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Abstract

A single unreliable server queue has been considered in this article. The arrival process
follows compound Poisson process with state dependent arrival rates. Services are given in batches
of size K of two types; each type is generally distributed. After completion of first type service
(essential service), the batch enter into the second type service (optional service) based on a
Bernoulli distribution. And the end of each service completion, the server takes a vacation of
random period, generally distributed. While, if the service is going on, the server may breakdown
and the number of breakdowns follows a Poisson distribution. Immediately the server undergoes
two types of repairs, each repair period follows general distribution. After the completion of first
repair (essential repair), the server undergoes the second repair (optional repair) based on a
Bernoulli process. The system contains a queue of infinite size. This model is completely analyzed
by introducing supplementary variables and using probability generating function technique. Some
particular model and some system performance measures are derived. To show the applicable
stability of the model some numerical illustrations are also provided.

Keywords: Non-Markovian queue - Bulk arrival queue - Compulsory vacation - Essential and
Optional service/reapair - Unreliable server - State dependent rates.
2000 Mathematics Subject Classification Number: 90B22,60K25,60K30.

1. Introduction

A queueing system is a set of interconnected components like service seekers,
working place and service providers, and working together to achieve a specific goal or purpose.
The service seekers may be human customers or messages to be answered or programs to be
processed, etc., The working place may be a working station or computer system etc., The service
providers may be human servers or machines etc., In real life situations, if the providers are
machines, it may frequently out of order, in general called breakdown. In such a case the machine
may be replaced or repaired. But system manager’s point of view, the first preference is repair.
With this in mind many researchers working on queue with breakdown. Some notable works are
Gaver (1962), Avi-Itzhak and Naor (1963), Thirurengadan (1963), Mitrany and Avi-Itzhak (1968),
Sengupta (1990), Li et al., (1997), Tang (1997) and Takine and Sengupta (1997).

Vacation queueing models with different arrival pattern are studied by many
authors, including Baba (1986), Choudhury (2000), Choudhury and Borthskur (2000), Lee and
Srinivasan (1989), Lee et al (1995), Rosenberg and Yechiali (1993) and Teghem (1990) and many
others have studied batch arrival vacation queues under different vacation policies. Harris (1967)
analyzed a queueing model, in which the arrival and service parameter depends on current state.
In 2008, Kerner considered a non-Markovian queue with state dependent parameters.

In the practical situations like, hospitals, productions systems the clients some time
need additional service other than the regular service. Some notable works in recent years are
Medhi (2002), Wang (2004), Choudhury and Deka (2012). Chen and Renshaw (2004) analyzed a
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Markovian bulk queue together with a control policy at idle time. Chen et al., (2010) analyzed a
Markovian queue with state dependent control policy.

This paper contains five sections. In the second section, the model definition and
analysis are given. In the third section, some system statistical constants are given. In the fourth
section, some numerical illustrations are provided. In the last section a conclusion is given.

2. The Mathematical definitions and notations
In this section, the model has been defined and relevant notations are introduced. A single
server non-Markovian queue has been considered with the following characteristics:
The client arrives are in groups of variable size j , j = 1,2,3,... with probability

distribution C;. The services are given in batches of fixed size K. There are two types of services,
called essential service (ES) and optional service (OS). After completing ES, the batch OS with
probability g (0 < g < 1) or leaves the system with may demand probability (1 — q). The service
periods S;(ES) and S, (OS) are generally distributed with distribution functions G; (x) and G, (x)
respectively. The total service time of a batch is S = (1 — q)S; + gS,. There is a queue with
infinite capacity. After completion of each service, the server takes vacation of compulsory type,
the random vacation period V follows general distribution with distribution function is B(x).
While server is busy, the server may breakdown, the breakdown period follows negative

. . 1 . . . .
exponential with mean o Immediately, the server undergoes repair process, the essential repair

period (ER) follows a general distribution H; (x). In addition, after completion of the repair period,
the server undergoes another repair process called optional repair (OR) with probability r or the
server enter into the system with probability (1 —r) (0 < r < 1). The optional repair period
follows general distribution function with distribution function H,(x). The arrival rate is A = A;;
i =0, during idle period; i = 1, during ES period; i = 2, during OS period; i = 3, during vacation
period; 1 = 4, during ER period; i = 5, during OR period. The mean batch size, the mean total
service period, the mean vacation period and mean repair period are respectively
E(X),E(S),E(V) and E(R).

1gé (926); j = 1(ES),2(0S) that the conditional probability completion of
—Yj

#j(x) =
service period during the interval (x,x + dx) given that the elapsed service time of the batch
in serviceis x .

Bx) = :;x()x) ; that the conditional probability completion of vacation period during the

interval (x, x + dx) given that the elapsed vacation time is x.

yi(x) = 1:’; ]x()x) ;J = 1(ER),2(OR) that the conditional probability completion of

repair period during the interval (x, x + dx) given that the elapsed repair time is x.

At time ¢, let M(t) be the number of customers in the waiting line and £(t) be the
supplementary variable at time t. The &(t) have the following random identifications.§ = &;; 1=
0, during elapsed ES period; i = 1, during elapsed OS period; i = 2, during elapsed vacation period;
1 =3, during elapsed ER period i = 4, during elapsed OR period.
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The two-dimensional process {(M(t), E(t)): t = 0} is a Markov process. The following
probabilities and probability generating functions are introduced for the analysis:

Q,(t) = Pr{M(t) = n, the serverisidle},n=10,1, ..., K — 1.
Ppi(x;t) = Pr{M(t) = n, &(t) € (x,x + At)},n=0,1, ....
Po(x;t) =Pr{M(t) =n,é,(t) € (x,x + At)},n=0,1, ....
V(i t) = Pr{M(t) = n, & (t) € (x,x + At)},n=10,1,....
Ry (x;t) = Pr{M(t) = n,é5(t) € (x,x + At)},n=10,1, ...

R (x;t) = Pr{M(t) = n, &,(t) € (x,x + At)},n =0,1, ....

In steady state,
P,i(x) = lim P,;(x;t);i =12 ; V,(x) = lim V,(x;t), R,;(x) = lim R,;(x; t),
n—oo n—oo n—oo
C(Z) = 2;0=1 C]Z] ’ Pi(x' Z) = Z?f:o P‘ni (x)Zn ;i=12, V(.'X', Z) = 27?1():0 Vn(x)an
Rni(x,2z) = YXp=oRni(x)z™, Q(2) = 2523 nz"; where |z| <1

3.The Analysis

The system discussed MX1/G¥ /1, the following differential-difference equations are
obtained using the supplementary variable technique as outlined in Cox (1965).

d Py, (x) _

P —(A1 + 1 (x) + @) Py, (x) (1a)
dP,; c
dx(X) = -+ u(x) + )Py (x) + A4 Z CiPp_ji1(x),n=1 (1b)
=
i ;jfx) = —(Az + (%) + Q)P () (2a)
AP, .
20—y + 1) + P+ 2y Y P () m 1 (2b)
j=1
Do) — (s + BV (3a)
dv, -
) (s 4 B + 24 PCISOEES (3)
j=1
dRsi—;(X) = —(14 + V1(x))Ro1(x) (4a)
ARy n
dx(x) = _(/14 + V1(x))Rn1(x) + A4 Z CjRn—J'l(x) mnz1 (4b)
Jj=1
4Rox () = —(As +¥2(x))Ro2(x) (a)
dx
3
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dR, n
dﬁ@:—ﬁg+nanmﬂﬂ+w5Zkﬁwﬂgyn21 (5b)

Jj=1

0= _AOQn + /10(1 - 611,0)2 Can—j + (1 - r)f Vi(x) Rni(x)dx
j=1 0

+ [ BV ()dx; n=01,..,K—1,i=12 (6)
The boundary conditions are,

Poi(0) = f BOOV k(D) dx + (1= 1) f Y100 R () dx
0 0

K-1
+1 Crik-iQi; =0 (7a)
) ; i%j
Pra(0) = f 3 (O Py ey () dlx (7h)

0
00

(0) = (1-q) f 1300 P () dx + f 1y (DPaa()dx; 120 (8)
0 0

(0]

Rp1(0) = a(1—r1) [(1 - Q)j Py (x)dx + J Pn+K2(x)dx]; nz=K (9a)
0

0

[0e]

R,2(0) = ar [(1 - Q)f Py_g1(0)dx + j Pn+K2(x)dx]; n=K (9b)
0

Rp1(0) = Rpz(0) = 0;n < K i (9¢)

and the normalization condition is

K-1 ©
O+ [ D 1P+ Pra() + oGO + Rua () + Rp (] dx =1 (10)
n=0 o n=0
Theorem 3.1:
Under steady state condition, the model has the following probability generating
functions.
P,(2) = mQ(Z)tjllzKul" P,(z) = mQ(z)ale{(al)uz;V(Z) _ mQ(z)aljjrzlff(al)u3
K 1— K
Ri(z) = AT,y (5) = E IOty
where,

u = [1-G{(a)]u; = [1=G3(az)] us = [1 = B*(my)], u, = [1 — H{(my)],

Us = [1 - H’é(mz)],ue = {zK(1 — @) + G5(a)} uy = u325(1 — Q)a, + a1 G1(ar)u,

m = Ay — 4,C(2),] = az¥(1 — r)Hy(my)u; + rz¥H;(m3)u; — a,a,[z°% — B*(m,)
GilaDugl,a; =4, =1 C(2) + a,a, = 1, — 1,C(2) + a,my = A3 — A13C(2)my = A,y —
14C(2),m3 = A5 — 25C(2), 0 = a;a,[z*" — B*(my)Gi(a,),ug — azX(1—r) H{(m,)
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u; = rZ¥Hy(m3)us) e; = [(1 = q) Py(0,2)[1 — Gi(ap)] + P,(0,2) [1 - G3(ay)]]

respectively, the probability generating function of number of customers in
queue when the server provides ES, when the server provides OS, when the server
provides is on vacation, when the server provides is in ER and when the server
provides is in OR.

Proof:

Multiplication of equations (1a) and (1b) by appropriate powers of z and adding the
resultant equations forn = 0,1,... 00, leads to

aa—x(Pl(x, z)) + A —A4C2)+uy(x)+a) Pi(x,z) =0 (11)

Multiplication of equations (2a) and (2b) by appropriate powers of z and adding the
resultant equations forn = 0,1,... 00, leads to

aa—x(Pz(x, Z)) + (A, = 2,C(2) + py(x) + @) P,(x,z) = 0 (12)

Multiplication of equations (3a) and (3b) by appropriate powers of z and adding the
resultant equations forn = 0,1,... 00, leads to

0
a(V(x, 7))+ (A3 — 25C(2) + B(X))V(x,2) =0 (13)

Multiplication of equations (4a) and (4b) by appropriate powers of z and adding the
resultant equations forn = 0,1,... 00, leads to

0
a(Rl(x, Z)) + (/14 —A,C(2) + 14 (x))Rl(x, z)=0 (14)

Multiplication of equations (5a) and (5b) by appropriate powers of z and adding the
resultant equations forn = 0,1,... 00, leads to

0
F (Rz (x, Z)) + (/15 —AsC(2) + yz(x))Rz (x,z) =0 (15)

Multiplication of equation (7a) by z"*X and summation over n = 0,1,... 00, leads to

2K P,(0,2) = f B(X) Z V.(x0)z" dx + K(z) + (1 — 1)
0 n=K

[ 1@ Rutztdr+ [ 100 Y Rtz dx ] (16)
0 n=K 0 n=K
where, K (z) = 25-:01 Y=oz Crik-jQ;

[ee]

+

Multiplication of equation (6) by z" and summation over n = 0,1, ... K — 1, leads to
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0=-2,0(2) +L(z) + f ,B(x)z V,(x)z"dx + (1 —1)

+ U V1(x)z Ry (x)2" dx+j-oy2(x)z R (x)z" dx] (17)

Where,L(Z) - 10(1 nO)Zn 1Zn OZ CQn -j

Multiplication of equation (7b) by z"*X and summation over n = 0,1,... 0, leads to
[ P )iy (x)dx

P,(0,2) = K (18)
Now, addition of equations (16) and (17), we have
2% P1(0,2) = f V(x,2)p(x)dx + 40[C(2) — 1]1Q(2)
0
+(1-7) U Ri(x,2)y,(x)dx + f Ry (x, 2)y,(x)dx (19)
0 0
Multiplication of equation (8) by z™ and summation over n = 0,1, ... o, leads to
V(0,2) =(1-q) f Py (x, 2)p, (x)dx + j Py (x, ) (x)dx (20)
0 0
Multiplication of equations (9a) and (9c) by appropriate powers of z and adding the
resultant equations forn = 0,1, . , leads to
R1(0,2) = (1 —)a z"[(1 - Q)P1(Z) + P2(2)] 21

Multiplication of equations (9b) and (9c¢) by appropriate powers of z and adding the
resultant equations forn = 0,1,... 00, leads to
Ry(0,2) = 1 ZX[(1 — @)P1(2) + Py (2)] (22)

Integrating of equation (11) leads to,
P,(x,z) = P,(0, Z)e—alx—f;o pq()dx 23

Integrating of equation (23) leads to,

P;(0,2)|1 - G1(a

f Py (x,z)dx = Py(2) = 1©0.9)] i(@) (24)
0 ai

Multiplying of equation (23) by p4 (x) and integration of the equation leads to,

| PGoamdx = Pi0,26i @) (25)
0

Integrating of equation (12) leads to,

P,(x,z) = PZ(O,Z)e_azx_f;o“Z(x)dx (26)

6
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Integrating of equation (26) leads to,
P, (0, Z)[l — G (az)]

f PZ(X,Z)dX = Pz(Z) = (27)
0 a
Multiplying of equation (26) by u,(x) and integration of the equation leads to,
[ PtenmGdx = Po0,2G3@) (28)
0
Substituting the value of equation (25), (28) in (20), we have
V(0,2) = (1 —q) P1(0,2)G{(ay) + P2(0,2)G;(az) (29)
Integrating of equation (13) leads to,
V(x,z) =V(0, z)e’mlx_fowﬁ(x)dx (30)
Substituting the value of equation (29) in (30), we have
V(x,2) = e h FOEL (1 — ) P1(0,2)G1(ar) + P2(0,2)G3(az) } 31
Integrating of equation (31) leads to,
@ 1—q) P1(0,2)G; + P,(0,2)G, 1-FB
f Ve dx = V(2) :{( q) P1(0,2)G1(aq) mz( 2)G3(az) }[ (my)] 32)
0 1

Multiplying of equation (31) by B(x) and integration of the equation leads to,
f V(x2)B0dx = { (1 —q) P1(0,2)G1(ar) + P2(0,2)Gz(az) }B" (M) (33)
0

Integrating of equation (14) leads to,
Ri(x,2) = Ry(0,2)e ™2l a0 (34)

Substituting the value of equation (24), (27), (21) in (34), we have

Ri(x,z) = (1—-7)a zKe1 e_mZX‘f;oh(x)dx (35)

Integrating of equation (35) leads to,
(1-r)azfe [1—Hi(my)]

Jo R,(x,2)dx = R.(2) = Tia,m, (36)
Multiplying of equation (35) by y;(x) and integration of the equation leads to,

o 1—1)a zKHI(my)e
[“Rix oy eax- LD Ie, 37)
0 a;a;

Integrating of equation (15) leads to,

R,(x,2) = R,(0, Z)e_m3x_f0w v2(¥)dx (38)

7
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Substituting the value of equation (24), (27), (22) in (38), we have

R,(x,2) = rzKe; e M3¥~Jo r2(0dx 59)

Integrating of equation (39) leads to,

o rzKei[1 — H1(m3)]

J;) Rz (x, Z)dx = Rz(Z) = a1a2m3 (40)
Multiplying of equation (39) by y,(x) and integration of the equation leads to,

* e r zKHi(ms)e, 41
fo 2(x,2)y,(X)dx = T aa; (41)
Substituting the value of equation (25) in (18), we have

P;(0,2)G1(a,)
Po(0,2) = —— (42)
Substituting the value of equations (33), (37), (41), (42) in (19), we have
K
mQ(z)a,a,z
P.(0,7) = QDN dZ_ (43)
J
Substituting the value of equation (43) in (42), we have
mQ(z)a,a,G;(a
P,(0,2) = Q(2)a,a,G1(a;) (44)
J
Substituting the value of equation (43) in (24), we have
K
Pi(2) = M (45)
J
Substituting the value of equation (44) in (27), we have
G*
P,(2) = mQ(z)a,G1(a))u, (46)
J
Substituting the value of equations (43) and (44) in (32), we have
V(z) = mQ(z)a,a,G1(a)us (47)
Jmy
Substituting the value of equations (43) and (44) in (36), we have
_azf¥mQ(Duu,(1-1)
Ri(2) = I, (48)
Substituting the value of equations (43) and (44) in (40), we have
K
R,(z) = 2 me@usy (49)

Jms
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Theorem 3.2:
Under the steady state condition, the probability generating function for number of
customers in the queue is S(z), where S(z) = Q(2) + N(2).

Proof:

LetS(z) = Q(2) + Py(2) + P,(z) + V(2) + R1(2) + R,(2) (50)
N(z) = P1(2) + P,(2) + V(2) + R1(2) + R(2)
Now, Substituting the value of equation (45), (46), (47), (48), and (49) in (50), we have

S(z) = _Q@x (51)

Jmymazms

where, X = m{m;myms{a;z2%u; + a,G3(apu,} + m2m3a1a26’{(al)u3 +
mymsazfuu, (1 — ) + mymyrzfusu,} + Jmym,oms
S(z) = Z:LZO by substituting z = 1, we get
A= (1-2)5(1)

s = (52)
2

where, a; = 10E(X),a, = LLE(X),as = ,E(X),ag = 13E(X),a; = A,E(X)

ag = AsE(X),ug = [1 — G{ ()], ug = [1 — G3(a)], ug1 = G{()[(1 — @) + Gz ()]

Uy = ug(1— q) + Gi(@)ug, uy; = [K — agE(V)], us3 = [1 - G3(a) G (a)]

f1 = as{uy + upGi (@)} + a(1 — r)azugoE(Ry) + razuyoE(Ry) + E(V)aszGi(a)uy,

f2 = aGi(@)ug us; — ay(1 — Quy — asugz — a(l — r)azu o E(Ry) — raguyoE(Ry)
By applying Rouche’s theorem,

Substituting the value of S(1) in the above equation, we have

(1—29)Q(f1 + 1)

A= (53)
f2
Substituting the value of (53) in the above equation, we have
Zog— 1 + S 7 \"
S(2) = (zo — DQ(f1 fz)z (_) (54)
Zof2 = Zo

which is the probability generating function of number of customers in the queue.
3.1 Some system measures

To shows the performance of the model, the following system measures are derived:

(f2—-f1)
f2

This is obtained by using Q + N(1) =1=Q =1 - N(1)

2. The average number of customers in the queue when the server provides ES
Q{4K0(a3u8 - /1011,14(1118 - 4a3a5u8 - 4'(131115}

4f2

1. The idle probability is Q = YX-} Q,, which leads to, Q =

N, = P[(1) =

9
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where, u;, = (E(X)? — E(X)), uy5 = a4G1 (@), uy6 = asG; (@)

3. The average number of customers in the queue when the server provides OS
Q{4azuisus — AouyaUsGy (@) + 4azu 661 (a) — 4azausGi(a)}

N, = Py(1) = -
4. The average number of customers in the queue when the server is on compulsory vacation
Qasfs
N; =V(1) =
3=V =5 T/,

where, u;; = [(1 —q+ G;(“)]:“lS = [(1 — QK+ G;(“)]:fg = azuy1 [E(V)A3uqs

+(E(V)E(X)/13)2] + Ao@Pusug a6 E(V) + daszauagE(V)[as + as] + 4azasuy,aqa?
E(SDEV) — 4aza*uigas E(V)Gi(a) + 4aza®Gi(a)[(1 — @)K + E(Sy)as]E(V)as

—3a3a2u11E(V)l3E(X)2
5. The average number of customers in the queue when the server is on essential repair
Qfa(1—1)
N,=Ri(1) =—]———7—
f= R =" —

where, f, = 4aaza,u g E(Ry) + 4a?aza;ug E(RD{(1 — q)ay E(Sy) + uyG; (a)}
+4a3a7E(R){ug(1 — q) + asug E(S1)} + 4a3a7E(R){ug(1 — q) + asGi(a) E(S1)}
—a®Aouuiauo0; — a3a?uio[E(R)Asurs + (E(R)E(X)A4)?] — 4Kaza®ujgas E(Ry)
—4a3a,{Kug(1 — @) + uoGi(@) }a’ — 3a?azazue E(RDEX)? A4

6. The average number of customers in the queue when the server is on optional repair

Qfsr

Ns = R;(1) = 24a,F,

where, f5 = adouisaguyg E(Ry) + aujgazag[E(R)Asuyy + (E(RE(X)As5)?]
—4Kaugazag E(R,) — 4azag E(Ry){asug(1 — q) + ausGi(a) } — 4azag E(R,)
{aug(1 — q) + ugusGy(a) } — 4azag E(R){(1 — @)E(S1)ay + usGy (@)} — 4a;
ag E(R){ug(1 — q) + asug E(S1)} — 4uya3agE(R;) — 3uqoazagk (R)E(X)?As

7. The average number of customers in the queue is S = S'(1) = —?ff 1;;;)
—40J)J2

8. The server’s utilization factoris p = 1 — Q

e . S

9. Mean waiting time of a customer is W = =
where, 1" is the effective arrival rate and

4. Numerical illustrations

In this section, numerical study for the model discussed in this paper is carried out
by assuming service times, vacation times and repair time as negative exponential distribution
and batch size as geometric distribution, The parameter values are C; = §(1 — 5)Lj =

1,2,.;0<8<1; EX) =22 g) = %,E(Sl-) = %,E(Ri) = %,Gi*(a) =M =12

5 atp;’
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N 14 N Y
yHi(my) = : yHy(m3) = 2

B*(m)) = ——
YU+ my Y1+t m; Y2 +ms

TABLE 1: System Measuresa = 0.6, =1.0,6 = 0.47,q = 0.4,z = 0. 89,

K=16,1,=1.7,A,=2.0,43=1.4,2,=1.9,4;=1.5,u;, =0.7,u, = 0.3,
Y1=11y,=10

Ao P Q Ny N, N3 Ny Ns S
1.1 ]10.6969 | 0.3656 | 4.5082 |2.3464 | 0.0325 | 0.4028 | 0.6762 | 1.4893
1.2 {0.7201 | 0.3860 | 5.1925 |2.7026 | 0.0374 | 0.4630 | 0.7788 | 1.4106
1.3 10.7432 | 0.4051 | 59041 | 3.0730 | 0.0425 | 0.5256 | 0.8855 | 1.3439
1.4 ]10.7664 | 0.4231 | 6.6404 | 3.4562 | 0.0478 | 0.5904 | 0.9960 | 1.2868
1.5 [ 0.7896 | 0.4400 | 7.3993 | 3.8512 | 0.0533 | 0.6570 | 1.1098 | 1.2373
1.6 | 0.8128 | 0.4560 | 8.1788 | 4.2570 | 0.0589 | 0.7255 | 1.2267 | 1.1940
1.7 [ 0.8360 | 0.4711 | 89773 |4.6726 | 0.0646 | 0.7955 | 1.3465 | 1.1558
1.8 1 0.8591 | 0.4853 | 9.7931 | 5.0972 | 0.0705 | 0.8671 | 1.4689 | 1.1219
1.9 | 0.8823 | 0.4988 | 10.6250 | 5.5302 | 0.0765 | 0.9401 | 1.5936 | 1.0915
2.0 1 0.9055|0.5117 | 11.4717 | 59709 | 0.0826 | 1.0143 | 1.7206 | 1.0641

145 r

Mean waiting time

121

1

1.056

)\*

Figure 1: Mean waiting time against A*

Incorporating the above expression in the formulas in 3.1. The numerical values
of the measures, the ideal probability, the average number of customers, the average number
of customers in the queue when the server provides ES, OS, compulsory vacation, ER, OR,
the server’s utilization factor and the mean waiting time of a customer are obtained using
MATLAB and the values are presented in table 1 and figure 1. This numerical illustration
is to show the practical applicability of the analytical results derived in this paper.
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5. Conclusion

This study corresponds to a single unreliable server non-Markovian queue. The
customers arrive in batches of variable size follows compound Poisson process and the
services are given batches of fixed size follows a general distribution. The arrival rates are
state dependent. The server applies compulsory vacation policy; vacation period is
generally distributed. Breakdown occurs when the server is busy, the number of
breakdowns follows Poisson process. Immediately the server undergoes two types of
repairs called essential and optional. Both repair periods are generally distributed. The
system contains a waiting line of infinite capacity. The model is completely analyzed in
steady state. To show the versatile of the model some numerical illustrations are provided.
The model can be generalized by assuming the general arrival process.
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