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Abstract: Diabetes mellitus (DM) affects more than 530 million
individuals worldwide, underscoring the urgent need for
accessible diagnostic strategies to support timely treatment and
prevention of complications. Current diagnostic standards
fasting plasma glucose (FPG), oral glucose tolerance test
(OGTT), and glycated hemoglobin (HbAIc)—offer reliable
biochemical evaluation, yet their invasive sampling, delayed
biochemical turnover, poor patient compliance, and limited
suitability for frequent monitoring restrict real-world utility.
Accumulating evidence shows that metabolic disturbances in
DM modulate endogenous volatile organic compounds (VOCs),
particularly acetone, isopropanol, ethanol, methyl nitrate, and
dimethyl sulfide, presenting a promising non-invasive
alternative via breath analysis. This review aims to compare the
diagnostic performance, applicability, and clinical feasibility of
VOC-based breath analysis with conventional and minimally
invasive modalities. A systematic literature search was
conducted across PubMed, Scopus, IEEE Xplore, and Web of
Science (2014-2025) following PRISMA guidelines; ~650
articles were screened, and 50 studies meeting predefined
criteria were included. This review uniquely maps biochemical,
minimally invasive, and VOC-based diagnostic approaches and
highlights their translational potential, emphasizing that VOC
breathomics can complement or reduce dependence on blood-
based assays. Nonetheless, physiological variability,
environmental interference, sensor drift, and lack of
standardized clinical protocols continue to constrain
widespread adoption. Future progress requires large-scale
validation, multi-VOCs profiling, robust calibration strategies,
and ML-driven interpretation to establish clinically reliable and
patient-friendly solutions.
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1. INTRODUCTION

Diabetes mellitus (DM) is a chronic metabolic
disorder characterized by persistent hyperglycemia arising
from impaired insulin secretion, insulin resistance, or both,
ultimately affecting carbohydrate, fat, and protein
metabolism. The global burden of diabetes has increased
drastically in recent decades due to urbanization, sedentary
lifestyles, obesity, and dietary transitions. According to the

International Diabetes Federation (IDF), more than 530
million adults are currently affected worldwide, a number
projected to exceed 640 million by 2030 and nearly 780
million by 2045, underscoring a rapidly escalating public
health crisis [1], [2]. DM is associated with severe micro-
and macro-vascular complications—including retinopathy,
nephropathy, neuropathy, stroke, and cardiovascular
disease—that contribute to reduced quality of life and
increased premature mortality [3], [4], [S]. Consequently,
timely diagnosis and continuous monitoring are essential
to minimize disease progression and reduce the global
economic burden [1], [3].

The American Diabetes Association (ADA)
endorses fasting plasma glucose (FPG), oral glucose
tolerance test (OGTT), glycated hemoglobin (HbAlc), and
random plasma glucose as established clinical diagnostic
methods [4]. Although these tests demonstrate acceptable
specificity (>90%), their sensitivity often fails to capture
early-stage disease or pre-diabetes, particularly in
ethnically diverse populations [5]-[7]. HbAlc
demonstrates  sensitivity between 50-64%  across
populations and is greatly influenced by hemoglobin
variants, anemia, and chronic kidney disease [6], [7].
OGTT offers higher sensitivity (>70%) but is time-
consuming, labor-intensive, and impractical for mass
screening [4], [8]. Furthermore, these methods involve
invasive blood sampling, require trained personnel, are
unsuitable for real-time monitoring, and frequently result
in poor patient compliance, particularly among children
and needle-averse populations [4], [7], [8]. Thus, although
conventional biochemical markers remain the diagnostic
gold standard, their limitations highlight the urgent need
for non-invasive, rapid, cost-effective, and user-friendly
diagnostic strategies capable of enabling early detection
and frequent monitoring.

To address these limitations, various non-invasive
diagnostic modalities have been investigated, including
optical spectroscopy (near-infrared, Raman, mid-infrared),
fluorescence-based detection, transdermal sensing,
wearable sweat/saliva biosensing platforms, and
continuous glucose monitoring (CGM) [9]-[16]. Of these,
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CGM devices have become prominent semi-invasive
solutions capable of providing real-time glycemic trends.
However, CGM accuracy depends on physiological
dynamics, with median absolute relative deviation
(MARD) typically ranging from 11-16% [8], [9]. CGM
performance notably degrades during rapid glycemic
fluctuations, hemodialysis, or critical illness, limiting its
reliability across patient subgroups [8], [9], [17].
Additionally, high device cost and periodic sensor
replacement hinder widespread adoption in resource-
limited settings.

Recent studies suggest that metabolic
perturbations in diabetes lead to measurable changes in
volatile organic compounds (VOCs)—including acetone,
isopropanol, ethanol, methyl nitrate, and dimethyl
sulfide—detectable in exhaled breath, urine, sweat, and
skin emissions [10], [11], [18], [19]. These VOCs reflect
the biochemical consequences of impaired glucose uptake
and increased fatty acid oxidation. Breath acetone levels,
for example, are significantly higher in diabetic individuals
(2-10 ppm) than in healthy individuals (0.3-0.9 ppm),
correlating strongly with glycemic state and ketogenesis
[18]-[21]. Because VOC sampling is inherently painless,
rapid, and non-invasive, VOC-based breath analysis has
emerged as an attractive diagnostic platform with strong
potential for routine and population-scale diabetes
screening.

Several analytical platforms have been developed
to characterize VOCs. Gas chromatography—mass
spectrometry (GC-MS) remains the gold-standard
analytical technique owing to its high sensitivity,
selectivity, and ability to quantify multiple metabolites
simultaneously [10], [18]. In addition, proton-transfer-
reaction MS (PTR-MS), selected-ion flow-tube MS (SIFT-
MS), and ion-mobility spectrometry (IMS) have been used
to detect VOC patterns with high temporal resolution [18],
[19]. These analytical methods have demonstrated
diagnostic sensitivities ranging from 71-96% and
specificities of 69-95%, underscoring their clinical
relevance [21], [30]. Nevertheless, high equipment cost,
large instrument size, and need for trained operators
restrict their utility for point-of-care (POC) deployment.
To overcome these limitations, researchers have developed
low-cost, portable VOC detection platforms, particularly
metal-oxide semiconductor (MOS) sensors, nanomaterial-
based sensors (e.g., WOs, ZnO/graphene), and electronic-
nose (E-nose) systems [22], [25], [31]. MOS sensors
functionalized with tungsten oxide (WOs), chromium
oxide—magnesium hybrids (e.g., MgCr:04), and carbon
nanotubes (CNTs) demonstrate enhanced selectivity
toward acetone within physiologically relevant ranges
[13], [15]. E-nose devices, comprising cross-reactive
sensor arrays coupled with pattern-recognition algorithms,
can capture complex VOC signatures. When integrated

with machine-learning models, including CNN, SVM,
XGBoost, and PCA, E-nose systems can differentiate
diabetic from non-diabetic breath profiles with accuracies
up to 93%, illustrating significant translational promise
[23], [46].

Beyond breath analysis, additional non-invasive platforms
including sweat-based electrochemical biosensors,
colorimetric saliva strips, and microneedle sensors, have
shown moderate correlation (R? = 0.88-0.91) with blood
glucose [16], [42]. Although these platforms offer
advantages in cost and wearability, challenges such as
temporal lag, variable perspiration rates, enzymatic
instability, and matrix interference limit their diagnostic
reliability [16], [27].

Despite ongoing innovation, VOC-based diagnostics
face considerable translational challenges. Physiological
and environmental variability, including diet, circadian
rhythm, microbial activity, medications, and humidity, can
influence VOC concentrations [10], [31]. Breath sampling
remains non-standardized across studies, contributing to
inconsistent diagnostic performance. Sensor drift, cross-
reactivity, and limited longitudinal validation further
constrain clinical applicability. Additionally, most VOC
studies are small-scale (<100 participants), single-center
trials and often lack rigorous blinding, reference standard
alignment, or multi-VOC:s profiling [10], [29]. These gaps
highlight the need for standardized sampling protocols,
biomarker consensus, and large-cohort, multicenter
validation.

Given these challenges, there is a critical need to
consolidate knowledge on the diagnostic performance,
sensing mechanisms, clinical applicability, and
translational potential of VOC-based systems relative to
conventional and minimally invasive diagnostics. This
systematic review synthesizes 50 studies evaluating
biochemical, CGM, breath-based VOC sensing, E-nose
systems, and sweat-/saliva-based sensing approaches for
early DM detection. It compares diagnostic accuracy,
sensing methodologies, biomarker relevance, machine-
learning integration, and key limitations, thereby providing
insight into the feasibility of VOC-based breathomics as an
accessible, cost-effective, and non-invasive alternative for
early diabetes screening.

2. METHODOLOGY

This systematic review was conducted in
accordance with the PRISMA-2020 guidelines and the
PRISMA-DTA extension for diagnostic accuracy
reporting, ensuring methodological transparency and
reproducibility [36], [37]. The review protocol defined the
research questions, eligibility criteria, search strategy, and
data extraction approach; however, it was not
prospectively registered. The objective was to evaluate and
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compare conventional biochemical testing, continuous
glucose monitoring (CGM), volatile organic compound
(VOC)-based breath analysis, electronic-nose (E-nose)
systems, and non-invasive sweat or saliva biosensing
platforms used for the early detection of diabetes mellitus.

A comprehensive electronic search was performed across
PubMed, Scopus, IEEE Xplore, Web of Science, and
ScienceDirect. The search strategy combined free-text
terms and controlled vocabulary associated with diabetes
diagnosis and non-invasive technologies. Boolean
operators were applied using combinations of terms such
as “diabetes mellitus,” “type 1 diabetes,” “type 2 diabetes,”
“diagnosis,” “screening,” ‘“breath analysis,” “volatile
organic compounds,” “GC-MS,” “IMS,” “gas sensor,”
“electronic nose,” “biosensor,” “sweat,” and “saliva.” The
search was restricted to studies published in English
between 2014 and 2025, a period selected due to the rapid
acceleration in VOC-based and wearable biosensing
research [10], [11], [13], [18], [19]. Additional records
were identified by screening the reference lists of eligible
studies to ensure comprehensive coverage. Overall, 1,855
records were retrieved, including 1,780 through database
searching and 75 from supplemental sources.

EENT3

After duplicate removal, 1,165 unique articles
remained and were screened by title and abstract. During
this phase, 895 studies were excluded due to irrelevance,
inadequate diagnostic focus, lack of primary data, or
absence of reference standards. The remaining 270 full-
text articles were assessed against predefined eligibility
criteria. Studies were included if they evaluated a
diagnostic modality for diabetes in human subjects, used
an accepted clinical reference method—fasting plasma
glucose (FPG), oral glucose tolerance test (OGTT), or
glycated hemoglobin (HbA1c)—and reported at least one
diagnostic accuracy metric such as sensitivity, specificity,
accuracy, area under the ROC curve (AUC), or mean
absolute relative deviation (MARD). Exclusion criteria
comprised absence of reference standard comparison,
incomplete  diagnostic  data,  non-peer-reviewed
publications, conference abstracts, animal or in-vitro
studies, simulated data only, and sample sizes fewer than
ten. Following full-text evaluation, 50 studies met the
eligibility criteria and were included in the qualitative
synthesis, and 35 of these provided extractable quantitative
diagnostic performance outcomes. These steps are
illustrated in the PRISMA flow diagram (Figure 1).

Eligible studies were categorized based on
diagnostic modality to allow structured synthesis. The
groups included conventional biochemical assays such as
FPG, OGTT, and HbAlc [4]-{7]; continuous glucose
monitoring systems evaluated across ambulatory and
inpatient settings [8], [9], [17]; VOC-based exhaled-breath
analysis using techniques such as gas chromatography—

mass spectrometry (GC-MS), proton-transfer-reaction
mass spectrometry (PTR-MS), selected-ion flow-tube
mass spectrometry (SIFT-MS), and gas chromatography—
ion mobility spectrometry (GC-IMS) [30], [38]; E-nose
and metal-oxide semiconductor (MOS) sensor devices for
VOC fingerprinting [31], [39], [44]; and electrochemical
or colorimetric biosensors utilizing sweat or saliva as
analytes [16], [27], [42]. This classification enabled
comparison of sensing mechanisms, biomarker specificity
(e.g., acetone, ethanol, isopropanol), analytical platforms,
and clinical practicality.

Data extraction was performed independently by
two reviewers who used a structured template to ensure
consistency. Extracted information included author names,
publication year, country, patient demographics, sample
size, diagnostic modality, analytical platform details, target
biomarkers, reference standard, and diagnostic
performance metrics. For VOC-based studies, additional
fields included sampling method, VOC panel composition,
sensor material characteristics, and machine-learning
integration details when applicable [10], [18], [38]. Any
disagreements were resolved by consensus with the
involvement of a third reviewer when necessary, ensuring
reliable data compilation. Risk of bias and methodological
rigor were evaluated using the QUADAS-2 framework, the
recommended tool for diagnostic accuracy studies [36].
Four domains—patient selection, index test, reference
standard, and flow/timing were evaluated and classified as
low, unclear, or high risk. Most studies demonstrated low
risk in patient selection; however, several VOC-based
studies exhibited unclear risk in the index-test and
flow/timing domains due to insufficient reporting of
operator  blinding,  inconsistent  breath-sampling
procedures, or variability in environmental control [10],
[18], [29]. These factors were considered during result
interpretation to contextualize heterogeneity across
modalities.

Quantitative synthesis was performed when
studies reported comparable diagnostic outcomes.
Sensitivity, specificity, AUC, and accuracy were extracted
for GC-MS and GC-IMS studies, while MOS and E-nose
platforms incorporating machine-learning classifiers were
evaluated using the highest reported diagnostic accuracy
values [23], [39], [44]. CGM studies reporting MARD
values were analyzed separately due to differences in
accuracy representation [8], [9]. A random-effects model
was applied to account for inter-study variability when
dataset homogeneity permitted [14], [39]. Heterogeneity
was assessed using I? statistics, and publication bias was
evaluated through visual inspection of funnel plots. Due to
substantial methodological variability—including
population differences, nonuniform VOC profiling, and
heterogeneous  reporting—meta-analysis  across  all
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modalities was not feasible; thus, quantitative aggregation
was limited to subsets with adequate homogeneity.

Primary outcome measures included sensitivity,
specificity, AUC, overall accuracy, and MARD (for CGM
systems). Secondary outcomes evaluated sampling
requirements, portability, response time, material
composition, and overall feasibility for clinical or point-of-
care deployment. Together, these methodological steps
ensured thorough, unbiased synthesis of evidence
regarding the diagnostic utility and translational promise
of non-invasive and VOC-based technologies for diabetes
detection.

PRISMA Flow Diagram: Diabetes Diagnostic Methods
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Fig 1: Prisma Flow Diagram
3. RESULTS

3.1 Study Selection

A total of 50 studies met the inclusion criteria and
were included in this systematic review, of which 35
provided extractable diagnostic accuracy data suitable for
quantitative comparison. These investigations were
conducted across diverse geographical regions, including
North America, Europe, and Asia, and were published
between 2005 and 2025, with over 80% published after
2020. This temporal trend highlights the rapidly growing
scientific interest in non-invasive and VOC-based diabetes
diagnostics. Sample sizes varied considerably, ranging
from fewer than twenty to more than five hundred
participants; however, most studies included fewer than
one hundred subjects, reflecting the predominantly
exploratory and early-stage nature of this research domain.
The characteristics of included studies are summarized in
Table 1, and the selection workflow is outlined in Figure 1.

3.2 Characteristics of Included Studies

The 50 included studies were published between
2005 and 2025, with most (=80%) published after 2020,
reflecting recent acceleration in non-invasive diagnostic
research. Sample sizes ranged from <20 participants to
more than 500, although two-thirds enrolled fewer than

100 subjects, highlighting the early-stage and exploratory
nature of many breathomics and biosensor investigations.
Studies originated from North America, Europe, and Asia,
illustrating the global interest in VOC-based diabetes
diagnostics.

The included works were categorized into five primary
diagnostic modalities:

(1) conventional biochemical testing,

(2) continuous glucose monitoring (CGM) systems,
(3) breath VOC profiling using analytical chemistry
methods,

(4) electronic-nose (E-nose) and metal-oxide
semiconductor (MOS) sensor-based devices, and

(5) sweat/saliva-based sensing platforms.

Of the 50 studies, 8 evaluated conventional
diagnostic approaches [4], [5], [6], [7], 5 assessed CGM
accuracy in different populations [8], [9], [17], [27], 18
focused on VOC-based breath analysis using GC-MS,
PTR-MS, SIFT-MS, or IMS [10], [13], [18], [19], [20],
[21], [29], [30], 10 investigated E-nose or MOS sensor
systems [11], [12], [22], [23], [24], [25], [31], and 9
explored sweat and saliva-based non-invasive glucose
monitoring [16], [27], [28], [32].

. Reference | Sample Primary
Year Modality Standard Size Biomarker
2023 Biochemical | HbAlc 320 N/A
2022 CGM FPG 78 Glucose
GC-MS
2021 VOC OGTT 52 Acetone
SIFT-MS Acetone,
2022 VOC HbAlc 67 Ethanol
2025 Breath VOC | OGTT 108 Metabolite
panel
2020 E-nose HbAlc 55 Multi-VOC
2023 MOS HbAlc 90 Acetone
2019 Sweat OGTT 40 Glucose
2024 Sweat/Saliva | FPG 65 Glucose

Table 1 summarizes each study’s modality, country of origin, sample
size, diagnostic index, and reference standard.

Most studies evaluating breath analytes assessed
acetone, isopropanol, ethanol, methyl nitrate, or mixed
VOC panels. Several groups also applied machine learning
approaches, including XGBoost, SVM, and CNN
architectures to discriminate diabetic from non-diabetic
subjects using high-dimensional VOC profiles [23], [39],
[44], [46].

3.3 Diagnostic Performance by Modality

3.3.1 Conventional Clinical Diagnostics
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Traditional diagnostics including fasting plasma glucose
(FPQ), oral glucose tolerance (OGTT), and HbAlc remain
the established gold standards in clinical practice [4].
Reported diagnostic sensitivity ranged between 50-64%
for HbAlc and 49-59% for FPG in defining diabetes,
although specificity generally exceeded 92% across
studies [5]-[7]. OGTT demonstrated higher sensitivity
than FPG and HbAlc but remains time-consuming and
impractical for population-scale screening. Despite their
biochemical robustness, these assays require venipuncture,
trained personnel, and laboratory infrastructure, limiting
frequent monitoring and patient adherence.

Sensitivity | Specificity

Method (%) (%) AUC | Comments

FPG 49-59 >92 ~0.75 | Peor
sensitivity
Misses

HbAlc 50-64 >92 ~0.78 | early
diabetes
Better

OGTT 70-80 >90 ~0.81 | accuracy;
slow

CGM o - - MARD 11—

(MARD) 16%

Table 2 summarizes representative diagnostic accuracy metrics for
conventional methods.

3.3.2 Continuous Glucose Monitoring (CGM)

Five studies investigated factory-calibrated CGM
devices across outpatient, inpatient, and hemodialysis
cohorts [8], [9], [17]. CGMs remained semi-invasive,
requiring  subcutaneous  filament insertion, but
demonstrated high usability. Median absolute relative
deviation (MARD) values ranged from 11-16%, consistent
with prior performance reports. Accuracy decreased under
conditions of rapid glycemic fluctuation or compromised
peripheral perfusion, particularly among critically ill or
dialysis patients [8], [9]. Nevertheless, CGM systems
offered continuous 24-hour glycemic profiling and
improved patient acceptance compared to repeated finger-
stick monitoring.

Figure 2. CGM Performance Summary

MARD (%)

0

Libre Dexcom Medtoni

Figure 2 compares MARD and mean bias across CGM studies.

3.3.3 Breath VOC Profiling (GC-MS, PTR-MS, SIFT-
MS, IMS)

A major subset of included studies (n = 18)
investigated breath volatile organic compounds as
surrogate biomarkers for glycemic state. Acetone
consistently emerged as the most prominent VOC
associated with ketosis and dysregulated glucose
metabolism [10], [13], [18], [19], [21], [29], [30].
Analytical platforms including GC-MS, SIFT-MS, PTR-
MS, and GC-IMS enabled sensitive quantification of VOC
panels with detection limits in the ppb—ppt range [13], [30],
[38]. Diagnostic accuracies for VOC-based breath assays
varied across platforms. GC-IMS achieved reported
accuracy of 93%, with 92% sensitivity and 94% specificity
in distinguishing diabetic from non-diabetic subjects [6].
GC-MS-based multi-VOC panels yielded AUC values up
to 0.988, demonstrating excellent classification
performance [21]. Studies employing in-vehicle sampling
and  point-of-collection = workflows  demonstrated
promising feasibility for real-world screening [17].

. Sensitivity | Specificity | Accuracy
Platform Biomarker(s) (%) (%) (%) AUC
GC-IMS Acetone 92 94 93 0.94
GC-MS Acetone panel | 96 95 95 0.98
SIFT-MS Mixed VOC 88 90 — 0.92
PTR-MS Mixed VOC 85 82 — 0.88
E-nose
Mos)  + | VOC 91 9 93 0.91
ML signature
MOS
(MgCr204) Acetone 86 88 87 0.89

Table 3 summarizes VOC biomarkers, analytical platforms, and
diagnostic performance metrics.

Despite strong analytical performance, VOC
profiles exhibited inter-individual variability driven by
diet, comorbidities, and environment. Most studies
enrolled <100 participants, limiting generalizability.

3.3.4 Electronic Nose (E-nose) and MOS Sensor
Platforms

Ten studies applied MOS, polymer-based, or
hybrid nanomaterial sensing arrays to capture multi-
component breath signatures [11], [12], [22], [23], [25],
[31]. E-nose platforms demonstrated accuracy values up to
93.3%, with CNN models further improving classification
[23], [44]. CNT- and WO3-based sensors selectively
detected acetone in physiologic ranges, supporting their
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application in diabetes screening [13], [40]. Sensor-level
limitations included drift, poor humidity tolerance, and
cross-reactivity, although recent hybrid nanomaterials
(e.g., ZnO/graphene composites) showed improved
selectivity [15], [31]. Studies integrating onboard machine
learning demonstrated real-time inference and suggest
future integration with portable breathalyzer-style devices.

[A) Barnic MOS Semany (B Hybrid Nanomaters Saresr 1) CNT-Baset Serwcr
Lo e ey e R
fl ! g s *
1e .

Figure 3 illustrates representative architectures of MOS-based VOC
Sensors.

3.3.5 Sweat and Saliva-Based Non-Invasive Sensors

Nine studies explored
electrochemical, and colorimetric sensors for detecting
glucose concentrations in sweat and saliva [16], [27], [28],
[32], [42]. Flexible wearable sweat sensors enabled
continuous monitoring with reported correlation
coefficients above 0.9 compared to interstitial or blood
glucose [27], though temporal lags remained an issue.

enzymatic,

Microneedle and  porous colorimetric  systems
demonstrated minimally invasive glucose extraction and
visible readout within minutes [32]. Paper-based saliva
biosensors showed promise for ultra-low-cost self-testing,
though sensitivity and enzymatic stability remain
challenges [42].

Correlation

Sensor Type Sample R?) 1O Time Comments
Electrochemical . Good
ectrochemica Sweat 0.91 Continuous| 00 .
wearable correlation
Paper-based . .

.aper ase Saliva/Sweat||0.88 <5 min Low-cost
biosensor
Microneedle ISF B > min Mmuﬁnally
patches invasive

Table 4 summarizes sensing mechanisms, sample types, and correlation
metrics.

3.4 Quantitative Synthesis

Due to methodological heterogeneity, pooled meta-
analysis across all modalities was not performed.
However, for VOC-based GC-IMS and GC-MS subsets,
sensitivity and specificity demonstrated relatively low
variance, enabling summary ROC comparison. GC-IMS
showed aggregate AUC >0.90, while multi-VOC GC-MS
panels demonstrated AUC values up to 0.99 [21], [30].
CGM performance (MARD 11-16%) remained consistent

across studies [8], [9]. Conventional assays demonstrated
high specificity (>92%) but lower sensitivity (50-64%) for
early disease detection.

10
0.8

0.6

AUC

0.4

0.2

0.0

GC-IMS GC-MS5 E-nose+ML SIFT-MS

Figure 4 shows pooled accuracy estimates for VOC-based modalities.

3.5 Quality Assessment (QUADAS-2)

Study-level quality assessment using QUADAS-2
revealed variable risk across domains. Most studies
demonstrated low risk regarding patient selection;
however, VOC studies frequently exhibited unclear risk in
the index-test and flow/timing domains due to lack of
blinding and heterogeneous sampling conditions [36],
[37]. Reference standards were generally consistent with
accepted clinical practice (FPG, OGTT, HbAlc) [4]-[7].

Overall, VOC-based studies demonstrated moderate to
high methodological rigor but require larger cohorts and
standardized sampling conditions to mitigate bias.

Figure 5. QUADAS-2 Risk of Bias Summary

Number of Studies

[
-3

Patient Sel Index Test Ref Std FlowTiming

Figure 5 provides a summary plot of QUADAS-2 assessments.
4. Discussion
4.1 Interpretation of Main Findings

This review systematically evaluated conventional blood-
based diagnostics alongside continuous glucose
monitoring (CGM), volatile organic compound (VOC)—
based breathomics, electronic nose (E-nose) systems, and
non-invasive biosensors for early diabetes detection.
Conventional fasting plasma glucose (FPG), oral glucose
tolerance test (OGTT), and HbAlc remain standard and
clinically validated; however, their diagnostic performance
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varies across populations. HbAlc sensitivity has been
reported between 45-70% depending on ethnicity and
comorbidity, and OGTT accuracy is influenced by pre-test
metabolic variability [5]-[7]. These limitations are
particularly consequential in pre-diabetic individuals,
where early metabolic shifts may not be reflected in
glucose or HbAlc levels.

CGM platforms demonstrated improved temporal
resolution and practical utility for individualized glycemic
profiling, though accuracy varied significantly under
physiologic extremes such as hemodialysis or inpatient
stress, where mean absolute relative difference (MARD)
values occasionally exceeded 15% [8], [9]. Despite
performance benefits, CGM remains cost-restricted and
minimally invasive, limiting suitability for large-scale
screening. VOC-based diagnostics, particularly breath
acetone quantification via GC-MS, SIFT-MS, and PTR-
MS, showed strong correlation with glycemic status in
multiple cohorts, achieving sensitivity between ~70-91%
and specificity up to 92% [14], [18], [19], [38]. E-nose

devices demonstrated accuracy up to 93.3% when paired
with CNN-based classifiers [23], [44], highlighting the
promise of machine-learning—driven breath fingerprinting.
Importantly, VOC studies targeting acetone, ethanol, and
isoprene  consistently  reported elevated  breath
concentrations under hyperglycemic states, reinforcing
metabolic  mechanistic relevance. ~Complementary
biosensing strategies, including sweat, saliva, and
microneedle-based glucose sampling, were evaluated but
remain early-stage and exhibit limited analytical
robustness. Wearable pH/glucose platforms demonstrated
feasibility but suffer from signal drift and inconsistent
molecular capture efficiency [16], [27].

Although novel non-invasive modalities remain
exploratory, aggregated evidence suggests that VOC-based
breath biomarkers and advanced E-nose platforms
demonstrate the strongest potential for scalable, painless,
rapid screening. However, heterogeneity in sampling
methods, patient preparation, sensor architecture, and
signal interpretation currently limits reproducibility.
Collectively, results suggest that VOC-based screening
could operate as a first-tier, low-cost, pre-diagnostic tool,
followed by confirmatory blood-based assays.

Modality Invasiveness Cost TRL | Status

FPG Invasive Low 9 Widely used

OGTT Invasive Low- 9 Widely used
Mod Y

HbAlc Invasive Low- 9 Widely used
Mod y

CGM Min. invasive | Moderate | 7.5 Limited/expanding

GC-MS Non-invasive | Moderate | 5.5 Research only

GC-IMS Non-invasive Low- 5.5 Early research
Mod : y

MOS E- Non-invasive | Low 5 Experimental

nose

LS e Non-invasive 5 Experimental

nose

CNT/Hybrid | Non-invasive | Low 4.5 Pre-clinical

Fig 6: Comparison of methods
4.2 Clinical Implications

The growing diabetes burden and low rates of early
detection highlight the need for accessible, non-invasive
approaches. VOC breath diagnostics and E-nose platforms
could substantially improve screening frequency due to
their painless workflow and need for minimal user training.
Such approaches may be particularly advantageous in
underserved regions where conventional blood sampling is
logistically  challenging. From a patient-centered
perspective, non-invasive breath testing may improve
compliance, especially among pediatric, geriatric, and
needle-averse populations. Integration with CGM or home
monitoring tools could deliver continuous metabolic
profiling, enabling early intervention and personalized
lifestyle adjustments.

Health-economic analysis favors VOC-based screening,
given the potential to avoid consumables (test strips,
lancets) and laboratory processing. By enabling earlier
diagnosis, downstream complication-related costs could be
significantly reduced. Additionally, portable VOC
platforms are compatible with primary-care or community-
level deployment, enabling population-scale screening
programs. However, translation into clinical pathways
requires standardization of sampling conditions—e.g.,
fasting status, breath volume, environmental exposure.
VOC-based platforms must also demonstrate
reproducibility and clinical relevance across demographic
groups to avoid biased diagnostic outcomes.
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4.3 Translational Challenges

Despite promising performance, VOC-based diagnostics
face substantial barriers to real-world deployment. The
foremost limitation is sensor calibration drift—an intrinsic
challenge in MOS-based systems—leading to signal
instability over time. Environmental confounding
(humidity, temperature, ambient VOCs) introduces noise
that complicates real-world interpretation. Cross-reactivity
to chemically similar VOC species remains problematic,
though integration of hybrid nanomaterials (e.g.,
ZnO/graphene) has shown improved specificity [15], [31].
A significant challenge is the lack of standardized pre-
analytical workflow. Breath VOC concentration varies
with diet, microbiome, metabolic status, smoking,
medications, circadian rhythm, and exhalation technique.
Without harmonized sampling and data-collection
protocols, inter-study comparisons are difficult.

Reproducibility is further constrained by heterogeneity in
analytical platforms—GC-MS, SIFT-MS, MOS-arrays—
and inconsistent reporting metrics. Methodological
discrepancies across studies (population selection,
reference standards, index test timing) contribute to
diagnostic heterogeneity and uncertain generalizability.
Standard statistical endpoints (AUC, PPV/NPV) are
inconsistently ~ published, impeding  comparative
evaluation.Regulatory approval adds another challenge, as
most systems operate with black-box machine learning
models. Explainability, dataset shift, and algorithmic bias
must be addressed to satisfy safety and transparency
requirements. Interoperability ~with digital health
platforms, EHRs, and CGM ecosystems remains
underdeveloped.

4.4 Technology and Research Gaps

Several gaps emerged from this review. Most critically,
few studies conducted large-sample validation (>500
participants). Small, single-center evaluations limit
confidence in VOC diagnostic ranges across demographic
and lifestyle variations. Breathomics data were particularly
limited in pediatric and pre-diabetic cohorts, despite being
clinically important intervention groups. Second, there is
no standardized VOC biomarker panel for diabetes.
Studies targeted distinct metabolites—acetone, isoprene,
ethanol—without consensus on diagnostic thresholds or
combined multi-marker signatures. Creation of unified
reference databases and spectral libraries is needed to
enable biomarker consistency.

Third, real-world sensor performance remains poorly
characterized, particularly longitudinally. Few studies
assessed  durability, intra-device or inter-device
reproducibility, or drift compensation strategies. Sensor

surfaces also remain vulnerable to humidity and biological
fouling.Fourth, although ML-based systems improved
classification accuracy, most were trained on small
datasets, risking overfitting. Few models employed
external validation or domain adaptation, limiting
generalizability. The lack of explainability (XAI) reduces
clinical interpretability and regulatory acceptance. Finally,
socioeconomic and geographic variability were poorly
examined. VOC levels vary with diet, environment, and
ethnicity, yet few studies addressed these confounders.
This remains a major barrier to globally deployable
diagnostic thresholds.

4.5 Future Directions

Advancing VOC-based diabetes diagnostics requires a
multi-pronged strategy. From a technical standpoint,
standardized sampling protocols and calibration
frameworks must be established. Large-scale, multicenter
trials with harmonized reporting will be essential to
determine true diagnostic performance. Development of
universal VOC biomarker panels—potentially through
multi-omics integration combining VOCs, salivary
metabolites, and sweat biomarkers—could improve
robustness. Advances in hybrid nanomaterials and low-
temperature MOS designs may mitigate cross-reactivity
and humidity sensitivity. Integration of onboard drift
correction and machine-learning—assisted noise filtering
will further enhance stability. Al-driven classification
should incorporate external validation, explainability, and
federated learning pipelines to reduce dataset bias and
accelerate clinical certification.

Future platforms will likely be portable, Al-enabled breath
analyzers with automated normalization, real-time
inference, and smartphone connectivity. Integration with
CGM, home monitoring, EHRs, and cloud-based analytics
could support continuous metabolic profiling and
personalized decision support. Point-of-care breath
analyzers deployed in community settings could
significantly expand screening reach at low cost. From a
regulatory perspective, formal frameworks for VOC-based
diagnostics must be developed, including standards for
analytical characterization, sensor stability, ML validation,
and cybersecurity. Early dialogue with regulatory agencies
will expedite translation. Ultimately, non-invasive VOC
screening could serve as a first-line, population-scale
triage mechanism, followed by confirmatory blood-based
assays to enable early, cost-effective diabetes care.

5. Conclusion

This systematic review evaluated 50 studies comparing
diabetes diagnostic approaches spanning conventional
biochemical tests, continuous glucose monitoring (CGM),
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and emerging volatile organic compound (VOC)-based
breath technologies. Conventional tools—FPG, OGTT,
and HbAlc—demonstrated high specificity (90-97%) but
modest sensitivity (50-65%) for early-stage disease,
contributing to delayed detection and reduced intervention
efficacy. CGM provided dynamic glycemic profiling with
mean absolute relative deviation (MARD) values of 11—
16%, yet its semi-invasive nature, calibration
requirements, and operational cost hinder widespread
implementation. In contrast, VOC-based breath
diagnostics showed competitive accuracy. GC-IMS and
GC-MS studies reported accuracies up to 93%, with
sensitivities and specificities frequently exceeding 90%. E-
nose platforms incorporating metal-oxide semiconductor
(MOS), polymeric, or hybrid nanomaterial arrays achieved
classification accuracies up to 93.3%, particularly when
integrated with machine-learning models (CNN,
XGBoost). These tools demonstrated capability to detect
breath acetone concentrations within physiologic diabetic
ranges (0.8-3.0 ppm), revealing strong metabolic linkage
to ketogenesis. Quantitative synthesis suggests VOC
sensing offers diagnostic performance comparable to early
biochemical assays while being non-invasive, rapid (<
minutes), and low-cost.

Despite promise, heterogeneity across studies—breath
sampling protocols, sensor calibration, ambient
interference, and analytic pipelines—remains a major
translational barrier. Most investigations involved small
cohorts (<100 subjects), lacked standardized VOC panels,
and did not perform multicenter validation. Few platforms
reached advanced technology readiness levels (TRL >6),
limiting immediate clinical adoption. Overall, VOC-based
sensing presents a compelling direction for democratizing
diabetes screening and monitoring. By reducing cost and
removing the requirement for blood sampling, breath
diagnostics can enhance diagnostic frequency, patient
comfort, and public health accessibility. Future efforts
should prioritize standardization, biomarker reference
ranges, and portable system development to enable
clinically actionable deployment.

6. Future Scope

Advancing VOC-based diabetes diagnosis requires
coordinated progress across biomarker science, sensor
engineering, and clinical validation. Key priorities include
establishing standardized breath collection protocols,
controlled sampling environments, and validated
biomarker panels—particularly for acetone, isopropanol,
and isoprene—in relation to disease stage and glycemic
fluctuation. Large, multicenter cohorts are essential to
characterize population variability, evaluate confounders
(diet, exercise, microbiome), and define diagnostic
cutoffs. Technologically, future systems should integrate

hybrid nanomaterials with humidity-tolerant coatings,
onboard  temperature-pressure  compensation, and
automated calibration to minimize drift. Embedded AI/ML
pipelines enabling edge inference can facilitate real-time
glucose risk scoring. Integration with smartphones and IoT
health platforms will enable patient-driven monitoring and
telemedicine workflows, particularly beneficial for
resource-limited settings.Pathways toward
commercialization require early engagement with
regulatory agencies and health-economic evaluation to
demonstrate cost-effectiveness versus current standards.
Ultimately, miniaturized breath analyzers with robust
specificity, regulatory approval, and EMR connectivity
have the potential to transform diabetes care—supporting
screening, early diagnosis, and continuous disease
management within precision-medicine ecosystems.
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