrad, RMSprop, Adam, and Nadam), LR (0.03, 0.02, 0.01, 0.003, 0.002, 0.001,
0.0003, 0.0002, 0.0001), BS (8, 16, 32, 64, and 128), activation functions (ReLU, Leaky ReLU, ELU, and PReLU), pooling
layers (Max Pooling, Average Pooling, Global Max Pooling, Global Average Pooling, and Mixed_scale Pooling), number
of convolutional layers (1, 2, 3, 4, 5, and 6), and epochs (20, 25, 30, 35, and 40) are selected.

o Experiments on Selected Hyperparameters: Six experiments are carried out to fine-tune selected hyperparameters through

PAGE NO: 228

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

CNN model training and evaluation of the optimal hyperparameters according to the accuracy measure.

o Proposed a custom CNN model (MTBTDet CNN): Using the MRI Dataset of brain tumors and the optimal combination of
manually tuned hyperparameters, which yields remarkable results depending on various kinds of performance measures like
recall, accuracy, fl-score, precision, and specificity.

o Comparative Analysis: We conduct a thorough evaluation of the proposed model against the studies of optimization techniques
and manually tuned methods for the detection and classification of MRI brain tumors. The comparison shows that our proposed
model performs better than the existing techniques, thereby strengthening the efficacy of our strategy of manually tunned
hyperparameters.

The additional sections of the manuscript are arranged as follows: Comparative Analysis of Related Work (Section 2), which outlines
the advancements made to date and their gaps; Research Methodology (section 3), including the details of the proposed approach, an
explanation of the dataset, and the values of the hyperparameter that needs to be adjusted; Results and Discussion (section 4), outlining
the results of experiments carried out to adjust the hyperparameters, the result of proposed model based on various metrics, and
comparison analysis with existing methods; and Conclusion (section 5), offering a summary of the work and suggestions for additional
work.

2. Comparative Analysis of Related Work

Table | presents a comparative analysis and highlights research gaps in various hyperparameter optimization techniques employed by
custom CNN models for the detection or classification of MRI brain tumors. The table systematically outlines key elements such as the
reference and year of each study, the dataset used, the number and size of classes, the optimization methods applied, the hyperparameter
search space considered, and the optimum hyperparameter values obtained. Additionally, it summarizes the test accuracy achieved by
each model and identifies critical research gaps. This structured comparison provides insights into the effectiveness and limitations of
different optimization strategies, offering direction for future research in enhancing CNN-based brain tumor detection.

In [37], the researchers employ a Genetic Algorithm for the optimization of the hyperparameters and propose the custom CNN with an
accuracy of 94.2%. They select the appropriate parameters, such as the number of convolutional and max-pooling layers, the number of
kernels and their sizes, the number of fully connected layers, the activation function, the dropout probability, the optimization technique,
and the learning rate with their corresponding values, to evolve the optimal structure of CNN. However, the final output values of the
selected parameters are not mentioned and the recall value of the classification results are also not evaluated. In [38], for the task of
classification, the researchers used the Grid Search Optimization Algorithm for the MRI brain tumor by using three datasets and proposed
three CNN models with accuracies of 99.33%, 92.66%, and 98.14%. The number of convolution and max pooling layers, number of
fully connected layers, number of filters, filter size, activation function, mini-batch size, momentum, learning rate, and L2 Regularization
are the included hyperparameters in the Grid Search technique. The two main hyperparameters, gradient-optimizers and number of epochs
are not included by the researchers. In [39], researchers implied a unique CNN architecture for the categorization of MRI brain tumors
and used the Bayesian Optimization approach for hyperparameter tuning. The only architectural hyperparameters that the authors address
are dropout percentages, max pooling size, Conv2D kernel size, Conv2D filters, and dense filters. During the optimization process, the
fine-tuning of other hyperparameters such as the optimizer, LR, BS, etc., are ignored. In [40], the researchers also used the Bayesian
Optimization technique for tuning the hyperparameters and proposed the architecture of CNN for the classification task by achieving an
accuracy of 98.70%. The activation function, dropout rate, BS, number of dense nodes, and gradient descent optimizer are the
hyperparameters used in optimization approaches. There is a missing number of epochs and LR.

Researchers in [41] manually tuned the hyperparameters and suggested using a customized CNN model to categorize MRI brain tumors
into three classes. They explained how the feature learning sensitivity or recall of the built model is affected by how many epochs there
are. The value of all other hyperparameters is chosen randomly. The authors in [2] proposed the novel CNN model to classify brain
tumors utilizing two databases by the process of manual tuning of hyperparameters and achieved 96.13% and 98.7% accuracies. They
used many hyperparameters for tuning but the optimum values of only AF, BS, and optimizer are shown. In [42, 43] studies, the
researchers proposed the custom CNN models for the classification and detection the brain tumors and achieved 100% and 97.28%
accuracies respectively. In both studies, the authors took the random values of the hyperparameters. In [44], researchers proposed the
scratch CNN model for binary classification of tumors in the brain and achieved 96.49% accuracy. They tested the model for a few
hyperparameters such as PL, AF, optimizer, and initializer during tunning and other hyperparameter values chosen randomly. In [45-47]
studies, researchers proposed their custom CNN models for the classification and detection of tumors in the brain. They all not focused
on the hyperparameters tunning and choose the random values for the hyperparameters. In [48], the authors employed the CNN model
by using a hard swish-based ReLU AF for the classification task. The model is tested or compared with only sigmoid and tanh AF and
no experimental result was conducted with other hyperparameters. The en-CNN model was presented by authors [49] for the manual
hyperparameter tuning-based binary classification of brain tumors. The hyperparameters chosen by them for tunning are the convolutional

PAGE NO: 229

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

+ReLU layers, dropout layers, epochs, fully connected layers, optimizers, BS, and dropout Rate. The experiments are conducted for only
optimizers and the number of epochs, and all other values for the hyperparameters are chosen randomly. In the [50] study, the authors
propose an innovative and robust model for automatically classifying brain tumors, which effectively extracts crucial features from MRI
datasets. For the tuning of hyperparameters, the model is tested for only three hyperparameters such as optimizers, LRs, and epoch
numbers. The values of the rest of the hyperparameters were chosen randomly. A differential deep CNN model was built in the [51] study
to classify various kinds of tumors present in the brain. They extract extra differential feature maps derived from CNN's original feature
maps, by integrating differential operators into the differential deep-CNN architecture. However, the authors gave no detailed information
about the hyperparameters and their respective values.

In [52] study, the researchers proposed a custom CNN model combined with the manual-tunning of hyperparameters and achieve the
optimal results in classifying the tumor present in the brain. The testing of this custom architecture was conducted in three scenarios by
using three hyperparameters such as dropout rate, dense layer, and optimizer. A multi-level attentional approach to the identification of
brain tumors was presented by the authors [53]. Spatial and cross-channel attention are merged in the suggested multi-level attention
network (MANet). It maintains cross-channel temporal connections included in the semantic characteristic sequence derived from the
Xception backbone in addition to giving priority to the tumor region. The values of the hyperparameters are chosen randomly, no
experimental tests were conducted during the setup of the suggested model. The lightweight CNN model with learnable parameters and
fewer layers was presented by researchers [54] to classify and detect brain cancers. They took several hyperparameters for testing the
proposed model and obtained the optimum values of these hyperparameters. However, the results of experimental testing of these
hyperparameters are not shown. Researchers presented a parallel deep convolutional neural network (PDCNN) architecture in a novel
study strategy that was described in [55]. With the combined use of batch normalization and dropout regularization, this topology
addresses overfitting while extracting both local and global characteristics from two concurrent phases. They focus only on architectural
design and augmentation techniques not on the hyperparameters tuning and their optimal values. The authors created a unique technique
[56] that uses 2D magnetic resonance imaging to detect brain tumors. This system leverages a hybrid deep learning technique with the
combination of SVM (Support Vector Machine) and CNN model. While manually tuning the hyperparameters, authors test the no. of
convolutional layers, LR, splitting ratio, BS, and epochs. In the [57] study, the authors proposed a scratch CNN model by using
augmentation and image preprocessing techniques and achieved 100% accuracy. The values of only two hyperparameters are mentioned
and ignored the others. In [58, 59] studies, the authors presented the new CNN model for the four-class classification of MRI brain
tumors. Both studies not perform the experimental testing for the hyperparameters tunning, they choose the random values for some
hyperparameters. Researchers classify categories of brain tumors such as gliomas, meningiomas, and pituitary in [60] using a unique
CNN model. In [61], scientists presented a novel approach that combines image enhancement methods, such as CLAHE-based Adaptive
Histogram Equalization and Gaussian-blur-based sharpening, to precisely classify various categories of brain tumors, like pituitary,
glioma, and meningioma, and normal images. The research publication [62] presents BTC-fCNN, a quick and effective classification
method. Three distinct types of brain tumors will be distinguished by a deep learning-based method: pituitary, glioma, and meningioma.
TumorDetNet is an innovative end-to-end deep learning network for detecting and classifying brain tumors that was first presented in
this [63] paper. No experimental results were shown during the value assignments of hyperparameters.

2.1. Research Gaps and Motivation

Despite the transparent success of applying CNNs across the identification of brain tumors, in practice, the design of well-
functioning CNN models is not insignificant. Conditionally good choice hyperparameters like the convolutional layers,
activation functions, optimizers, LR, BS, etc. have a high influence that how well the CNN model performs. Numerous
methods for improving the CNN's tuning parameters for brain tumor identification or categorization have been documented in
the literature. For example, genetic optimization algorithms [37], Grid Search [38], and Bayesian optimization [39, 40]. But,
these automated optimization approaches of selecting optimal hyperparameters to hyperparameter tuning for a CNN model
are often formulated as a black-box optimization (BBO) problem. In this scenario, a set of hyperparameters is mapped to a
performance score using the CNN as an unknown objective function. Furthermore, due to the unknown nature of this mapping,
we cannot guarantee that the optimization problem is convex. As a result, we classify the problem as of the global type.

Most researchers [2, 41-64] suggested creating bespoke CNN models and manually adjusted the hyperparameters for brain
tumor detection or classification. The studies [2, 42, 43, 45-50, 53-55, 57-64] do not perform any experimental tests for
obtaining the optimum values for the hyperparameters, researchers chose the random values for the selected hyperparameters.
Out of these, [2, 54] studies mentioned the range of values for different hyperparameters but the experimental results are not
shown for selecting the optimum values of these hyperparameters. Only a few studies have shown the experimental results for
obtaining the optimum values of the hyperparameters, but researchers performed the experiments on only a few
hyperparameters such as in the [41] study, researchers focused on only the number of epochs, [44] study experiments on only
four hyperparameters such as PLs, AFs, optimizers, and initializers. The study [48] focuses on only the two values of activation
function, the study [50] performed experiments on only optimizers, LR and epochs. The study [52] showed the experimental
results on only three hyperparameters such as dropout layers, dense layers, and optimizers.

PAGE NO: 230

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

Table 1. Comparative analysis and the research gaps in hyperparameter optimization techniques used by custom CNN models for the detection /classification of MRI Brain Tumor

Reference Dataset Classes with Size Optimizati Search space for tunning of hyperparameters Test. Research Gaps
& Year on Method Ace.
[37]12018 Figshare (Cheng etal., MEN (708) vs Glioma Genetic FC+DL(1,2,3),Conv+MP (2,3,4,5,06), 94.2% e The result for optimum values of
2017) (1426) vs PT (930) Algorithm Filters (16, 24, 32, 48, 64, 96, 128), Filters (2, 3, 4, hyperparameters from the genetic algorithm
5, 6,7) AF (ReLU, Leaky ReLU, ELU, SELU), are not mentioned.
Opt (SGD, Adam, AdaMax, Nadam, AdaGrad,
AdaDelta), and FC neurons (128, 192, 256, 384,
512), DR (0.1, 0.2,0.3,0.4, 0.5), LR (1le-4, le-3,
le-2)
[2]2019 Figshare (Cheng et al., MEN (708) vs Glioma Manual Conv +RelU (1, 2, 3,4),BN (1, 2,3),DL (1,2, 96.13% No experimental results of hyperparameters
2017) (1426) vs PT (930) Tuning 3), FC layers (1, 2, 3), Filters (8, 16, 32, 64, 128, tunning are shown.
REMBRANDT Grade II (205) vs Grade II1 256), Filter sizes (2, 3, 5,7, 9, 10, 11), Epochs (20, 98.7% The optimum value of only two
(129) vs Grade IV (182) 40, 50, 60, 80, 100), FC layers (1,2,3). PL(ML hyperparameters is given.
and AP), Opt (SGD, Adam, RMSProp), BS (1, 4,
8, 16, 32, 64, and 128) DR (0.1, 0.15, 0.2, 0.25,
0.5), ILR (0.01, 0.001, 0.0001), LR drop factor
(0.1,0.2,0.3)
[4112020 Radiopedia Normal (286), MEN (380), Manual Epochs (1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 96% Focus on only the effect of epochs
EP (311), MB (281) Tuning 15) Other hyperparameter values are chosen
randomly.
[42]2020 Kaggle (Navoneel et Cancerous (155) vs. non- - - 100% Randomly chosen the values of only few
al., 2019 Cancerous (98) hyperparameters, others are missing.
[43] Figshare (Cheng et al., MEN (708) vs Glioma - - 97.28% Randomly chosen the values of only few
2020 2017) (1426) vs PT (930) hyperparameters, others are missing.
[44]2020 BraTS 2018 HGG (209) vs. LGG (75) Manual PL (MP, AP), AF (ReLu, Selu, and Tanh), Opt 96.49% Model is tested for only 4 hyperparameters.
Tuning (Adam, SGD), Initializer (Glorot normal and the
Glorot uniform)
[45]2020 Figshare (Chengetal, MEN (708) vs Glioma - - 99% Values of hyperparameters are chosen
2017) (1426) vs PT (930) randomly without any experiments
[46] 2020 Kaggle (Navoneel et Cancerous (155) vs. non- - - 96.8% Randomly choose the values of only a few
al., 2019 Cancerous (98) hyperparameters and others such as learning
rate, batch size, etc. are ignored.
[47] 2021 Kaggle (Navoneel et Cancerous (155) vs. non- - - 98% Values of hyperparameters are chosen
al., 2019 Cancerous (98) randomly without any experiments
[48] 2021 Figshare (Cheng et al., MEN (708) vs Glioma Manual AF (sigmoid, tanh) 98.6% Model is tested with only two activation
2017) (1426) vs PT (930) Tuning functions sigmoid and tanh.
[49]12021 BraTS 2018 GBM (1000) vs. LGG Manual Opt (Adam, RMSProp, SGD), Conv +ReLU (1, 2, 97% The model is tested for only optimizers and
(1000) Tuning 3,4,5,6),DL (1,2, 3), BS (32, 64, 128), Epochs epochs hyperparameters.

(30, 50, 100, 150, 200, 250, 300), FC layers (1, 2),

PAGE NO: 231

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

[50] 2021

[51] 2021

[39] 2021

[52] 2021

[38] 2021

[53]2022

Figshare (Cheng et al.,
2017)
Radiopedia

REMBRANDT

Tianjin Universal
Center of

Medical Imaging and
Diagnostic (TUCMD)

Figshare (Cheng et al.,
2017)

Kaggle (S. Bhuvaji
2020)

RIDER,
REMBRANDT,
TCGA-LGG,

Figshare (Cheng et al.,
2017)

Figshare (Cheng et al.,
2017)
BraTS 2018

MEN (708) vs Glioma
(1426) vs PT (930)
MEN-I (36) vs Gliomas-II
(32) vs Gliomas-III (25) vs
GBM-1V (28)

Normal (1041) vs
Tumorous (1091)

Normal (1041) vs HGG
(484) vs. LGG (631)
Normal (1041) vs AST
(557) vs OLI (219) vs
GBM (339)

AST-II (356) vs AST-I11
(201) vs OLI-II (128) vs
OLI-III (91) vs GBM-IV
(339)

Normal (1041) vs AST-1I
(356) vs AST-III (201) vs
OLI-II (128) vs OLI-III
(91) vs GBM-1IV (339)

Metastasis vs MEN vs
Glioma vs Astrocytoma vs
Germ cell vs
Craniopharyngiomas

MEN (708) vs Glioma
(1426) vs PT (930)

MEN (937) vs Glioma
(926) vs PT (901) vs
Normal (500)

Tumor (1640) vs non-
tumor (1350)

Normal (850) vs Glioma
(950) vs MEN (700) vs PT
(700) vs Metastatic (750)
Grade-II (1676) vs Grade-
111 (1218) vs Grade-1IV
(1676)

MEN (708) vs Glioma
(1426) vs PT (930)
HGG (210) vs. LGG (75)

Manual
Tuning

Bayesian
optimizatio
n

Manual
Tuning

Grid Search
Optimizatio
n

DR (0.1,0.2,0.3,0.4, 0.5, 0.6, 0.7, 0.8)

Opt (Adam, SGD, Adadelta, Adagrad), LR (0.01,
0.001, 0.002, 0.003, 0.004), and Epochs (10, 20,
30)

Filters (16, 32, 64, 128, 256, 512), DR (0, 0.5),
Filter Size (2, 3, 4, 5), MP Size (2, 3, 4, 5), Filter
(16, 32, 64, 128, 256, 512, 1024, 2048, 4096)

DR (0.2, 0.5), Opt (Adam, RMSProp, Adamax,
SGD), Dense layer (1024, 512)

AF (ReLU, ELU, SELU, Leaky ReLU), Conv and
MP (1, 2, 3,4), BS (4, 8, 16, 32, 64), FC layers (1,
2, 3, 4), Filters (16, 24, 32, 48, 64, 96, 128), Filter
size (3,4, 5, 6, 7), Momentum (0.80, 0.85, 0.90,
0.95), LR (0.0001, 0.0005, 0.001, 0.005), and L2
Regularization (0.0001, 0.0005, 0.001, 0.005).

94.74%

93.71%

100%

97.22%

97.2%

88.86%

95.72%

99.25%

97.37%

96%

99.33%

92.66%

98.14%

96.5%

94.91%

e The values of some of the hyperparameters

are chosen randomly and some are ignored.

e The model is tested for optimizer, learning

rate, and epochs and rest are chosen
randomly.

Only the activation function is given.
No detailed information about the
hyperparameters is given.

Only the architectural hyperparameters are
used for tunning by optimization method.
Obtained optimum values of
hyperparameters are not mentioned.

Hyperparameters tuning is based on only
three hyperparameters dropout, dense
layers, and optimizers and the values of rest
are chosen randomly

Optimizers and epochs are missing during
grid search optimization.

Randomly choose the values of only a few
hyperparameters and some are ignored.

PAGE NO: 232

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

[40] 2022

[54] 2022

[55] 2022

[56] 2023

[57] 2023

[58] 2023

[59] 2023

[60] 2023

[61] 2023

[62] 2023

[63] 2023

Figshare (Cheng et al.,
2017)

Figshare (Cheng et al.,
2017)

Kaggle (S. Bhuvaji
2020)

Kaggle (Navoneel et
al., 2019)

Figshare (Cheng et al.,
2017)

Kaggle (S. Bhuvaji
2020)

Kaggle (Navoneel et
al., 2019

Kaggle (Navoneel et
al., 2019

Kaggle (S. Bhuvaji
2020)

Figshare (Cheng et al.,
2017), Kaggle (S.
Bhuvaji 2020), and
Kaggle dataset
(Br35H)

Figshare (Cheng et al.,
2017)

Figshare (Cheng et al.,
2017), Kaggle (S.
Bhuvaji 2020), and
Kaggle dataset
(Br35H)

Figshare (Cheng et al.,

MEN (708) vs Glioma
(1426) vs PT (930)

MEN (708) vs Glioma
(1426) vs PT (930)

MEN (937) vs Glioma
(926) vs PT (901) vs
Normal (500)

Tumour (155) vs. Normal
(98)

MEN (708) vs Glioma
(1426) vs PT (930)

MEN (937) vs Glioma
(926) vs PT (901) vs
Normal (500)

Cancerous (155) vs. non-
Cancerous (98)

Cancerous (155) vs. non-
Cancerous (98)

MEN (937) vs Glioma
(926) vs PT (901) vs
Normal (500)

MEN vs Glioma vs PT vs
Normal

MEN (708) vs Glioma
(1426) vs PT (930)

MEN vs Glioma vs PT vs
Normal

MEN (708) vs Glioma
(1426) vs PT (930)

Bayesian
optimizatio
n

Manual
Tuning

Manual
Tuning

AF (ReLU, ELU, Sigmoid, SELU, Tanh), BS (1 to
128), DR (0.1 to 0.5), Dense nodes (32 to 1024),
Opt (Adam, Nadam, AdaMax, RMSProp, SGD)

Image Size (128x128, 227x227), Conv Layer +
ReLU (1, 2, 3), PL (MP, AP), Cross channel
normalization layer(0, 1, 2), BN (1, 2, 3), DL (1,
2), FC Layer (1, 2), Grouped Conv Layers (0,1, 2),
DR (0.25, 0.5), Opt (Adam, SGDM), LR (0.0001,
0.0002, 0.0003, 0.0005), Epochs (10, 20, 30, 40),
BS (4, 8, 10), Filters (32, 64, 128, 256), Filter size
(2,3,5)

Conv Layers (5, 6, 7), Training -Testing ratio
(70:30, 80:20), LR (0.001, 0.005, 0.01), BS (16,
32), epochs (8, 9, 10, 11)

98.70%

97.2%

99%

97.33%

97.60%

98.12%

97.86%

100%

93.30%

95.44%

98.04%

97.84%

98.86%

Learning rate and epochs are not included in
the optimization method.

The results of the experimental tests on
hyperparameters are not shown.

No experimental results about getting the
optimum values of the hyperparameters are
shown.

Values of some hyperparameters are chosen
randomly without any experiments and
some are ignored.

Only the value of activation function chosen
randomly and rest are ignored

Only few hyperparameters are tuned and
other such as activation function, optimizers
etc. are ignored

Randomly chosen the values of only two
hyperparameters and others are ignored.

Randomly assigned the values of few
hyperparameters and others are ignored.

Randomly chosen values, no
experimentation.

Values of hyperparameters are chosen
randomly without any experiments

Values of hyperparameters are chosen
randomly without any experiments

Values of hyperparameters are chosen
randomly without any experiments

PAGE NO: 233

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

2017)
[64]2023 Kaggle dataset Tumorous (1500) and non- - 99.83% e Values of hyperparameters are chosen
(Br35H) Tumorous (1500 randomly without any experiments
Kaggle (Navoneel et Tumour (155) vs. Normal 96.08%
al., 2019) (98)
Kaggle Dataset (Alif Benign (350) vs Malignant 100%
Rahman) (350)
Kaggle Dataset Benign (1200) vs 100%
(Prajakta Sabale) Malignant (200)
Kaggle dataset MEN (937) vs Glioma 99.27%
(SARTAJ) (898) vs PT (926)
Figshare (Cheng et al., MEN (708) vs Glioma 98.47%
2017) (1426) vs PT (930)
[65]12024 Kaggle (Figshare, MEN (1645) vs Glioma - 99% e Values of hyperparameters are
SARTAJ, and Br35H) (1621) vs PT (2000) vs chosen randomly
Normal (1757)
[66]2024 TCIA Metastasis, Glioma, and - 98% e Values of hyperparameters are
(REMBRANDT) Meningiomas chosen randomly
[67]2024 Figshare, SARTAJ, MEN (1645) vs Glioma Manual learning rate, batch size, number of epochs, 97.18% e Never describe the range of
and Br35H (1621) vs PT (2000) vs Tuning optimizer, shuffle, verbose, dropout rate, filters, hyperparameters for tuning
Normal (1757) filter size, and activation function.
Kaggle Navoneel et al. Tumour (155) vs. Normal 93%
(84)
Kaggle dataset Tumorous (1500) and non- 96%
(Br35H) Tumorous (1500)
[68]2024 BraTS 2020 Tumorous and non- Manual Activation Function and Optimizers 92.59% e Only two hyperparameters are
Tumorous Tuning tunned
[69]2025 Kaggle (Figshare, MEN (1645) vs Glioma - 99% e Values of hyperparameters are
SARTAIJ and Br35H) (1621) vs PT (2000) vs chosen randomly
Normal (1757)
[70]12025 Kaggle (Figshare, MEN (1645) vs Glioma - 99.64% e Values of hyperparameters are
SARTAIJ and Br35H) (1621) vs PT (2000) vs chosen randomly
Normal (1757)

MEN: Meningioma, PT: Pituitary, HGG: High Grade Glioma, LGG: Low Grade Glioma, AST: Astrocytomo, GBM: Glioblastoma Multiforme, OLI: Oligodendroglioma, AF: Activation Function, LR: Learning Rate, Opt:
Optimizer, BS: Batch Size, DL: Dropout Layer, DR: Dropout Rate, PL: Pooling Layer, BN: Batch Normalization, FC: Fully Connected, ILR: Initial Learning Rate, MP: Max Pooling, AP: Average Pooling

PAGE NO: 234

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

Splitting the Dataset as

Rescaling g S
Input Dotaset | Y o p— Trining(50%), Validation(10%),

Testing(10%)

Experiments for Manual Tunning of Hyperparameters

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6
Optimizers(SGDM, Adagrad,
RMSprop. Adam. Nadam) and Batch Size (8, 16, Activation Pooling Layers(Max Pooling, No. of Convolutional Epochs(20, 25
LR(0.03, 002, 0010003,] 52 64, 128, 256) Function(ReLU. [Average Pooling, Global Max Layers (2. s s 0
0.002, 0.001, 0.0003, 0.0002, Leaky ReLU, ELU, Pooling, Global Average Pooling, = 7 ’ i
0.0001) PReLU) Mixed Scale Pooling)

T Brain Tumor
. and Non- Final Result Detection: Training Proposed Model
Training Model o Anialysis:
l Proposed Model with
" -] Result Accuracy, Tumorous . _ Optimal Values of
To FT; the Optimal Values A Specificity, Recall, > Hyperparameters
of Hyperparameters Aocstice Precision, F1-Score non-tumorous &

Fig. 3. The complete workflow of the proposed methodology for the experimental setup to manually tune hyperparameters for building a custom
MTBTDet_CNN.

3. Research Methodology

Figure 3 shows the proposed methodology for manually tuning the hyperparameters in a custom CNN model, where different
experiments are accomplished to obtain the ideal hyperparameter values. The workflow starts with the input dataset. and rescaled
to a dimension of 224 x 224 pixels. To be set up for model training and assessment, the dataset is then separated into testing (10%),
validation (10%), and training (80%) sections. In the next pipeline, six experiments are designed for the manual tunning of seven
hyperparameters (convolutional layers, types of PLs, AFs, gradient optimizers, LRs, BS and epochs) by training the CNN models.
The result analysis focuses on the accuracy metric to identify which combination of hyperparameters yields the best outcomes and
to get the optimal results of these hyperparameters for the proposed model. Experiment 1 (section 4.1) focuses on determining the
best optimizer and LR among 5 optimizers (SGDM, Adagrad, RMSprop, Adam, Nadam) and 9 values of LRs (0.03, 0.02, 0.01,
0.003, 0.002, 0.001, 0.0003, 0.0002, 0.0001) by train the model 45 times. This experiment’s goal is to determine the pair of
optimizers and the LR that produces the best accuracy. Experiment 2 (section 4.2) uses the best optimizer and LR obtained from
experiment 1 and examines the effect of different BSs (8, 16, 32, 64, 128, and 256) depending on how well the model performs.
The motive of this experiment is to obtain the optimal BS which leads to the best accuracy and most efficient training. Optimal LR,
optimizer and BS are used in experiment 3 (section 4.3) to test various AFs (ReLU, Leaky ReLU, ELU, and PReLU), and determine
the favorable AF which improves convergence and model performance. Experiment 4 (section 4.4) utilizes the optimal parameters
of the optimizer, LR, BS, and AF to test the various PLs, which include Global Max Pooling, Global Average Pooling,
Mixed_scale Pooling, and Max Pooling. The objective of this experiment is to determine which pooling strategy enhances model
performance in reducing dimensionality while retaining important features. In experiment 5 (section 4.5), the convolutional layers
which are modified to determine the most efficient depth of the network are determined using the ideal hyperparameters that were
obtained from the above experiments. Finding the ideal number of layers that results in the maximum accuracy is the aim. The
number of epochs that yield the highest model performance without overfitting was determined in experiment 6 (section 4.6) by
utilizing all the optimal hyperparameters from experiments 1 through 5.

After completing all experiments, the proposed model is developed using the optimal hyperparameters obtained from the
experiments. Based on performance evaluation measures along with accuracy, specificity, recall, precision, and f1-score, this model
is predicted to produce the best results.

3.1. Dataset Description

The models with different hyperparameters are trained and tested by using brain tumor MRI dataset that is freely accessible on

Kaggle. The dataset, organized and maintained by Naveenprakasha [71] consists of 3,000 JPG-formatted human brain MRI scans,
evenly split into two classes i.e., 1,500 positive cases (brain tumor) and 1,500 negative cases (no tumor). Figure 4 illustrates the

PAGE NO: 235

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

MRI images for binary classes i.e., ‘no’ and ‘yes’ of the dataset. Normalizing the degree of intensity data enhances the performance
of later models and algorithms, and rescaling the images to a defined resolution (224x224x3) ensures uniformity throughout the
collection. The ideal dataset splitting ratio for the custom CNN model's training and assessment for training, validation, and testing
is 80:10:10 respectively [72]. Table 2 provides a thorough explanation of the dataset.

Fig. 4. Non-tumorous left) and tumorous (right) MRI images of the human brain from the dataset.

Table 2. Details and distribution of the dataset of MRI scans of brain tumors for training, validation, and testing.

Class Name No. of Images Training Testing Validation
Yes (Brain Tumor) 1500 1200 150 150
No (No Tumor) 1500 1200 150 150
Total 3000 2400 300 300

3.2. Hyperparameters Choices

Although CNNs are powerful, their effectiveness and accuracy depend on parameter selection. When choosing CNN parameters,
it is common to use an optimal combination of several parameters. CNN models are intricate architectures that involve numerous
hyperparameters. In general, these hyperparameters fall into two categories: fine-tuning hyperparameters and architectural
hyperparameters. The range of convolutional PLs, fully connected layers, filters, filter sizes, and AFs are examples of architectural
hyperparameters. However, optimizers, BS, LR, L2 regularization, and other factors are included in the fine-tuning of
hyperparameters. Seven hyperparameters, as indicated in Table 3, are manually adjusted in this article. These include the number
of convolutional layers, AFs, PLs, gradient optimizers, LR, BS and epochs.

Table 3. Ranges of the hyperparameters used to train the proposed CNN model.

Hyperparameters Value

Gradient-Optimizers SGDM, Adagrad, RMSprop, Adam, and NAdam

Learning Rate 0.03, 0.02, 0.01, 0.003, 0.002, 0.001, 0.0003, 0.0002, 0.0001

Batch Size 8,16, 32, 64, and 128

Activation Function ReLU, Leaky ReLU, ELU, and PReLU

Number of Convolutional layers 1, 2, 3,4, 5, and 6 (excluding input conv_layer)

Pooling Layers Max Pooling, Global Max Pooling, Average Pooling, Global Average Pooling, and
Mixed_scale Pooling

Epochs 20, 25, 30, 35, and 40

4. Results and Discussions

Six experiments are conducted to construct the proposed MTBTDet CNN model on seven hyperparameters (Optimizers, LRs, BS,
AFs, No. of Conv. Layers, PLs, and Epochs). The result of each experiment has been examined independently based on the
accuracy metric to determine the ideal values of each hyperparameter. The ideal value of the hyperparameter from experiment 1
transfers to experiment 2 and so on. Hence, after six experiments, we get the optimal values of seven hyperparameters. The model
is repeatedly trained and assessed in each experiment. (depending on the values of the hyperparameters) by using the dataset.

4.1. Experiment 1: For Optimal Optimizer and Learning Rate

The LR and optimizer are two of the most influential hyperparameters in training deep neural networks, as they directly affect the
model’s convergence speed, stability, and final accuracy. The optimizer determines how the model’s weights are updated during
backpropagation, while the LR controls the size of these updates. Their performance is highly interdependent - an inappropriate LR
can hinder even the best optimizer, leading to slow convergence or unstable training. Therefore, this experiment was designed to
systematically evaluate the combined effects of different optimizers (SGDM, Adagrad, RMSprop, Adam, and Nadam) with varying
LR (0.03,0.02,0.01,0.003, 0.002, 0.001, 0.0003, 0.0002, 0.0001) to identify the most effective configuration for achieving optimal
accuracy.

PAGE NO: 236

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

When training a CNN model, the coordination of optimizers and LRs is essential since it influences how the model learns and
converges on a solution. The LR determines the magnitude of these updates, whereas the optimizer handled the model's weight
updates during training. For the model to function at its best, the two must collaborate well. The optimizers with LRs combined
and hence the CNN model is trained and tested 45 times to obtain the best combination of LR and optimizer based on accuracy.
Other hyperparameter values are preset, including BS (32), no. of convolutional layers (4), PL (max pooling), AF (ReLU), and
epochs (20). The Figure 5 shows the accuracy in the bar graph of trained models and the figure shows the accuracy in the line graph
over the epochs. The bar graph shows that the SGDM, Adagrad, Adam, and Nadam models perform almost similarly across LRs,
while RMSprop shows more variation in performance across LRs and the LRs with the best performance vary across optimizers,
indicating that fine-tuning the learning rate is critical for each optimizer. For most optimizers and LRs, the test accuracy is almost
the same and it is challenging to determine the ideal value for the optimizer and LR, therefore Table 4 is constructed to find the
optimal result and shows that the Adagrad, RMSprop, and Adam optimizers and 0.002, 0.0003, and 0.0001 LRs having accuracy
greater than 0.985 in more models as compared to others. Adam optimizer showed two models (Adam_0.002 and Adam_0.0003)
with the highest accuracy (0.993). But as shown in Figure 6, the loss function of the Adam 0.0003 model is 0.027 and the
Adam_0.002 model has 0.037.

Table 4. Comparison of accuracies of CNN models with different values of LRs and optimizers to find the perfect combination of LR
and optimizer.

Accuracies with combinations of LRs and Optimizers

LR SGDM Adagrad RMSprop Adam Nadam LR with Optimizers
(Accu. >=(.985)

0.03 0.987 0.993 0.953 0.979 0.967 02
0.02 0.983 0.993 0.980 0.980 0.950 01
0.01 0.987 0.993 0.970 0.980 0.927 02

0.003 0.983 0.977 0.980 0.960 0.953 00

0.002 0.993 0.990 0.973 0.993 0.947 03

0.003 0.983 0.980 0.987 0.983 0.990 02

0.0003 0.983 0.983 0.990 0.993 0.987 03

0.0002 0.983 0.947 0.990 0.987 0.983 02

0.0001 0.980 0.930 0.993 0.990 0.990 03

Optimizer with LRs
(Accu. >=(.985) 03 04 04 04 03

Table 4 compares the performance of CNN models using different optimizers across a range of LRs to determine the optimal
configuration. The results indicate that the model’s accuracy is highly dependent on both the choice of optimizer and the LR.
Adagrad achieved consistently high accuracies at relatively higher LRs (0.01-0.03), demonstrating its ability to adaptively adjust
parameter updates. Adam and RMSprop, on the other hand, showed superior performance at lower LRs (< 0.003), with Adam
achieving the highest accuracy (0.993) at 0.002, 0.0003, and 0.0001, highlighting its robustness and stability during optimization.
SGDM exhibited stable performance across all LRs, peaking at 0.002 (0.993), while Nadam performed comparably to Adam but
showed slightly higher sensitivity to LR changes. Overall, Adam emerged as the most reliable optimizer for lower LRs, whereas
Adagrad demonstrated optimal convergence at higher LRs, suggesting that the interaction between LR and optimizer plays a critical
role in maximizing CNN classification performance.

Test Tesl: accurac! for Different CNN Maodels w_lth Dptlmlzers and Learnlng Ra{es

- 535883933 ig, ﬁeﬁ_nl »aagqa 3, h%ag .
L% H LR: 0.02
s LR: 0.01
e LR: 0.003
- LR: 0.002
LR: 0.001
s LR: 0.0003
LR: 0.0002
& LR: 0.0001
gor
a
oo
w
”

Model_SGDM Modal_Adagrad Model_RMSprop Mnnal “Adam Madal_Nadam
CNN Models with Optimizers and Learning Rates

Fig 5. Bar graph of test accuracy for different CNN models with optimizers and LRs in which each group of bars represents different LR for each
optimizer and color-coded bars show the test accuracy corresponding to each LR (0.03, 0.02, etc.).

PAGE NO: 237

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

Test Test_loss for Different CNN Models with Optimizers and Learning Rates

5

Test Test loss

E 8 g
"
3 3 & b
51 =
% 1
2 g S
g 2 2 3
i
ai é “ H E o 5
. s 8 H
§ 55 gg3¢&E E % i i i $.
& ET T b g8 a | = 8 .58 5§§E
o g =) o E C g = s g
b " Modal SGDM © Model_Adagrad ~ Model_RMSprop ~ Model_Adam "~ Model_Nadam
CNN Models with Optimizers and Learning Rates

Fig 6. Bar graph of test loss for different CNN models with optimizers and LRs in which each group of bars represents different LRs for each
optimizer and color-coded bars show the test loss corresponding to each LR (0.03, 0.02, etc.).

Therefore, the combination of the Adam optimizer with a LR of 0.0003 is identified as the most effective configuration for further
experiments, providing an optimal balance between convergence speed, training stability, and classification accuracy.

4.2. Experiment 2: For Optimal Batch Size

BS is an important hyperparameter in training a CNN model, as it affects the learning process, model interpretation, and
computational efficiency. This experiment demonstrates how various batch sizes (8, 16, 32, 64, 128) influence the test accuracy of
a CNN model as shown in Figure 7 with Adam optimizer and learning rate 0.0003 as obtained from the result of experiment 1.
Smaller BS (8 and 16) perform well, showing competitive accuracy and quick convergence. However, they exhibit more
fluctuations early on. Larger BSs (64 and 128), especially BS 128, perform poorly, with BS 128 severely impacting the model’s
ability to learn effectively. This is possibly due to the model’s slower updates when using larger batches, resulting in lower
performance and less flexibility in learning. BS 32 performs best, achieving the highest test accuracy and quickly stabilizing with
minimal fluctuation. This suggests it is the optimal BS for the given CNN architecture and learning rate. The batch size significantly
influences both the model's stability and final performance, with medium batch sizes (like 32) typically offering a balance between

stability, speed, and accuracy.

Test Accuracy over Epochs

Test Accuracy by Batch Size
0.993

1o 0.977 0.987 1

[

\ L | Satch Sun
A - B8
- e
| -+ mn
| - 5
| - B L

Teat Acutacy

a4

a2

(11

a0
T8 % W U @ OO M OB o 17 18 B 20
h

1 1 3 34 ¥ oA

o s 32

(Rt .
(CHN Models with Cptimizer Adam and Learring Rate 0.0003 for Different Batch Sizes

Fig. 7. The Bar graph compares the test accuracy for CNN models trained with different BSs (Left) and Line Graph tracks the test accuracy over 20
epochs for each BS (Right).

s

4.3. Experiment 3: For Optimal Activation Function

AFs are critical components in CNNss as they assess the network's capacity to learn complex patterns and make decisions. The AF
adding non-linearity into the model, makes it possible to handle more challenging tasks beyond linear classification or regression.
This experiment helps to determine the most appropriate activation function based on our model's requirements and elaborates on
how the various activation functions can influence the test accuracy of the CNN models. Figure 8 depicts the results of final test
accuracies for different AFs (ReLU, Leaky ReLU, ELU, PReLU) in the format of a bar graph and a line graph. The bar graph
demonstrates that ReLU is better than other functions in terms of final accuracy, making it the outperforming AF for this specific
CNN model based on test accuracy. However, ELU performs closely to ReLU, and Leaky ReLU still performs well, while PReLU

PAGE NO: 238

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

has the lowest accuracy among the four. The line plot reveals that ELU and Leaky ReLU demonstrate faster convergence, meaning
they achieve high accuracy earlier in training. ReLU and PReLU take a bit longer to stabilize but ReLU ultimately achieves the
highest accuracy. Hence, ReL U is the most optimal choice in terms of achieving the highest test accuracy.

Test Accuracy by Activation Functions Test Accuracy over Epochs
i6 0.990 0.977 0.987

09

Test Accuracy
°
a

1

Activation Function
- RelU

—8— Leaky_Retl
-+ EBU

- PRell

02

05

1 2 3 4 5 6 7 8 % 1 0 0 D w5l y 1819 2
RelU Leaky_ReLU LU PReLl Epoch

Fig. 8. The bar chart compares the final test accuracies achieved using different AFs (Left) and the line graph shows how test accuracy evolves over
20 epochs for each AF.

0.0

4.4. Experiment 4: For Optimal Pooling Layer

CNNs rely heavily on PLs to carry out several critical tasks, including feature extraction, dimensionality reduction, translation
invariance, and overfitting prevention. In general, pooling layers are necessary to improve CNN efficiency and performance. This
experiment highlights the importance of choosing the right pooling layer depending on the specific problem by performing the
comparisons between the test accuracies of different PLs (Max Pooling, Global Max Pooling, Average Pooling, Global Average
Pooling, Mixed_scale Pooling) as shown in Figure 9 Average Pooling, Max Pooling, and Mixed Scale Pooling consistently perform
best, with nearly identical final accuracies (0.993). These methods effectively downsample feature maps while retaining important
information. These PLs also show rapid convergence and reach near-perfect accuracy after just a few epochs. Global Max Pooling
performs reasonably well but does not reach the same accuracy as other pooling methods and shows slower convergence. This
might be happening due to the possibility of losing important data when simplifying each feature map to a single value. Global
Average Pooling underperforms and shows slower convergence, likely because averaging all values across the entire feature map
can result in excessive smoothing, losing important details, and reducing model performance. The value of the loss function for the
various pooling layers such as Max Pooling, Average Pooling, and Mixed Scale Pooling, is displayed in Figure 10 Max pooling
gives the least value i.e., 0.040 as compared to the Average pooling (0.044), and Mixed Scale pooling (0.048). Hence the ideal
value of the pooling layer is the ‘Max Pooling.’

Test Accuracy Different Types of Pooling Layers Test Accuracy over Epochs

0.993 10
W 0,960

e
o

Test Accuracy
o
4
—
—

Test Accuracy

°

Activation Function
-+ AW

o~ Leaky fell
- B

- PReLU

0.2

0o
max average global_max global_average mixed_scale 1 2 3 4 5 6 7 8 9 1 U 12 1 M 15 16 1 18 18 2

Different Types of Pooling Layers Epoch
Fig 9. The bar graph compares the final test accuracy for CNN models with different types of PLs (Left) and the line graph shows how the model’s
accuracy changes throughout 20 epochs for each PL.

PAGE NO: 239

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

Test Loss Different Types of Paoling Layers Lass over Epochs
0.497

Model Configuration
~8— Model with max layers
&~ Model with average layers

~8~ Model with global_max layers
~o~ Model with global_average layers
—8— Model with mixed_scale layers.

Test Loss

. . e ot i

max average global_max global_average rixed_scale 1 2 3 4 5 & 7 8 9 W U 12 B K 15 16 17 18 19 2
Different Types of Pooling Layers Epochs

Fig. 10. The bar graph compares the final test loss for CNN models with different types of pooling layers (Left) and the line graph shows how the
model’s loss function changes throughout 20 epochs for each pooling layer.

4.5. Experiment 5: For Optimal Number of Convolutional Layers

The number of convolutional layers in a CNN is a crucial architectural hyperparameter that impacts the model’s performance,
capacity, and generalization. Generally, very less layers may cause underfitting (unable to capture complex patterns), and too many
layers may lead to overfitting (memorizing the training data) therefore, finding the ideal number of layers is important to ensure
that the model can extract meaningful features without over-complicating the architecture. This experiment is often used to
determine how many layers are ideal for a certain task and dataset, results are shown in Figure 11 based on test accuracy. The bar
graph shows that the model with 3 convolutional layers achieves the highest accuracy (0.993), closely followed by the model with
2 layers. Models with 4 and 5 layers have slightly lower accuracy (0.990) and the model with 6 layers has the lowest test accuracy
(0.930), suggesting that adding the number of layers beyond 5 may cause to overfitting or diminished returns. The line graph shows
that all other models (1-5 layers) follow similar trends, with the models having 2 and 3 layers converging faster and achieving
slightly higher final accuracy. So, the CNN with 2 or 3 layers provides the best accuracy and convergence speed. But the value of
test loss with 2 convolutional layers is 0.026 while 0.013 with 3 convolutional layers is depicted in Figure 12. Hence, the optimal
CNN with 3 Convolutional layers (excluding the input convolutional layer) provides the best accuracy, least test loss, and

convergence speed.

Test Accuracy by Number of Convolutional Layers Accuracy over Epochs
10 0283 0.993 0.993 0.990 0.990

Test Accuracy

Model Configuration
—a— Model weh | layers
—o— Modsl with 2 lipers.
—a— Model with 1 ey
~#— Model with 4 ayery
~o— Model weh 3 layers
—a— Model with & layers

o9

an
1 2 3 4 5 1 17 3 4 5 & T B 3 W N OB B M3 B 7 B W

Mumber of Convolutional Layers Epoctn

Fig. 11. The bar chart shows the test accuracy achieved by models with varying numbers of convolutional layers (1 to 6, excluding input conv
layer) (Left) and the line plot shows how accuracy evolves over 20 epochs for each model configuration (from 1 to 6 convolutional layers).

Test Loss by Number of Convolutional Layers Loss over Epochs.

Model Configuration
—»— Model with 1 layers
~— Mode| with 2 layers
—— Model with 3 layers |
—8- Model with 4 layers
—8— Model with 5 layers
—o— Model with 6 layers

017s
05

oase

H
3 oaoe g 03
8 3
&
0075 -
0.050
a1 ,.f’\\
/
.’JI !
0025 / \
1 ¥ j
[T}
@000 - 4
1 2 H 1 2 3 4 5 & 7 & 8 W U R B W5 ¥ T B 19 N

] 4
Mumber of Convoltional Layers Epachs

Fig. 12. The bar chart shows the test loss achieved by models with varying numbers of convolutional layers (Left) and the line plot shows how
loss evolves over 20 epochs for each model configuration (from 1 to 6 convolutional layers).

PAGE NO: 240

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

4.6. Experiment 6: For Optimal Number of Epochs

One crucial hyperparameter in CNN model training is the number of epochs that influence the model's learning process. One whole
run through the training dataset is referred to as an epoch, which enables the model to modify its weights in response to errors
observed during each pass. The test accuracy of trained CNN models for different numbers of epochs (20, 25, 30, 35, 40) is shown
as a bar graph and line plot in Figure 13. The bar graph depicts that the highest test accuracy is 99.7% for models trained with 20
and 25 epochs. The test accuracy starts to slightly decrease after 30 epochs, indicating potential overfitting or stabilization of
performance, as further training does not significantly improve accuracy. Training beyond 25 or 30 epochs does not result in any
meaningful improvement and may indicate that 20-25 epochs are sufficient for this task. Thus, these graphs suggest that extending
training beyond 25 epochs offers diminishing returns, and using a lower number of epochs may be more efficient for this CNN
model. Hence the 20 epochs is the optimal number of epochs.

Test Accuracy by Number of Epachs } Accuracy over Epochs

0.997 0,997 0.993 0.993

—reee

o8

ase

Accuracy

=

! Mode! Configuratize;
e & Model with 10 epocha
‘ - Model with 29 epocha

~#~ Madel wifh 10 epochs
&~ Model with 15 epochs
~#~ Model with 40 epochs.

00
» “© 12345670 SHMUDUHULBHTBBONRNNHNBHITNBNNLDHNEXT NS

0 5 30
Number of Epocha Epchs

Fig. 13. The Bar chart presents the final test accuracy achieved by CNN models trained for different numbers of epochs (20, 25, 30, 35, 40) (left)
and the line plot shows how the accuracy changes throughout Training (from 1 to 40 epochs).

4.7. Proposed MTBTDet CNN using Optimal Hyperparameters

The optimal values of the hyperparameters which are tunned experimentally are depicted in Table 5. Adam is the optimal optimizer
for the proposed model. Because of its variable LR and momentum characteristics, which make it perfect for complicated neural
networks like CNN, it is commonly employed in deep learning. The LR of 0.0003 was found to be the most effective for training.
A lower LR ensures the model converges smoothly without overshooting the optimal weights. For the training procedure, a BS of
32 provided an ideal compromise between model performance and computational economy. ReLU was chosen as the AF because
of its effectiveness and simplicity of use in managing non-linearities, as well as its ability to lessen the probability of the vanishing
gradient issue. The model is made up of 3 convolutional layers (excluding the input layer), that were found to be the ideal depth for
capturing pertinent characteristics of the input data. Max pooling is used to downsample, which decreases the feature maps' spatial
dimensions while keeping the most crucial information. Twenty training epochs are enough to train the model to a great level of
accuracy without overfitting. The architectural design of the proposed MTBTDet CNN model by using these optimal
hyperparameters is shown in Figure 14.

Table 5. Optimal outcomes of the hyperparameters obtained from the experiments for training the proposed CNN model.

Hyperparameters Optimal Value
Gradient-Optimizers Adam

Learning Rate 0.0003

Batch Size 32

Activation Function RelLU

Number of Convolutional layers 4 (including input conv_layer)
Pooling Layers Max Pooling

Epochs 20

The 16-layered architecture shown in Figure 14 represents the design of the proposed MTBTDet CNN model for the identification
of brain tumors using MRI. The model follows a deep learning architecture using convolutional layers, batch normalization,
activation functions, and pooling layers to detect MRI brain images as "Tumorous" or "Non-Tumorous." The model is made up of
4 convolutional layers encompassing the input layer (the result of experiment 5) having 32, 64, 64, and 128 filters of size 3 3, which
are responsible for selecting features out of the input images. The ReLU activation function (the outcome of experiment 3)
introduces non-linearity by following each convolutional layer, enabling the model to recognize intricate patterns. After each
convolutional layer + ReLU, max pooling (the result of experiment 4) is applied with a 2x2 filter to minimize the feature maps'
spatial dimensions while maintaining crucial features and cutting down on computational complexity. After each max pooling,

PAGE NO: 241

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

batch normalization is applied to normalize the activations, helping to enhance model performance and speed up the training
procedure. The feature maps are flattened into a 1D vector in the model's thirteenth layer, known as the "flatten layer," which
provides the input for the fully connected layers. There are two fully connected dense layers with 128 units following the flattening
step, which helps combine the features learned by the convolutional layers. ReLU activation is used in the first dense layer, and the
sigmoid AF is utilized in the second dense layer, which generates probabilities for the binary classification job: "Tumorous" or
"Non-Tumorous." Dropout is applied between the two dense layers with a rate of 0.5 to avoid overfitting during training by
randomly dropping half of the neurons.

a a a "
g g g 2
S REIE REIE BREIIE RE Iz
SICE Ll BB IFBEIFE FBE|EEE
. = I 1= - = 1= f S
| R] O R O FR S|l FR I L
4 = — T 4+ =] % 4 = = = R e = -~
SUEIE LS C2CEE B ISR e S EE B I e
E“Ez E"Ez E“Ez ==3z g I
woe |2 EPE[1E EEIIE EEIE EE|FEF
EFREIIE FPEIIE FE|IE P |
: : : :
¥ v ¥ 5
— NN — A N

Fig. 14. The architecture of the proposed MTBTDet CNN model having 4 convolutional layers with ReLU activation function and max pooling
layer for the detection of MRI brain tumor images.

Training the proposed model by using the ideal values of the hyperparameters such as Adam optimizer and 0.0003 LR (the result
of experiment 1), 32 BS (the result of experiment 2), and 20 epochs (the result of experiment 6). The results of the trained model
according to the performance metrics (accuracy, recall, F1 score, precision, and specificity) are demonstrated in Figure 15. The
model’s accuracy, which indicates its overall correctness, is 0.997. Recall, sometimes referred to as true positive rate or sensitivity,
is a statistic that indicates how well the model can find all relevant cases. The model correctly detects all positive occurrences when
the recall is 1.000. The precision metric calculates the percentage of positive cases that were accurately predicted. With a precision
0f 0.993, the model was accurate in 99.3% of the positive predictions it made. The F1 score is the harmonic mean of precision and
recall. The result of 0.997 suggests that the model is correctly balanced between recall and precision. Specificity gauges how well
the model can recognize negative examples. With a 0.993 score, 99.3% of negative cases were properly detected by the model.

Values of Test Metrics of the Proposed Model

1.0 4 0.997 1.000 0.993 0.997 0.993
0.8 4
i 0.6 4
Q
=
0.4 4
0.2 4
0.0 ™ T T T 12
accuracy recall precision fl_score specificity
Metrics

Fig. 15. The bar graph shows the evaluation performance of the proposed model MTBTDet CNN for the detection of MRI brain tumors based on
the metrics accuracy, recall, precision, f1_score, and specificity.

As a result, the graph formats an excellent interpretation of the suggested custom CNN (MTBTDet CNN) model, which was
optimized by several tests. All interpretation metrics (accuracy, recall, precision, F1 score, and specificity) showed excellent results
for the model when the optimizer, LR, BS, AF, number of convolutional layers, PL, and epochs were set to their ideal settings. The
graph confirms that the model does remarkably well in classifying the data, with near-perfect scores across all metrics.

PAGE NO: 242

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

4.8. Comparison Analysis of Proposed Model with State-of-art Method

The comparison of the suggested model with other innovative methods for optimizing or tuning hyperparameters in CNN models
and their corresponding interpretation metrics such as accuracy, recall, precision, and F1 score as depicted in Table 6. Different
techniques, including Genetic Algorithm, Bayesian Optimization, Grid Search Optimization, and Manual Tuning, were used to
optimize hyperparameters like the number of convolutional layers, filters, AFs, LRs, PLs, and dense layers. When comparing these
methods to the proposed model, it becomes evident that our model, which was manually tuned through various experiments,
performs exceptionally well. The proposed model attains an accuracy of 99.7%, recall of 1.000, precision of 0.993, and F1 score of
0.997. This places it at the upper end of the spectrum, surpassing or matching most of the methods in terms of overall performance.
For instance, methods using Bayesian Optimization by [40] reached an accuracy of 97.37% and 98.7% in different cases, while
models optimized using Grid Search Optimization achieved accuracy as high as 99.3%. However, when it comes to recall and
F1_score, with a 100% recall score, the suggested model performs better than these techniques and has a nearly perfect F1 score,
indicating a highly balanced and effective model for classification tasks.

Additionally, many methods using Manual Tuning showed high performance, with accuracies ranging from 96% to 99.7%, but
often lacked the perfect recall and precision that our model has. These comparisons indicate that the proposed CNN model, despite
relying on manual tuning of hyperparameters, competes favorably and outperforms several models that use advanced optimization
techniques like Genetic Algorithm and Bayesian Optimization in terms of critical evaluation metrics like recall and F1 score.

Table 6. Comparison analysis of proposed model MTBTDet CNN with the state-of-art methods/custom CNNs-based hyperparameters
to be tunned, hyperparameters optimization techniques, and performance evaluation metrics.

References Hyperparameters to be Optimized or Optimization Accu Recal Preci F1_ Speci
and Year Tunned Techniques racy 1(%) sion Score ficity
(%) (%) (%) (%)
[37]12019 Optimizers, No. of Conv + max-PL, Genetic 94.2 - - - -
AF, No. of FC + dropout layers, Algorithm

Dropout rate, No. of filters, Kernel
sizes, No. of FC neurons, LR.

[39] 2021 Conv2D Kernel Size, Dropout Bayesian 97.37 97.38 97.4 973 98.02
Percentages, Conv2D Filters, Dense Optimization
Filter, Max Pooling Size.

[38]2021 AF, No.of Conv and max pooling Grid Search 99.3 99.4 99.25 - 99.4
layers, Momentum, No. of FC layers, Optimization

No. of filters, LR, Filter size, BS, and
L2 Regularization

[40] 2022 Gradient descent optimizer, BS, AF, Bayesian 98.70 98.66 98.33 98.66 -
Dropout rate, Number of dense nodes. Optimization

[2] 2019 No. of Conv +ReLU, Dropout, No. of Manual 98.7 98.3 98.8 - 99.3
Norm. layers, dropout layers, Max. Tuning

epochs, No. of FC layers, No.of Conv
Kernels, Initial Learning Rate, Kernel
sizes, PL, Optimizers, BS, LR drop

factor
[41] 2020 Epochs Manual 96 96 100 - -
Tuning
[42] 2020 - Manual 100 100 100 100 100
Tuning
[43]12020 - Manual 97.28 97.82 97.15 97.47 -
Tuning
[44] 2020 PL, AF, Optimizer, Initializer Manual 96.49 - - - -
Tuning
[45]12020 - Manual 99 99 99 99 99
Tuning
[46] 2020 - Manual 96.8 96 96 96.4 -
Tuning
[47]2021 - Manual 98 100 97 98 95
Tuning
[48]2021 AF Manual 98.6 98.6 99.6 99 -
Tuning
[49] 2021 No. of Conv +ReLU, Dropout layers, Manual 97 97.03 97 97 96.97
epochs, No. of FC layers, Optimizers, Tuning
BS, Dropout Rate
[50] 2021 Optimizer, LR, and epochs Manual 94.74 94.39 94.03 94.19 97.35
Tuning
[51]2021 - Manual 99.25 95.89 97.22 95.23 93.75
Tuning
[52]2021 Dropout rate, Dense layer, Optimizer Manual 96 96 96 96 -
Tuning
[53]2022 - Manual 96.5 - - - -

PAGE NO: 243

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

Tuning
[54] 2022 Conv Layer+ReLU, Batch Manual 97.2 96 97 - -
Normalization Layer, Dropout Layer, Tuning
Cross channel normalization layer, FC
Layer, Grouped Conv Layers, PL,
Dropout Rate, LR, Optimizers, Epochs,
BS, No. of Conv kernels, Conv kernel
size, Image Size
[64] 2022 - Manual 99 - - - -
Tuning
[56]2023 - Manual 97.33 97.50 97.50 97.50 -
Tuning
[57] 2023 No. of Conv Layer, BS, Training - Manual 97.86 - - - -
Testing ratio, LR, epochs Tuning
[58]12023 - Manual 100 100 100 - -
Tuning
[59]2023 - Manual 93.30 91.13 - - -
Tuning
[60] 2023 - Manual 95.44 - - - -
Tuning
[61]2023 - Manual 98.04 98 98% 98 -
Tuning
[62] 2023 - Manual 97.84 97.85 97.85 97.90 -
Tuning
[63] 2023 - Manual 98.86 98.83 98.72 98.77 99.41
Tuning
[64] 2023 - Manual 99.83 99.66 100 99.83 100
Tuning
[67] 2024 learning rate, batch size, number of Manual 97.18 97 97 97 -
epochs, optimizer, shuffle, verbose, Tuning 93 91 95 93
dropout rate, filters, filter size, and 96 96 96 96
activation function.
[68] 2024 Activation Function and Optimizers Manual 92.59 - - - -
Tuning
Proposed Optimizer, LR, BS, AF, PL, No. of Manual 99.7 100 99.3 99.7 99.3
(MTBTDet Convolutional layers, Epochs Tuning

_CNN)

In conclusion, the proposed model's ideal hyperparameters such as the LR of 0.0003, Adam optimizer, BS of 32, ReLU activation,
three convolutional layers, max pooling, and 20 epochs, result in a highly effective model. The model's performance measures
demonstrate equality with or superiority over current state-of-the-art techniques, indicating that it is robust in attaining accurate and
precise detection results of the brain tumor.

5. Conclusion and Future Scope

This research presents a comprehensive manual hyperparameter optimization strategy for MRI-based brain tumor
detection using a customized CNN model, MTBTDet CNN. By systematically evaluating seven key hyperparameters
across six controlled experiments, the study identified an optimal configuration: 4 convolutional layers including the
input layer, ReLU activation, max pooling, Adam optimizer with a LR of 0.0003, batch size of 32, and 20 epochs. Using
this setup, the proposed model achieved outstanding performance metrics: accuracy of 0.997, precision of 0.993, recall
of 1.000, F1-score of 0.997, and specificity of 0.993, demonstrating its robustness in accurately detecting and classifying
tumorous and non-tumorous brain MRI scans. These results validate the effectiveness of systematic manual
hyperparameter tuning over arbitrary or black-box optimization methods.

Future work can explore the integration of more advanced architectures such as ResNet or DenseNet to further enhance
feature extraction. Incorporating data augmentation and multi-modal MRI datasets could improve generalization to
diverse clinical scenarios. Additionally, real-time deployment and interpretability techniques, such as Grad-CAM, can
be investigated to provide clinicians with transparent and actionable insights for decision-making. Expanding this
approach to multi-class tumor classification and longitudinal studies could further establish the clinical applicability of
MTBTDet_CNN.

PAGE NO: 244

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

References

1. Folman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med, 285(21): 1182-1186.
10.1056/NEJM197111182852108

2. Sultan HH, Salem NM, Al-Atabany W (2019) Multi-classification of brain tumor images using deep neural network. IEEE
Access 7: 69215-69225. 10.1109/ACCESS.2019.2919122

3. Nie D, Zhang H, Adeli E, Liu L, Shen D (2016, October) 3D deep learning for multi-modal imaging-guided survival time
prediction of brain tumor patients. In: Proc Springer, International conference on medical image computing and computer-
assisted intervention, MICCALI Athens, Greece, pp 212-220. https://doi.org/10.1007/978-3-319-46723-8 25

4. Peri C, Michael M, Smith W (10th July) Types of brain cancer. Available: https://www.webmd.com/cancer/brain-cancer/brain-
tumor-types. Accessed 11 Jun 2024.

5. Zhang Y, Li A, Peng C, Wang M (2016) Improve glioblastoma multiforme prognosis prediction by using feature selection and
multiple kernel learning. IEEE/ACM transactions on computational biology and bioinformatics, 13(5): 825-35.
10.1109/TCBB.2016.2551745

6. Litjens G, Kooi T, Bejnordi BE, Setio AA, Ciompi F, Ghafoorian M, et al (2017) A survey on deep learning in medical image
analysis. Medical image analysis, 42: 60—88. https://doi.org/10.1016/j.media.2017.07.005

7. Singh L, Chetty G, Sharma D (2012) A novel machine learning approach for detecting the brain abnormalities from mri
structural images. In: IAPR international conference on pattern recognition in bioinformatics, Tokyo, Japan. Springer Berlin,
pp 94-105. https://doi.org/10.1007/978-3-642-34123-6 9

8. Ghassemi N, Shoeibi A, Rouhani M (2020) Deep neural network with generative adversarial networks pretraining for brain
tumor classification based on MR images. Biomed Signal Process Control, 57: 101678.
https://doi.org/10.1016/j.bspc.2019.101678

9. Hashemzehi R, Mahdavi SJS, Kheirabadi M, Kamel SR (2020) Detection of brain tumors from MRI images base on deep
learning using hybrid model CNN and NADE. Biocybern Biomed Eng, 40(3): 1225-1232.
https://doi.org/10.1016/1.bbe.2020.06.001

10. Shen D, Wu G, Suk HI (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng, 19: 221-248.
https://doi.org/10.1146/annurev-bioeng-071516-044442

11. Khalid S, Khalil T, Nasreen S (2014) A survey of feature selection and feature extraction techniques in machine learning. In:
2014 science and information conference. IEEE, pp 372-378. 10.1109/SA1.2014.6918213

12. Passos D, Mishra P (2022) A tutorial on automatic hyperparameter tuning of deep spectral modelling for regression and
classification tasks. Chemometrics and Intelligent Laboratory Systems, 223: 104520.
https://doi.org/10.1016/j.chemolab.2022.104520

13. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC (2015)
Imagenet large scale visual recognition challenge. International journal of computer vision, 115: 211-52.
https://doi.org/10.1007/s11263-015-0816-y

14. FulL, Zhao Y, Sun X, Huang J, Wang D, Ding Y (2021) Video object segmentation based on motion-aware ROI prediction and
adaptive reference updating. Expert Systems with Applications, 167: 114153. https://doi.org/10.1016/j.eswa.2020.114153

15. Peng D, Xiong S, Peng W, Lu J (2021) LCP-Net: A local context-perception deep neural network for medical image
segmentation. Expert Systems with Applications, 168: 114234. https://doi.org/10.1016/j.eswa.2020.114234

16. Khan ZY, Niu Z (2021) CNN with depthwise separable convolutions and combined kernels for rating prediction. Expert Systems
with Applications, 170: 114528. https://doi.org/10.1016/j.eswa.2020.114528

17. Prabhu (2019) Understanding Hyperparameters and its Optimisation techniques. Available: https:/towardsdatascience:com/
understanding-hyperparameters-and-its-optimisation-techniques- f0debba07568, [Accessed: 24-July-2024].

18. Lee WY, Park SM, Sim KB (2018) Optimal hyperparameter tuning of convolutional neural networks based on the parameter-
setting-free harmony search algorithm. Optik, 172: 359-67. https://doi.org/10.1016/1.ijle0.2018.07.044

19. Kar P (2019) CS23In Convolutional ~ Neural = Networks for Visual Recognition." Available:
http://cs23 In:github:io/convolutional-networks/ [Accessed: 27 - Jun - 2024].

20. Shaver MM, Kohanteb PA, Chiou C, Bardis MD, Chantaduly C, Bota D, Filippi CG, Weinberg B, Grinband J, Chow DS, Chang
PD (2019) Optimizing neuro-oncology imaging: a review of deep learning approaches for glioma imaging. Cancers. 11(6): 829.
https://doi.org/10.3390/cancers11060829

21. Galanis NI, Vafiadis P, Mirzaev KG, Papakostas GA (2022) Convolutional neural networks: A roundup and benchmark of their
pooling layer variants. Algorithms, 15(11): 391. https://doi.org/10.3390/a15110391

22. Murray N, Perronnin F (2014) Generalized max pooling. InProceedings of the IEEE conference on computer vision and pattern
recognition, pp 2473-2480. https://doi.org/10.1109/CVPR.2014.317

23. Zubair S, Yan F, Wang W (2013) Dictionary learning based sparse coefficients for audio classification with max and average
pooling. Digital Signal Processing, 23(3): 960-70. https://doi.org/10.1016/j.dsp.2013.01.004

24. Lee CY, Gallagher PW, Tu Z (2016) Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree.
InArtificial intelligence and statistics, PMLR, pp 464-472. https://doi.org/10.48550/arXiv.1509.08985

25. Dewa CK (2018) Suitable CNN weight initialization and activation function for Javanese vowels classification. Procedia
computer science 144:124-32. https://doi.org/10.1016/j.procs.2018.10.512

26. Mondal A, Shrivastava VK (2022) A novel Parametric Flatten-p Mish activation function based deep CNN model for brain
tumor classification. Computers in Biology and Medicine, 150: 106183. https://doi.org/10.1016/j.compbiomed.2022.106183

27. Jiang Y, Xie J, Zhang D (2022) An adaptive offset activation function for CNN image classification tasks. Electronics, 11(22):
3799. https://doi.org/10.3390/electronics11223799

28. Sharma S, Sharma S, Athaiya A (2017) Activation functions in neural networks. Towards Data Sci, 6(12): 310-316.
10.33564/ijeast.2020.v04i12.054

29. Nwankpa C, l[jomah W, Gachagan A, Marshall S (2018) Activation functions: Comparison of trends in practice and research
for deep learning. arXiv preprint arXiv, 1811: 03378. https://doi.org/10.48550/arXiv.1811.03378

30. Agostinelli F, Hoffman M, Sadowski P, Baldi P (2014) Learning activation functions to improve deep neural networks. arXiv
preprint arXiv, 1412: 6830. https://doi.org/10.48550/arXiv.1412.6830

31. XieN,LiX,LiK, YangY, Shen HT (2019) Statistical karyotype analysis using CNN and geometric optimization. IEEE Access,
7:179445-179453. 10.1109/ACCESS.2019.2951723

PAGE NO: 245

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

32. Ndong PSB, Adoni WYH, Nahhal T, Kimpolo C, Krichen M, Byed AE, Assayad I, Mutombo FK (2021). A face-mask detection
system based on deep learning convolutional neural networks. In: Advances on Smart and Soft Computing: Proceedings of
ICAC 2021 Springer: Berlin/Heidelberg, Germany pp 273-283. https://doi.org/10.1007/978-981-16-5559-3 23

33. Hinton G, Srivastava N, Swersky K (2012) Neural networks for machine learning lecture 6a overview of mini-batch gradient
descent. Cited on 14(8): 2.

34. Dozat, Timothy. "Incorporating nesterov momentum into adam." (2016).

35. Larose DT, Larose CD (2015) Data Mining and Predictive Analytics. Wiley Series on Methods and Applications in Data Mining,
25(9): 1682-1690.

36. Sengupta J (2023) How to decide the hyperparameters in CNN. Available: https:/medium.com/@sengupta.joy4u/how-to-
decide-the-hyperparameters-in-cnn-bfa37b608046. Accessed: 26-Aug-2024.

37. Anaraki AK, Ayati M, Kazemi F (2019) Magnetic resonance imaging-based brain tumor grades classification and grading via
convolutional neural networks and genetic algorithms. biocybernetics and biomedical engineering, 39(1): 63-74.
https://doi.org/10.1016/j.bbe.2018.10.004

38. Irmak E (2021) Multi-classification of brain tumor MRI images using deep convolutional neural network with fully optimized
framework. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 45(3): 1015-1036.
https://doi.org/10.1007/s40998-021-00426-9

39. Alshayeji M, Al-Buloushi J, Ashkanani A, Abed SE (2021) Enhanced brain tumor classification using an optimized multi-
layered convolutional neural network architecture. Multimedia Tools and Applications, 80(19): 28897-917.
https://doi.org/10.1007/s11042-021-10927-8

40. Ait Amou M, Xia K, Kamhi S, Mouhafid M (2022) A Novel MRI Diagnosis Method for Brain Tumor Classification Based on
CNN and Bayesian Optimization. In Healthcare, MDPIL, 10(3): 494. https://doi.org/10.3390/healthcare10030494

41. Mohammed BA, Al-Ani MS (2020) An efficient approach to diagnose brain tumors through deep CNN. Math. Biosci. Eng, 18:
851-67. 10.3934/mbe.2021045

42. Khan HA, Jue W, Mushtaq M, Mushtaq MU (2020) Brain tumor classification in MRI image using convolutional neural
network. Math. Biosci. Eng, 17(5): 6203-16. 10.3934/mbe.2020328

43. Badza MM, Barjaktarovic MC (2020) Classification of brain tumors from MRI images using a convolutional neural network.
Applied Sciences, 10(6): 1999. https://doi.org/10.3390/app 10061999

44. Mzoughi H, Njeh I, Wali A, Slima MB, BenHamida A, Mhiri C, Mahfoudhe KB (2020) Deep multi-scale 3D convolutional
neural network (CNN) for MRI gliomas brain tumor classification. Journal of Digital Imaging, 33(4): 903-15.
https://doi.org/10.1007/s10278-020-00347-9

45. Ismael SA, Mohammed A, Hefny H (2020) An enhanced deep learning approach for brain cancer MRI images classification
using residual networks. Artificial intelligence in medicine, 102: 101779. https://doi.org/10.1016/j.artmed.2019.101779

46. Roy SS, Rodrigues N, Taguchi Y (2020) Incremental dilations using CNN for brain tumor classification. Applied Sciences, 14:
4915. https://doi.org/10.3390/app10144915

47. Rai HM, Chatterjee K (2021) 2D MRI image analysis and brain tumor detection using deep learning CNN model LeU-Net.
Multimedia Tools and Applications, 80: 36111-41. https://doi.org/10.1007/s11042-021-11504-9

48. Alhassan AM, Zainon WM (2021) Brain tumor classification in magnetic resonance image using hard swish-based RELU
activation function-convolutional neural network. Neural Computing and Applications, 33(15): 9075-87.
https://doi.org/10.1007/s00521-020-05671-3

49. Hapsari PA, Dewinda JR, Cucun VA, Nurul ZF, Joan S, Anggraini DS, Peter MA, I Ketut EP, Mauridhi HP (2021) Brain tumor
classification in MRI images using en-CNN. International Journal of Intelligent Engineering and Systems, 14(4): 437-
51. https://inass.org/wp-content/uploads/2021/07/20210...

50. Ayadi W, Elhamzi W, Charfi I, Atri M (2021) Deep CNN for brain tumor classification. Neural Processing Letters, 53(1): 671-
700. https://doi.org/10.1007/s11063-020-10398-2

51. Abd El Kader I, Xu G, Shuai Z, Saminu S, Javaid I, Salim Ahmad I (2021) Differential deep convolutional neural network
model for brain tumor classification. Brain Sciences, 11(3): 352. https://doi.org/10.3390/brainscil 1030352

52. Minarno AE, Mandiri MH, Munarko Y, Hariyady H (2021) Convolutional neural network with hyperparameter tuning for brain
tumor classification. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and
Control, 6(2): 127-132. https://doi.org/10.22219/kinetik.v6i2.1219

53. Shaik NS, Cherukuri TK (2022) Multi-level attention network: application to brain tumor classification. Signal, Image and
Video Processing, 16(3): 817-824. https://doi.org/10.1007/s11760-021-02022-0

54. Kibriya H, Masood M, Nawaz M, Nazir T (2022) Multiclass classification of brain tumors using a novel CNN architecture.
Multimedia Tools and Applications, 81(21): 29847-29863. https://doi.org/10.1007/s11042-022-12977-y

55. Tiwari P, Pant B, Elarabawy MM, Abd-Elnaby M, Mohd N, Dhiman G, Sharma S (2022) CNN based multiclass brain tumor
detection using medical imaging. Computational Intelligence and Neuroscience, 2022(1): 1830010.
https://doi.org/10.1155/2022/1830010

56. Rahman T, Islam MS (2023) MRI brain tumor detection and classification using parallel deep convolutional neural networks.
Measurement: Sensors, 26: 100694. https://doi.org/10.1016/j.measen.2023.100694

57. Solanki S, Singh UP, Chouhan SS, Jain S (2023) Brain tumour detection and classification by using deep learning classifier.
International ~ Journal of Intelligent Systems and Applications in Engineering, 11(2s): 279-92.
https://ijisae.org/index.php/IJISAE/article/view/2624

58. Gupta M, Sharma SK, Sampada GC (2023) Classification of Brain Tumor Images Using CNN. Computational Intelligence and
Neuroscience, 2023(1): 2002855-2002861. https://doi.org/10.1155/2023/2002855

59. Mahmud ML, Mamun M, Abdelgawad A (2023) A deep analysis of brain tumor detection from mr images using deep learning
networks. Algorithms, 16(4): 176. https://doi.org/10.3390/a16040176

60. Mahjoubi MA, Hamida S, Gannour OE, Cherradi B, Abbassi AE, Raihani A (2023) Improved multiclass brain tumor detection
using convolutional neural networks and magnetic resonance imaging. International Journal of Advanced Computer Science
and Applications, 14(3): 406-14. 10.14569/1JACSA.2023.0140346

61. Rasheed Z, Ma YK, Ullah I, Al Shloul T, Tufail AB, Ghadi YY, Khan MZ, Mohamed HG (2023) Automated Classification of
Brain Tumors from Magnetic Resonance Imaging Using Deep Learning. Brain Sciences, 13(4):
602. https://doi.org/10.3390/brainscil 3040602

62. Rasheed Z, Ma YK, Ullah I, Ghadi YY, Khan MZ, Khan MA, Abdusalomov A, Alqahtani F, Shehata AM (2023) Brain tumor
classification from MRI using image enhancement and convolutional neural network techniques. Brain Sciences, 13(9):
1320. https://doi.org/10.3390/brainscil3091320

63. Abd El-Wahab BS, Nasr ME, Khamis S, Ashour AS (2023) Btc-fcnn: fast convolution neural network for multi-class brain

PAGE NO: 246

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 11 2025

64.

65.

66.

67.

68.

69.

70.

71.

72.

tumor classification. Health information science and systems, 11(1): 3. https://doi.org/10.6084/m9.figshare.1512427.v5.

Ullah N, Javed A, Alhazmi A, Hasnain SM, Tahir A, Ashraf R (2023) TumorDetNet: A unified deep learning model for brain
tumor detection and classification. Plos one, 18(9): €0291200. https://doi.org/10.1371/journal.pone.0291200

Albalawi E, Thakur A, Dorai DR, Bhatia Khan S, et al. Enhancing brain tumor classification in MRI scans with a multi-layer
customized convolutional neural network approach. Frontiers in computational neuroscience. 2024; 18:1418546.
https://doi.org/10.3389/fncom.2024.1418546

Mohanty N, Sarmadi M. Brain tumor MRI classification and identification using an image classification model via Convolutional
Neural Networks. medRxiv. 2024 Sep 25:2024-09. https://doi.org/10.1101/2024.09.13.23299832

Aamir M, Namoun A, Munir S, Aljohani N, Alanazi MH, Alsahafi Y, Alotibi F. Brain tumor detection and classification using
an optimized convolutional neural network. Diagnostics. 2024; 14(16):1714.

Sudhakar B, Sikrant PA, Prasad ML, Latha SB, et al. Brain Tumor Image Prediction from MR Images Using CNN Based Deep
Learning Networks. Journal of Information Technology Management. 2024; 16(1):44-60. 10.22059/jitm.2024.96374

Rasool N, Wani NA, Bhat JI, Saharan S, et al. CNN-TumorNet: leveraging explainability in deep learning for precise brain tumor
diagnosis on MRI images. Frontiers in Oncology. 2025; 15:1554559. 10.3389/fonc.2025.1554559

Chandraprabha K, Ganesan L, Baskaran K. A novel approach for the detection of brain tumor and its classification via end-to-
end vision transformer-CNN architecture. Frontiers in Oncology. 2025; 15:1508451. 10.3389/fonc.2025.1508451

Prakasha N (2023) Brain MRI Images. Kaggle 2023. Available online: https:/www.kaggle.com/datasets/naveenprakasha/brain-
mri-1mages

Devi K, Sharma AK (2023) Detection of Brain Tumor Using Novel Convolutional Neural Network with Magnetic Resonance
Imaging. In2023 Seventh International Conference on Image Information Processing (ICIIP), IEEE pp. 57-62.

PAGE NO: 247

