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Abstract 

             A single unreliable server queue has been considered in this article. The arrival process 

follows compound Poisson process with state dependent arrival rates. Services are given in batches 

of size K of two types; each type is generally distributed. After completion of first type service 

(essential service), the batch enter into the second type service (optional service) based on a 

Bernoulli distribution. And the end of each service completion, the server takes a vacation of 

random period, generally distributed. While, if the service is going on, the server may breakdown 

and the number of breakdowns follows a Poisson distribution. Immediately the server undergoes 

two types of repairs, each repair period follows general distribution. After the completion of first 

repair (essential repair), the server undergoes the second repair (optional repair) based on a 

Bernoulli process. The system contains a queue of infinite size. This model is completely analyzed 

by introducing supplementary variables and using probability generating function technique. Some 

particular model and some system performance measures are derived. To show the applicable 

stability of the model some numerical illustrations are also provided. 

 

Keywords: Non-Markovian queue - Bulk arrival queue - Compulsory vacation - Essential and 
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1. Introduction 
                        A queueing system is a set of interconnected components like service seekers, 

working place and service providers, and working together to achieve a specific goal or purpose. 

The service seekers may be human customers or messages to be answered or programs to be 

processed, etc., The working place may be a working station or computer system etc., The service 

providers may be human servers or machines etc., In real life situations, if the providers are 

machines, it may frequently out of order, in general called breakdown. In such a case the machine 

may be replaced or repaired. But system manager’s point of view, the first preference is repair. 

With this in mind many researchers working on queue with breakdown. Some notable works are 

Gaver (1962), Avi-Itzhak and Naor (1963), Thirurengadan (1963), Mitrany and Avi-Itzhak (1968), 

Sengupta (1990), Li et al., (1997), Tang (1997) and Takine and Sengupta (1997). 

                        Vacation queueing models with different arrival pattern are studied by many 

authors, including Baba (1986), Choudhury (2000), Choudhury and Borthskur (2000), Lee and 

Srinivasan (1989), Lee et al (1995), Rosenberg and Yechiali (1993) and Teghem (1990) and many 

others have studied batch arrival vacation queues under different vacation policies. Harris (1967) 

analyzed a queueing model, in which the arrival and service parameter depends on current state. 

In 2008, Kerner considered a non-Markovian queue with state dependent parameters. 

                         In the practical situations like, hospitals, productions systems the clients some time 

need additional service other than the regular service. Some notable works in recent years are 

Medhi (2002), Wang (2004), Choudhury and Deka (2012). Chen and Renshaw (2004) analyzed a 
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Markovian bulk queue together with a control policy at idle time. Chen et al., (2010) analyzed a 

Markovian queue with state dependent control policy. 

                      This paper contains five sections. In the second section, the model definition and 

analysis are given. In the third section, some system statistical constants are given. In the fourth 

section, some numerical illustrations are provided. In the last section a conclusion is given. 

 

2. The Mathematical definitions and notations 

               In this section, the model has been defined and relevant notations are introduced. A single 

server non-Markovian queue has been considered with the following characteristics:  

                  The client arrives are in groups of variable size 𝑗 , j =  1, 2, 3, …   with probability 

distribution 𝐶𝑗 . The services are given in batches of fixed size K. There are two types of services, 

called essential service (ES) and optional service (OS). After completing ES, the batch OS with 

probability 𝑞 (0 ≤ 𝑞 ≤ 1) or leaves the system with may demand probability (1 − 𝑞). The service 

periods 𝑆1(ES) and 𝑆2 (OS) are generally distributed with distribution functions 𝐺1(𝑥) and 𝐺2(𝑥) 

respectively. The total service time of a batch is 𝑆 = (1 − 𝑞)𝑆1 + 𝑞𝑆2. There is a queue with 

infinite capacity. After completion of each service, the server takes vacation of compulsory type, 

the random vacation period 𝑉 follows general distribution with distribution function is 𝐵(𝑥). 

While server is busy, the server may breakdown, the breakdown period follows negative 

exponential with mean 
1

𝛼
 .  Immediately, the server undergoes repair process, the essential repair 

period (ER) follows a general distribution 𝐻1(𝑥). In addition, after completion of the repair period, 

the server undergoes another repair process called optional repair (OR) with probability 𝑟 or the 

server enter into the system with probability (1 − 𝑟) (0 ≤ 𝑟 ≤ 1). The optional repair period 

follows general distribution function with distribution function 𝐻2(𝑥). The arrival rate is 𝜆 = 𝜆𝑖; 

i = 0, during idle period; i = 1, during ES period; i = 2, during OS period; i = 3, during vacation 

period; i = 4, during ER period; i = 5, during OR period. The mean batch size, the mean total 

service period, the mean vacation period and mean repair period are respectively 

E(X), E(S), E(V ) and 𝐸(𝑅). 

                 𝜇𝑗(𝑥) =
𝑔𝑗(𝑥)

1−𝐺𝑗(𝑥)
; 𝑗 = 1(𝐸𝑆), 2(𝑂𝑆) that the conditional probability completion of 

service period during the interval (𝑥, 𝑥 + 𝑑𝑥) given that the elapsed service time of the batch 
 

in service is 𝑥 . 

               𝛽(𝑥) =
𝑏(𝑥)

1−𝑩(𝑥)
; that the conditional probability completion of vacation period during the 

interval (𝑥, 𝑥 + 𝑑𝑥) given that the elapsed vacation time is 𝑥.   

               𝛾𝑗(𝑥) =
ℎ𝑗(𝑥)

1−𝐻𝑗(𝑥)
; 𝑗 = 1(𝐸𝑅), 2(𝑂𝑅) that the conditional probability completion of 

repair period during the interval (𝑥, 𝑥 + 𝑑𝑥) given that the elapsed repair time is 𝑥.  

                  At time 𝑡, let 𝑀(𝑡) be the number of customers in the waiting line and 𝜉(𝑡) be the 

supplementary variable at time 𝑡. The 𝜉(𝑡) have the following random identifications.𝜉 = 𝜉𝑖; i = 

0, during elapsed ES period; i = 1, during elapsed OS period; i = 2, during elapsed vacation period; 

i = 3, during elapsed ER period i = 4, during elapsed OR period. 
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The two-dimensional process {(𝑀(𝑡), 𝜉(𝑡)): 𝑡 ≥ 0} is a Markov process. The following 

probabilities and probability generating functions are introduced for the analysis:  

𝑄𝑛(𝑡) = Pr{𝑀(𝑡) = 𝑛, the server is idle} , 𝑛 = 0,1, … , 𝐾 − 1. 

𝑃𝑛1(𝑥; 𝑡) = Pr{𝑀(𝑡) = 𝑛, 𝜉0(𝑡) ∈ (𝑥, 𝑥 + ∆𝑡)} , 𝑛 = 0,1, …. 

𝑃𝑛2(𝑥; 𝑡) = Pr{𝑀(𝑡) = 𝑛, 𝜉1(𝑡) ∈ (𝑥, 𝑥 + ∆𝑡)} , 𝑛 = 0,1, …. 

𝑉𝑛(𝑥; 𝑡) = Pr{𝑀(𝑡) = 𝑛, 𝜉2(𝑡) ∈ (𝑥, 𝑥 + ∆𝑡)} , 𝑛 = 0,1, …. 

𝑅𝑛1(𝑥; 𝑡) = Pr{𝑀(𝑡) = 𝑛, 𝜉3(𝑡) ∈ (𝑥, 𝑥 + ∆𝑡)} , 𝑛 = 0,1, …. 

𝑅𝑛2(𝑥; 𝑡) = Pr{𝑀(𝑡) = 𝑛, 𝜉4(𝑡) ∈ (𝑥, 𝑥 + ∆𝑡)} , 𝑛 = 0,1, …. 

 

In steady state,  

𝑃𝑛𝑖(𝑥) = lim
𝑛→∞

𝑃𝑛𝑖(𝑥; 𝑡) ; 𝑖 = 1,2  ;   𝑉𝑛(𝑥) = lim
𝑛→∞

𝑉𝑛(𝑥; 𝑡),  𝑅𝑛𝑖(𝑥) = lim
𝑛→∞

𝑅𝑛𝑖(𝑥; 𝑡), 

𝐶(𝑧) = ∑ 𝐶𝑗𝑧𝑗∞
𝑗=1  , 𝑃𝑖(𝑥, 𝑧) = ∑ 𝑃𝑛𝑖(𝑥)𝑧𝑛∞

𝑛=0 ; 𝑖 = 1,2 , 𝑉(𝑥, 𝑧) = ∑ 𝑉𝑛(𝑥)𝑧𝑛∞
𝑛=0 , 

𝑅𝑛𝑖(𝑥, 𝑧) = ∑ 𝑅𝑛𝑖(𝑥)𝑧𝑛∞
𝑛=0  , 𝑄(𝑧) = ∑ 𝑄𝑛𝑧𝑛𝐾−1

𝑛=0 ; where  |𝑧| ≤ 1 

3.The Analysis 
     The system discussed 𝑀[𝑋]/𝐺𝐾/1, the following differential-difference equations are 

obtained using the supplementary variable technique as outlined in Cox (1965). 

 
𝑑𝑃01(𝑥)

𝑑𝑥
= −(𝜆1 + 𝜇1(𝑥) + 𝛼)𝑃01(𝑥)                                                                        (1𝑎) 

             
𝑑𝑃𝑛1(𝑥)

𝑑𝑥
= −(𝜆1 + 𝜇1(𝑥) + 𝛼)𝑃𝑛1(𝑥) + 𝜆1  ∑ 𝐶𝑗𝑃𝑛−𝑗1(𝑥) ,

𝑛

𝑗=1

𝑛 ≥ 1                   (1𝑏) 

𝑑𝑃02(𝑥)

𝑑𝑥
= −(𝜆2 + 𝜇2(𝑥) + 𝛼)𝑃02(𝑥)                                                                        (2𝑎) 

𝑑𝑃𝑛2(𝑥)

𝑑𝑥
= −(𝜆2 + 𝜇2(𝑥) + 𝛼)𝑃𝑛2(𝑥) + 𝜆2  ∑ 𝐶𝑗𝑃𝑛−𝑗2(𝑥)

𝑛

𝑗=1

, 𝑛 ≥ 1                   (2𝑏) 

𝑑𝑉0(𝑥)

𝑑𝑥
= −(𝜆3 + 𝛽(𝑥))𝑉0(𝑥)                                                                                       (3𝑎) 

           
𝑑𝑉𝑛(𝑥)

𝑑𝑥
= −(𝜆3 + 𝛽(𝑥))𝑉𝑛(𝑥) + 𝜆3  ∑ 𝐶𝑗𝑉𝑛−𝑗(𝑥)

𝑛

𝑗=1

, 𝑛 ≥ 1                                      (3𝑏) 

𝑑𝑅01(𝑥)

𝑑𝑥
= −(𝜆4 + 𝛾1(𝑥))𝑅01(𝑥)                                                                                (4𝑎) 

            
𝑑𝑅𝑛1(𝑥)

𝑑𝑥
= −(𝜆4 + 𝛾1(𝑥))𝑅𝑛1(𝑥) + 𝜆4  ∑ 𝐶𝑗𝑅𝑛−𝑗1(𝑥)

𝑛

𝑗=1

, 𝑛 ≥ 1                           (4𝑏) 

𝑑𝑅02(𝑥)

𝑑𝑥
= −(𝜆5 + 𝛾2(𝑥))𝑅02(𝑥)                                                                             (5𝑎) 
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𝑑𝑅𝑛2(𝑥)

𝑑𝑥
= −(𝜆5 + 𝛾2(𝑥))𝑅𝑛2(𝑥) + 𝜆5  ∑ 𝐶𝑗𝑅𝑛−𝑗2(𝑥)

𝑛

𝑗=1

, 𝑛 ≥ 1                       (5𝑏) 

0 = −𝜆0𝑄𝑛 + 𝜆0(1 − 𝛿𝑛,0) ∑ 𝐶𝑗𝑄𝑛−𝑗 + (1 − 𝑟) ∫ 𝛾𝑖(𝑥)

∞

0

𝑛

𝑗=1

𝑅𝑛𝑖(𝑥)𝑑𝑥                        

                     +   ∫ 𝛽(𝑥)𝑉𝑛(𝑥)𝑑𝑥;   𝑛 = 0,1, … , 𝐾 − 1
∞

0
 , 𝑖 = 1,2                           (6)     

 

 

The boundary conditions are, 

 

𝑃𝑛1(0) =  ∫ 𝛽(𝑥)𝑉𝑛+𝐾(𝑥)𝑑𝑥 + (1 − 𝑟) ∫ 𝛾𝑖(𝑥)𝑅𝑛+𝐾(𝑥)𝑑𝑥

∞

0

∞

0

 

                   +𝜆0   ∑ 𝐶𝑛+𝐾−𝑗𝑄𝑗

𝐾−1

𝑗=0

;   𝑛 ≥ 0            (7𝑎)               

  𝑃𝑛2(0) =  ∫ 𝜇1(𝑥)𝑃𝑛+𝐾1(𝑥)𝑑𝑥                                                                                  (7𝑏) 

∞

0

 

𝑉𝑛(0) = (1 − 𝑞) ∫ 𝜇1(𝑥)𝑃𝑛+𝐾1(𝑥)𝑑𝑥 + ∫ 𝜇2(𝑥)𝑃𝑛+𝐾2(𝑥)𝑑𝑥;

∞

0

      𝑛 ≥ 0         (8) 

∞

0

 

𝑅𝑛1(0) = 𝛼(1 − 𝑟) [(1 − 𝑞) ∫ 𝑃𝑛−𝐾1(𝑥)𝑑𝑥 + ∫ 𝑃𝑛+𝐾2(𝑥)𝑑𝑥 

∞

0

∞

0

] ;  𝑛 ≥ 𝐾         (9𝑎)  

𝑅𝑛2(0) = 𝛼𝑟 [(1 − 𝑞) ∫ 𝑃𝑛−𝐾1(𝑥)𝑑𝑥 + ∫ 𝑃𝑛+𝐾2(𝑥)𝑑𝑥 

∞

0

∞

0

] ;  𝑛 ≥ 𝐾                     (9𝑏)  

𝑅𝑛1(0) = 𝑅𝑛2(0) = 0; 𝑛 < 𝐾                                                                                       (9𝑐) 

 

and the normalization condition is  

 

∑ 𝑄𝑛 + ∫ ∑[𝑃𝑛1(𝑥) + 𝑃𝑛2(𝑥) + 𝑉𝑛(𝑥) + 𝑅𝑛1(𝑥) + 𝑅𝑛2(𝑥)]

∞

𝑛=0

∞

0

𝐾−1

𝑛=0

 𝑑𝑥 = 1          (10) 

 
Theorem 3.1: 

          Under steady state condition, the model has the following probability generating 

functions. 

 𝑃1(𝑧) =
𝑚𝑄(𝑧)𝑎1𝑧𝐾𝑢1

𝐽
; 𝑃2(𝑧) =

𝑚𝑄(𝑧)𝑎1𝐺1
∗(𝑎1)𝑢2

𝐽
; 𝑉(𝑧) =

𝑚𝑄(𝑧)𝑎1𝑎2𝐺1
∗(𝑎1)𝑢3

𝐽𝑚1
 

 𝑅1(𝑧) =
𝛼𝑧𝐾𝑚𝑄(𝑧)𝑢4𝑢7(1−𝑟)

𝐽𝑚2
; 𝑅2(𝑧) =

𝑟𝑧𝐾𝑚𝑄(𝑧)𝑢5𝑢7

𝐽𝑚3
 

           where,  
 𝑢1 = [1 − 𝐺1

∗(𝑎1)], 𝑢2 = [1 − 𝐺2
∗(𝑎2)], 𝑢3 = [1 − 𝐵∗(𝑚1)], 𝑢4 = [1 − 𝐻1

∗(𝑚1)], 
𝑢5 = [1 − 𝐻2

∗(𝑚2)], 𝑢6 = {𝑧𝐾(1 − 𝑞) + 𝐺2
∗(𝑎2)}, 𝑢7 = 𝑢1𝑧𝐾(1 − 𝑞)𝑎2 + 𝑎1𝐺1

∗(𝑎1)𝑢2 

𝑚 = 𝜆0 − 𝜆0𝐶(𝑧), 𝐽 = 𝛼𝑧𝐾(1 − 𝑟)𝐻1
∗(𝑚2)𝑢7 + 𝑟𝑧𝐾𝐻2

∗(𝑚3)𝑢7 − 𝑎1𝑎2[𝑧2𝐾 − 𝐵∗(𝑚1) 
𝐺1

∗(𝑎1)𝑢6], 𝑎1 = 𝜆1 − 𝜆1𝐶(𝑧) + 𝛼, 𝑎2 = 𝜆2 − 𝜆2𝐶(𝑧) + 𝛼, 𝑚1 = 𝜆3 − 𝜆3𝐶(𝑧)𝑚2 = 𝜆4 − 
𝜆4𝐶(𝑧), 𝑚3 = 𝜆5 − 𝜆5𝐶(𝑧), 𝑂 = 𝑎1𝑎2[𝑧2𝐾 − 𝐵∗(𝑚1)𝐺1

∗(𝑎1), 𝑢6 − 𝛼𝑧𝐾(1 − 𝑟) 𝐻1
∗(𝑚2) 
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𝑢7 − 𝑟𝑧𝐾𝐻2
∗(𝑚3)𝑢7], 𝑒1 = [(1 − 𝑞) 𝑃1(0, 𝑧)[1 − 𝐺1

∗(𝑎1)] +  𝑃2(0, 𝑧) [1 − 𝐺2
∗(𝑎2)]] 

         respectively, the probability generating function of number of customers in 
queue when the server provides ES, when the server provides OS, when the server 
provides is on vacation, when the server provides is in ER and when the server 
provides is in OR. 
 
Proof: 
 
Multiplication of equations (1a) and (1b) by appropriate powers of 𝑧 and adding the 

resultant equations for 𝑛 = 0,1, . . . ∞ , leads to 

𝜕

𝜕𝑥
( 𝑃1(𝑥, 𝑧)) + (𝜆1 − 𝜆1𝐶(𝑧) + 𝜇1(𝑥) + 𝛼) 𝑃1(𝑥, 𝑧) = 0                                 (11) 

 

Multiplication of equations (2a) and (2b) by appropriate powers of 𝑧 and adding the 

resultant equations for 𝑛 = 0,1, . . . ∞ , leads to 

𝜕

𝜕𝑥
( 𝑃2(𝑥, 𝑧)) + (𝜆2 − 𝜆2𝐶(𝑧) + 𝜇2(𝑥) + 𝛼) 𝑃2(𝑥, 𝑧) = 0                                 (12) 

 

Multiplication of equations (3a) and (3b) by appropriate powers of 𝑧 and adding the 

resultant equations for 𝑛 = 0,1, . . . ∞ , leads to 

𝜕

𝜕𝑥
(𝑉(𝑥, 𝑧)) + (𝜆3 − 𝜆3𝐶(𝑧) + 𝛽(𝑥))𝑉(𝑥, 𝑧) = 0                                                (13) 

 

Multiplication of equations (4a) and (4b) by appropriate powers of 𝑧 and adding the 

resultant equations for 𝑛 = 0,1, . . . ∞ , leads to 

𝜕

𝜕𝑥
(𝑅1(𝑥, 𝑧)) + (𝜆4 − 𝜆4𝐶(𝑧) + 𝛾1(𝑥))𝑅1(𝑥, 𝑧) = 0                                            (14) 

 

Multiplication of equations (5a) and (5b) by appropriate powers of 𝑧 and adding the 

resultant equations for 𝑛 = 0,1, . . . ∞ , leads to 

𝜕

𝜕𝑥
(𝑅2(𝑥, 𝑧)) + (𝜆5 − 𝜆5𝐶(𝑧) + 𝛾2(𝑥))𝑅2(𝑥, 𝑧) = 0                                            (15) 

 

Multiplication of equation (7a) by 𝑧𝑛+𝐾 and summation over 𝑛 = 0,1, . . . ∞ , leads to 

𝑧𝐾  𝑃1(0, 𝑧) = ∫ 𝛽(𝑥) ∑ 𝑉𝑛(𝑥)𝑧𝑛

∞

𝑛=𝐾

𝑑𝑥 + 𝐾(𝑧) + (1 − 𝑟)

∞

0

+ [∫ 𝛾1(𝑥) ∑ 𝑅𝑛1(𝑥)𝑧𝑛

∞

𝑛=𝐾

𝑑𝑥 + ∫ 𝛾2(𝑥) ∑ 𝑅𝑛2(𝑥)𝑧𝑛

∞

𝑛=𝐾

𝑑𝑥 

∞

0

 

∞

0

]        (16) 

                    where, 𝐾(𝑧) = ∑ ∑ 𝑧𝑛+𝐾∞
𝑛=0 𝐶𝑛+𝐾−𝑗𝑄𝑗

𝐾−1
𝑗=0  

 

Multiplication of equation (6) by 𝑧𝑛 and summation over 𝑛 = 0,1, … 𝐾 − 1 , leads to 
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0 = −𝜆0𝑄(𝑧) + 𝐿(𝑧) + ∫ 𝛽(𝑥)

∞

0

∑ 𝑉𝑛(𝑥)𝑧𝑛𝑑𝑥

𝐾−1

𝑛=0

+ (1 − 𝑟)

+ [∫ 𝛾
1
(𝑥) ∑ 𝑅𝑛1(𝑥)𝑧𝑛

∞

𝑛=𝐾

𝑑𝑥 + ∫ 𝛾
2
(𝑥) ∑ 𝑅𝑛2(𝑥)𝑧𝑛

∞

𝑛=𝐾

𝑑𝑥 

∞

0

 

∞

0

]     (17)   

                     where, 𝐿(𝑧) = 𝜆0(1 − 𝛿𝑛,0) ∑ ∑ 𝑧𝑛𝐾−1
𝑛=0 𝐶𝑗𝑄𝑛−𝑗

𝑛
𝑗=1  

 

Multiplication of equation (7b) by 𝑧𝑛+𝐾 and summation over 𝑛 = 0,1, . . . ∞ , leads to 

 𝑃2(0, 𝑧) =
∫  𝑃1(𝑥, 𝑧)𝜇1(𝑥)𝑑𝑥

∞

0

 𝑧𝐾
                                                                                      (18 ) 

 
Now, addition of equations (16) and (17), we have 

𝑧𝐾 𝑃1(0, 𝑧) = ∫ 𝑉(𝑥, 𝑧)𝛽(𝑥)𝑑𝑥 + 𝜆0[𝐶(𝑧) − 1]𝑄(𝑧)
∞

0

+ (1 − 𝑟) [∫ 𝑅1(𝑥, 𝑧)𝛾1
(𝑥)𝑑𝑥 + ∫ 𝑅2(𝑥, 𝑧)𝛾2

(𝑥)𝑑𝑥  
∞

0

 
∞

0

]                       (19) 

 

Multiplication of equation (8) by 𝑧𝑛 and summation over 𝑛 = 0,1, … ∞ , leads to 

𝑉(0, 𝑧) = (1 − 𝑞) ∫  𝑃1(𝑥, 𝑧)𝜇1(𝑥)𝑑𝑥 + ∫  𝑃2(𝑥, 𝑧)𝜇2(𝑥)𝑑𝑥
∞

0

∞

0

                               (20) 

 

Multiplication of equations (9a) and (9c) by appropriate powers of 𝑧 and adding the 

resultant equations for 𝑛 = 0,1, . . . ∞ , leads to 

𝑅1(0, 𝑧) = (1 − 𝑟)𝛼 𝑧𝐾[(1 − 𝑞)𝑃1(𝑧) + 𝑃2(𝑧)]                                                                (21) 

 

Multiplication of equations (9b) and (9c) by appropriate powers of 𝑧 and adding the 

resultant equations for 𝑛 = 0,1, . . . ∞ , leads to 

𝑅2(0, 𝑧) = 𝑟 𝑧𝐾[(1 − 𝑞)𝑃1(𝑧) + 𝑃2(𝑧)]                                                                              (22) 

 

Integrating of equation (11) leads to, 

 𝑃1(𝑥, 𝑧) =  𝑃1(0, 𝑧)𝑒−𝑎1𝑥−∫ 𝜇1(𝑥)𝑑𝑥
∞

0                                                                                  (23) 

 

Integrating of equation (23) leads to, 

 ∫  𝑃1(𝑥, 𝑧)𝑑𝑥
∞

0

= 𝑃1(𝑧) =
 𝑃1(0, 𝑧)[1 − 𝐺1

∗(𝑎1)]

𝑎1
                                                                     (24) 

 

Multiplying of equation (23) by 𝜇1(𝑥) and integration of the equation leads to, 

∫  𝑃1(𝑥, 𝑧)𝜇1(𝑥)𝑑𝑥
∞

0

=  𝑃1(0, 𝑧)𝐺1
∗(𝑎1)                                                                            (25) 

 

Integrating of equation (12) leads to, 

 𝑃2(𝑥, 𝑧) =  𝑃2(0, 𝑧)𝑒−𝑎2𝑥−∫ 𝜇2(𝑥)𝑑𝑥
∞

0                                                                                               (26) 
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Integrating of equation (26) leads to, 

 ∫  𝑃2(𝑥, 𝑧)𝑑𝑥
∞

0

= 𝑃2(𝑧) =
 𝑃2(0, 𝑧)[1 − 𝐺2

∗(𝑎2)]

𝑎2
                                                                     (27) 

 

Multiplying of equation (26) by 𝜇2(𝑥) and integration of the equation leads to, 

∫  𝑃2(𝑥, 𝑧)𝜇2
(𝑥)𝑑𝑥

∞

0

=  𝑃2(0, 𝑧)𝐺2
∗

(𝑎2)                                                                                    (28) 

              

             Substituting the value of equation (25), (28) in (20), we have 

            𝑉(0, 𝑧) = (1 − 𝑞) 𝑃1(0, 𝑧)𝐺1
∗(𝑎1) + 𝑃2(0, 𝑧)𝐺2

∗(𝑎2)                                                     (29) 

 

Integrating of equation (13) leads to, 

𝑉(𝑥, 𝑧) = 𝑉(0, 𝑧)𝑒−𝑚1𝑥−∫ 𝛽(𝑥)𝑑𝑥
∞

0                                                                                                    (30) 

 

Substituting the value of equation (29) in (30), we have 

𝑉(𝑥, 𝑧) = 𝑒−𝑚1𝑥−∫ 𝛽(𝑥)𝑑𝑥
∞

0 { (1 − 𝑞) 𝑃1(0, 𝑧)𝐺1
∗(𝑎1) + 𝑃2(0, 𝑧)𝐺2

∗(𝑎2) }                         (31) 

 

Integrating of equation (31) leads to, 

∫ 𝑉(𝑥, 𝑧)𝑑𝑥
∞

0

= 𝑉(𝑧) =
{ (1 − 𝑞) 𝑃1(0, 𝑧)𝐺1

∗(𝑎1) + 𝑃2(0, 𝑧)𝐺2
∗(𝑎2) }[1 − 𝐵∗(𝑚1)]

𝑚1
 (32) 

 

Multiplying of equation (31) by 𝛽(𝑥) and integration of the equation leads to, 

           ∫ 𝑉(𝑥, 𝑧)𝛽(𝑥)𝑑𝑥
∞

0

= { (1 − 𝑞) 𝑃1(0, 𝑧)𝐺1
∗

(𝑎1) + 𝑃2(0, 𝑧)𝐺2
∗

(𝑎2) }𝐵∗(𝑚1)                   (33) 

Integrating of equation (14) leads to, 

𝑅1(𝑥, 𝑧) = 𝑅1(0, 𝑧)𝑒−𝑚2𝑥−∫ 𝛾1(𝑥)𝑑𝑥
∞

0                                                                                              (34) 

             

            Substituting the value of equation (24), (27), (21) in (34), we have           

              𝑅1(𝑥, 𝑧) = (1 − 𝑟)𝛼 𝑧𝐾𝑒1 𝑒−𝑚2𝑥−∫ 𝛾1(𝑥)𝑑𝑥
∞

0                                                                    (35) 

 

Integrating of equation (35) leads to, 

∫ 𝑅1(𝑥, 𝑧)𝑑𝑥
∞

0

= 𝑅1(𝑧) =
(1 − 𝑟)𝛼 𝑧𝐾𝑒

1[1 − 𝐻1
∗(𝑚2)]

𝑎1𝑎2𝑚2
                                                     (36) 

 

Multiplying of equation (35) by 𝛾1(𝑥) and integration of the equation leads to, 

     ∫ 𝑅1(𝑥, 𝑧)𝛾1
(𝑥)𝑑𝑥

∞

0

=      
(1 − 𝑟)𝛼 𝑧𝐾𝐻1

∗(𝑚2)𝑒1

𝑎1𝑎2
                                                               (37) 

 

Integrating of equation (15) leads to, 

𝑅2(𝑥, 𝑧) = 𝑅2(0, 𝑧)𝑒−𝑚3𝑥−∫ 𝛾2(𝑥)𝑑𝑥
∞

0                                                                                            (38) 
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             Substituting the value of equation (24), (27), (22) in (38), we have           

              𝑅2(𝑥, 𝑧) = 𝑟𝑧𝐾𝑒1 𝑒−𝑚3𝑥−∫ 𝛾2(𝑥)𝑑𝑥
∞

0                                                                                  (39) 

 

Integrating of equation (39) leads to, 

∫ 𝑅2(𝑥, 𝑧)𝑑𝑥
∞

0

= 𝑅2(𝑧) =
𝑟 𝑧𝐾𝑒1[1 − 𝐻1

∗(𝑚3)]

𝑎1𝑎2𝑚3
                                                                   (40) 

 

Multiplying of equation (39) by 𝛾2(𝑥) and integration of the equation leads to, 

     ∫ 𝑅2(𝑥, 𝑧)𝛾2
(𝑥)𝑑𝑥

∞

0

=      
𝑟 𝑧𝐾𝐻1

∗(𝑚3)𝑒1

𝑎1𝑎2
                                                                            (41) 

 

Substituting the value of equation (25) in (18), we have 

 𝑃2(0, 𝑧) =
 𝑃1(0, 𝑧)𝐺1

∗(𝑎1)

 𝑧𝐾
                                                                                              (42) 

 

Substituting the value of equations (33), (37), (41), (42) in (19), we have     

               𝑃1(0, 𝑧) =
𝑚𝑄(𝑧)𝑎1𝑎2𝑧𝐾

𝐽
                                                                                               (43) 

Substituting the value of equation (43) in (42), we have 

 𝑃2(0, 𝑧) =
𝑚𝑄(𝑧)𝑎1𝑎2𝐺1

∗(𝑎1)

𝐽
                                                                                       (44) 

 

Substituting the value of equation (43) in (24), we have 

𝑃1(𝑧) =
𝑚𝑄(𝑧)𝑎1𝑧𝐾𝑢1

𝐽
                                                                                                                 (45) 

 

Substituting the value of equation (44) in (27), we have 

𝑃2(𝑧) =
𝑚𝑄(𝑧)𝑎1𝐺1

∗(𝑎1)𝑢2

𝐽
                                                                                                         (46) 

 

Substituting the value of equations (43) and (44) in (32), we have 

𝑉(𝑧) =
𝑚𝑄(𝑧)𝑎1𝑎2𝐺1

∗(𝑎1)𝑢3

𝐽𝑚1
                                                                                                    (47) 

 

Substituting the value of equations (43) and (44) in (36), we have 

𝑅1(𝑧) =
𝛼𝑧𝐾𝑚𝑄(𝑧)𝑢4𝑢7(1 − 𝑟)

𝐽𝑚2
                                                                                              (48) 

 

Substituting the value of equations (43) and (44) in (40), we have 

               𝑅2(𝑧) =
𝑟𝑧𝐾𝑚𝑄(𝑧)𝑢5𝑢7

𝐽𝑚3
                                                                                                                   (49) 
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Theorem 3.2: 

          Under the steady state condition, the probability generating function for number of 

customers in the queue is 𝑆(𝑧), where 𝑆(𝑧) = 𝑄(𝑧) + 𝑁(𝑧). 

 
Proof: 
 

            Let 𝑆(𝑧) = 𝑄(𝑧) + 𝑃1(𝑧) + 𝑃2(𝑧) + 𝑉(𝑧) + 𝑅1(𝑧) + 𝑅2(𝑧)                                  (50) 

                    𝑁(𝑧) = 𝑃1(𝑧) + 𝑃2(𝑧) + 𝑉(𝑧) + 𝑅1(𝑧) + 𝑅2(𝑧) 

               Now, Substituting the value of equation (45), (46), (47), (48), and (49) in (50), we have       

                   𝑆(𝑧) =
𝑄(𝑧)𝑋

𝐽𝑚1𝑚2𝑚3
                                                                                                          (51)      

      where, 𝑋 = 𝑚{𝑚1𝑚2𝑚3{𝑎1𝑧𝐾𝑢1 + 𝑎1𝐺1
∗(𝑎1)𝑢

2
} + 𝑚2𝑚3𝑎

1
𝑎2𝐺

1
∗(𝑎1)𝑢

3
+

𝑚1𝑚3𝛼𝑧𝐾𝑢4𝑢7(1 − 𝑟) + 𝑚2𝑚1𝑟𝑧𝐾𝑢5𝑢7} + 𝐽𝑚1𝑚2𝑚3 

     𝑆(𝑧) =
𝐴

𝑧−𝑧0
 by substituting 𝑧 = 1, we get 

     𝐴 = (1 − 𝑧0)𝑆(1) 

     𝑆(1) =
𝑄(𝑓1+𝑓2)

𝑓2
                                                                                                                           (52)  

          where, 𝑎3 = 𝜆0𝐸(𝑋), 𝑎4 = 𝜆1𝐸(𝑋), 𝑎5 = 𝜆2𝐸(𝑋), 𝑎6 = 𝜆3𝐸(𝑋), 𝑎7 = 𝜆4𝐸(𝑋) 

𝑎8 = 𝜆5𝐸(𝑋), 𝑢8 = [1 − 𝐺1
∗(𝛼)], 𝑢9 = [1 − 𝐺2

∗(𝛼)], 𝑢11 = 𝐺1
∗(𝛼)[(1 − 𝑞) + 𝐺2

∗(𝛼)]  

           𝑢10 = 𝑢8(1 − 𝑞) + 𝐺1
∗(𝛼)𝑢9, 𝑢12 = [𝐾 − 𝑎6𝐸(𝑉)], 𝑢13 = [1 − 𝐺2

∗(𝛼)𝐺1
∗(𝛼)] 

         𝑓1 = 𝑎3{𝑢1 + 𝑢2𝐺1
∗(𝛼)} + 𝛼(1 − 𝑟)𝑎3𝑢10𝐸(𝑅1) + 𝑟𝑎3𝑢10𝐸(𝑅2) + 𝐸(𝑉)𝑎3𝐺1

∗(𝛼)𝑢11 

         𝑓2 = 𝛼𝐺1
∗(𝛼)𝑢11𝑢12 − 𝑎4(1 − 𝑞)𝑢1 − 𝑎5𝑢13 − 𝛼(1 − 𝑟)𝑎7𝑢10𝐸(𝑅1) − 𝑟𝑎8𝑢10𝐸(𝑅2) 

    By applying Rouche’s theorem, 

    Substituting the value of 𝑆(1) in the above equation, we have 

𝐴 =
(1 − 𝑧0)𝑄(𝑓1 + 𝑓2)

𝑓2
                                                                                                     (53) 

    Substituting the value of (53) in the above equation, we have 

𝑆(𝑧) =
(𝑧0 − 1)𝑄(𝑓1 + 𝑓2)

𝑧0𝑓2
∑ (

𝑧

𝑧0
)

𝑛
∞

𝑛=0

                                                                            (54) 

       which is the probability generating function of number of customers in the queue. 

3.1 Some system measures 

       To shows the performance of the model, the following system measures are derived: 

     1.  The idle probability is 𝑄 = ∑ 𝑄𝑛
𝐾−1
𝑛=0  which leads to, 𝑄 =

(𝑓2−𝑓1)

𝑓2
 

             This is obtained by using 𝑄 + 𝑁(1) = 1 ⇒ 𝑄 = 1 − 𝑁(1) 

2. The average number of customers in the queue when the server provides ES 

𝑁1 = 𝑃1
′(1) =

𝑄{4𝐾𝛼𝑎3𝑢8 − 𝜆0𝑢14𝛼𝑢8 − 4𝑎3𝑎5𝑢8 − 4𝑎3𝑢15}

4𝑓2
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                 where, 𝑢14 = (𝐸(𝑋)2 − 𝐸(𝑋)), 𝑢15 = 𝑎4𝐺1
∗′

(𝛼), 𝑢16 = 𝑎5𝐺2
∗′

(𝛼) 

3. The average number of customers in the queue when the server provides OS 

𝑁2 = 𝑃2
′(1) =

𝑄{4𝑎3𝑢15𝑢9 − 𝜆0𝑢14𝑢9𝐺1
∗(𝛼) + 4𝑎3𝑢16𝐺1

∗(𝛼) − 4𝑎3𝑎4𝑢9𝐺1
∗(𝛼)}

𝑓2
 

4. The average number of customers in the queue when the server is on compulsory vacation 

𝑁3 = 𝑉(1) =
𝑄𝑎3𝑓3

24𝑎6𝑓2
 

                 where, 𝑢17 = [(1 − 𝑞) + 𝐺2
∗(𝛼)], 𝑢18 = [(1 − 𝑞)𝐾 + 𝐺2

∗(𝛼)], 𝑓
3

= 𝑎3𝑢11[𝐸(𝑉)𝜆3𝑢14 

    +(𝐸(𝑉)𝐸(𝑋)𝜆3)
2

] + 𝜆0𝛼2𝑢14𝑢11𝑎6𝐸(𝑉) + 4𝑎3𝛼𝑢11𝑎6𝐸(𝑉)[𝑎5 + 𝑎4] + 4𝑎3𝑎4𝑢17𝑎6𝛼2 

    𝐸(𝑆1)𝐸(𝑉) − 4𝑎3𝛼2𝑢18𝑎6 𝐸(𝑉)𝐺1
∗(𝛼) + 4𝑎3𝛼2𝐺1

∗(𝛼)[(1 − 𝑞)𝐾 + 𝐸(𝑆2)𝑎5]𝐸(𝑉)𝑎6 

             −3𝑎3𝛼2𝑢11𝐸(𝑉)𝜆3𝐸(𝑋)2 

5. The average number of customers in the queue when the server is on essential repair 

𝑁4 = 𝑅1
′ (1) =

𝑄𝑓4(1 − 𝑟)

24𝑎7𝑓2
 

                 where, 𝑓4 = 4𝛼𝑎3𝑎7𝑢10 𝐸(𝑅1) + 4𝛼2𝑎3𝑎7𝑢10 𝐸(𝑅1){(1 − 𝑞)𝑎4 𝐸(𝑆1) + 𝑢9𝐺1
∗(𝛼)} 

                +4𝑎3𝑎7𝐸(𝑅1){𝑢8(1 − 𝑞) + 𝑎4𝑢9 𝐸(𝑆1)} + 4𝑎3𝑎7𝐸(𝑅1){𝑢8(1 − 𝑞) + 𝑎5𝐺1
∗(𝛼) 𝐸(𝑆1)} 

              −𝛼2𝜆0𝑢14𝑢10𝑎7 − 𝑎3𝛼2𝑢10[𝐸(𝑅1)𝜆4𝑢14 + (𝐸(𝑅1)𝐸(𝑋)𝜆4)2] − 4𝐾𝑎3𝛼2𝑢10𝑎7𝐸(𝑅1) 

               −4𝑎3𝑎7{𝐾𝑢8(1 − 𝑞) + 𝑢9𝐺1
∗(𝛼) }𝛼

2
− 3𝛼2𝑎3𝑎7𝑢10 𝐸(𝑅1)𝐸(𝑋)2𝜆4 

6. The average number of customers in the queue when the server is on optional repair 

𝑁5 = 𝑅2
′ (1) =

𝑄𝑓5𝑟

24𝑎8𝑓2
 

                 where, 𝑓5 = 𝛼𝜆0𝑢14𝑎8𝑢10 𝐸(𝑅2) + 𝛼𝑢10𝑎3𝑎8[𝐸(𝑅2)𝜆5𝑢14 + (𝐸(𝑅2)𝐸(𝑋)𝜆5)2] 

                   −4𝐾𝛼𝑢10𝑎3𝑎8 𝐸(𝑅2) − 4𝑎3𝑎8 𝐸(𝑅2){𝑎5𝑢8(1 − 𝑞) + 𝛼𝑢9𝐺1
∗(𝛼) } − 4𝑎3𝑎8 𝐸(𝑅2) 

                 {𝛼𝑢8(1 − 𝑞) + 𝑢9𝑢4𝐺1
∗(𝛼) } − 4𝑎3𝑎8 𝐸(𝑅2){(1 − 𝑞)𝐸(𝑆1)𝑎4 + 𝑢9𝐺1

∗(𝛼)} − 4𝑎3 

 𝑎8 𝐸(𝑅2){𝑢8(1 − 𝑞) + 𝑎4𝑢9 𝐸(𝑆1)} − 4𝑢10𝑎3𝑎8𝐸(𝑅2) − 3𝑢10𝑎3𝑎8𝐸(𝑅2)𝐸(𝑋)2𝜆5 

7. The average number of customers in the queue is 𝑆 = 𝑆′(1) =
𝑄(𝑓1+𝑓2)

(1−𝑧0)𝑓2
 

8. The server’s utilization factor is 𝜌 = 1 − 𝑄 

9. Mean waiting time of a customer is  𝑊 =
𝑆

𝜆∗ 

              where, 𝜆∗ is the effective arrival rate and 

𝜆∗ = 𝑄𝜆0 + 𝑃1(1)𝜆1+𝑃2(1)𝜆2 + 𝑉(1)𝜆3 + 𝑅1(1)𝜆4 + 𝑅2(1)𝜆5 

 

4. Numerical illustrations 

                In this section, numerical study for the model discussed in this paper is carried out 

by assuming service times, vacation times and repair time as negative exponential distribution 

and batch size as geometric distribution, The parameter values are 𝐶𝑗 = 𝛿(1 − 𝛿)𝑗−1, 𝑗 =

1,2, … ; 0 < 𝛿 < 1;   𝐸(𝑋) =
(1−𝛿)

𝛿
, 𝐸(𝑉) =

1

𝛽
, 𝐸(𝑆𝑖) =

1

𝜇𝑖
, 𝐸(𝑅𝑖) =

1

𝛾𝑖
, 𝐺𝑖

∗(𝛼) =
𝜇𝑖

𝛼+𝜇𝑖
, 𝑖 = 1,2 
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𝐵∗(𝑚1) =
𝛽

𝛽 + 𝑚1
, 𝐻1

∗(𝑚2) =
𝛾1

𝛾1 + 𝑚2
, 𝐻2

∗(𝑚3) =
𝛾2

𝛾2 + 𝑚3
 

TABLE 1: System Measures 𝜶 = 𝟎. 𝟔, 𝜷 = 𝟏. 𝟎, 𝜹 = 𝟎. 𝟒𝟕, 𝒒 = 𝟎. 𝟒, 𝒛 = 𝟎. 𝟖𝟗, 
𝑲 = 𝟏𝟔, 𝝀𝟏 = 𝟏. 𝟕, 𝝀𝟐 = 𝟐. 𝟎, 𝝀𝟑 = 𝟏. 𝟒, 𝝀𝟒 = 𝟏. 𝟗, 𝝀𝟓 = 𝟏. 𝟓, 𝝁𝟏 = 𝟎. 𝟕, 𝝁𝟐 = 𝟎. 𝟑, 

𝜸𝟏 = 𝟏. 𝟏, 𝜸𝟏 = 𝟏. 𝟎 

𝝀𝟎 𝝆 𝑸 𝑵𝟏 𝑵𝟐 𝑵𝟑 𝑵𝟒 𝑵𝟓 𝑺 
1.1 0.6969 0.3656 4.5082 2.3464 0.0325 0.4028 0.6762 1.4893 

1.2 0.7201 0.3860 5.1925 2.7026 0.0374 0.4630 0.7788 1.4106 

1.3 0.7432 0.4051 5.9041 3.0730 0.0425 0.5256 0.8855 1.3439 

1.4 0.7664 0.4231 6.6404 3.4562 0.0478 0.5904 0.9960 1.2868 

1.5 0.7896 0.4400 7.3993 3.8512 0.0533 0.6570 1.1098 1.2373 

1.6 0.8128 0.4560 8.1788 4.2570 0.0589 0.7255 1.2267 1.1940 

1.7 0.8360 0.4711 8.9773 4.6726 0.0646 0.7955 1.3465 1.1558 

1.8 0.8591 0.4853 9.7931 5.0972 0.0705 0.8671 1.4689 1.1219 

1.9 0.8823 0.4988 10.6250 5.5302 0.0765 0.9401 1.5936 1.0915 

2.0 0.9055 0.5117 11.4717 5.9709 0.0826 1.0143 1.7206 1.0641 

 

 

Figure 1: Mean waiting time against 𝝀∗ 

 

                   Incorporating the above expression in the formulas in 3.1. The numerical values 

of the measures, the ideal probability, the average number of customers, the average number 

of customers in the queue when the server provides ES, OS, compulsory vacation, ER, OR, 

the server’s utilization factor and the mean waiting time of a customer are obtained using 

MATLAB and the values are presented in table 1 and figure 1. This numerical illustration 

is to show the practical applicability of the analytical results derived in this paper. 
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5. Conclusion 

             This study corresponds to a single unreliable server non-Markovian queue. The 

customers arrive in batches of variable size follows compound Poisson process and the 

services are given batches of fixed size follows a general distribution. The arrival rates are 

state dependent. The server applies compulsory vacation policy; vacation period is 

generally distributed. Breakdown occurs when the server is busy, the number of 

breakdowns follows Poisson process. Immediately the server undergoes two types of 

repairs called essential and optional. Both repair periods are generally distributed. The 

system contains a waiting line of infinite capacity. The model is completely analyzed in 

steady state. To show the versatile of the model some numerical illustrations are provided. 

The model can be generalized by assuming the general arrival process. 
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