
A Systematic Review of Conventional and VOC-Based Non-

Invasive Technologies for Early and Rapid Detection of Diabetes 

Mellitus 

Abstract: Diabetes mellitus (DM) affects more than 530 million 

individuals worldwide, underscoring the urgent need for 

accessible diagnostic strategies to support timely treatment and 

prevention of complications. Current diagnostic standards 

fasting plasma glucose (FPG), oral glucose tolerance test 

(OGTT), and glycated hemoglobin (HbA1c)—offer reliable 

biochemical evaluation, yet their invasive sampling, delayed 

biochemical turnover, poor patient compliance, and limited 

suitability for frequent monitoring restrict real-world utility. 

Accumulating evidence shows that metabolic disturbances in 

DM modulate endogenous volatile organic compounds (VOCs), 

particularly acetone, isopropanol, ethanol, methyl nitrate, and 

dimethyl sulfide, presenting a promising non-invasive 

alternative via breath analysis. This review aims to compare the 

diagnostic performance, applicability, and clinical feasibility of 

VOC-based breath analysis with conventional and minimally 

invasive modalities. A systematic literature search was 

conducted across PubMed, Scopus, IEEE Xplore, and Web of 

Science (2014–2025) following PRISMA guidelines; ~650 

articles were screened, and 50 studies meeting predefined 

criteria were included. This review uniquely maps biochemical, 

minimally invasive, and VOC-based diagnostic approaches and 

highlights their translational potential, emphasizing that VOC 

breathomics can complement or reduce dependence on blood-

based assays. Nonetheless, physiological variability, 

environmental interference, sensor drift, and lack of 

standardized clinical protocols continue to constrain 

widespread adoption. Future progress requires large-scale 

validation, multi-VOCs profiling, robust calibration strategies, 

and ML-driven interpretation to establish clinically reliable and 

patient-friendly solutions. 

Keywords: Diabetes Mellitus, Volatile Organic Compounds 

(VOCs), Non-invasive Diagnostics, Breath Analysis, Gas 
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1. INTRODUCTION 

Diabetes mellitus (DM) is a chronic metabolic 

disorder characterized by persistent hyperglycemia arising 

from impaired insulin secretion, insulin resistance, or both, 

ultimately affecting carbohydrate, fat, and protein 

metabolism. The global burden of diabetes has increased 

drastically in recent decades due to urbanization, sedentary 

lifestyles, obesity, and dietary transitions. According to the 

International Diabetes Federation (IDF), more than 530 

million adults are currently affected worldwide, a number 

projected to exceed 640 million by 2030 and nearly 780 

million by 2045, underscoring a rapidly escalating public 

health crisis [1], [2]. DM is associated with severe micro- 

and macro-vascular complications—including retinopathy, 

nephropathy, neuropathy, stroke, and cardiovascular 

disease—that contribute to reduced quality of life and 

increased premature mortality [3], [4], [5]. Consequently, 

timely diagnosis and continuous monitoring are essential 

to minimize disease progression and reduce the global 

economic burden [1], [3]. 

The American Diabetes Association (ADA) 

endorses fasting plasma glucose (FPG), oral glucose 

tolerance test (OGTT), glycated hemoglobin (HbA1c), and 

random plasma glucose as established clinical diagnostic 

methods [4]. Although these tests demonstrate acceptable 

specificity (>90%), their sensitivity often fails to capture 

early-stage disease or pre-diabetes, particularly in 

ethnically diverse populations [5]–[7]. HbA1c 

demonstrates sensitivity between 50–64% across 

populations and is greatly influenced by hemoglobin 

variants, anemia, and chronic kidney disease [6], [7]. 

OGTT offers higher sensitivity (>70%) but is time-

consuming, labor-intensive, and impractical for mass 

screening [4], [8]. Furthermore, these methods involve 

invasive blood sampling, require trained personnel, are 

unsuitable for real-time monitoring, and frequently result 

in poor patient compliance, particularly among children 

and needle-averse populations [4], [7], [8]. Thus, although 

conventional biochemical markers remain the diagnostic 

gold standard, their limitations highlight the urgent need 

for non-invasive, rapid, cost-effective, and user-friendly 

diagnostic strategies capable of enabling early detection 

and frequent monitoring. 

To address these limitations, various non-invasive 

diagnostic modalities have been investigated, including 

optical spectroscopy (near-infrared, Raman, mid-infrared), 

fluorescence-based detection, transdermal sensing, 

wearable sweat/saliva biosensing platforms, and 

continuous glucose monitoring (CGM) [9]–[16]. Of these, 
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CGM devices have become prominent semi-invasive 

solutions capable of providing real-time glycemic trends. 

However, CGM accuracy depends on physiological 

dynamics, with median absolute relative deviation 

(MARD) typically ranging from 11–16% [8], [9]. CGM 

performance notably degrades during rapid glycemic 

fluctuations, hemodialysis, or critical illness, limiting its 

reliability across patient subgroups [8], [9], [17]. 

Additionally, high device cost and periodic sensor 

replacement hinder widespread adoption in resource-

limited settings. 

Recent studies suggest that metabolic 

perturbations in diabetes lead to measurable changes in 

volatile organic compounds (VOCs)—including acetone, 

isopropanol, ethanol, methyl nitrate, and dimethyl 

sulfide—detectable in exhaled breath, urine, sweat, and 

skin emissions [10], [11], [18], [19]. These VOCs reflect 

the biochemical consequences of impaired glucose uptake 

and increased fatty acid oxidation. Breath acetone levels, 

for example, are significantly higher in diabetic individuals 

(2–10 ppm) than in healthy individuals (0.3–0.9 ppm), 

correlating strongly with glycemic state and ketogenesis 

[18]–[21]. Because VOC sampling is inherently painless, 

rapid, and non-invasive, VOC-based breath analysis has 

emerged as an attractive diagnostic platform with strong 

potential for routine and population-scale diabetes 

screening. 

Several analytical platforms have been developed 

to characterize VOCs. Gas chromatography–mass 

spectrometry (GC–MS) remains the gold-standard 

analytical technique owing to its high sensitivity, 

selectivity, and ability to quantify multiple metabolites 

simultaneously [10], [18]. In addition, proton-transfer-

reaction MS (PTR-MS), selected-ion flow-tube MS (SIFT-

MS), and ion-mobility spectrometry (IMS) have been used 

to detect VOC patterns with high temporal resolution [18], 

[19]. These analytical methods have demonstrated 

diagnostic sensitivities ranging from 71–96% and 

specificities of 69–95%, underscoring their clinical 

relevance [21], [30]. Nevertheless, high equipment cost, 

large instrument size, and need for trained operators 

restrict their utility for point-of-care (POC) deployment. 

To overcome these limitations, researchers have developed 

low-cost, portable VOC detection platforms, particularly 

metal–oxide semiconductor (MOS) sensors, nanomaterial-

based sensors (e.g., WO₃, ZnO/graphene), and electronic-

nose (E-nose) systems [22], [25], [31]. MOS sensors 

functionalized with tungsten oxide (WO₃), chromium 

oxide–magnesium hybrids (e.g., MgCr₂O₄), and carbon 

nanotubes (CNTs) demonstrate enhanced selectivity 

toward acetone within physiologically relevant ranges 

[13], [15]. E-nose devices, comprising cross-reactive 

sensor arrays coupled with pattern-recognition algorithms, 

can capture complex VOC signatures. When integrated 

with machine-learning models, including CNN, SVM, 

XGBoost, and PCA, E-nose systems can differentiate 

diabetic from non-diabetic breath profiles with accuracies 

up to 93%, illustrating significant translational promise 

[23], [46]. 

Beyond breath analysis, additional non-invasive platforms 

including sweat-based electrochemical biosensors, 

colorimetric saliva strips, and microneedle sensors, have 

shown moderate correlation (R² ≈ 0.88–0.91) with blood 

glucose [16], [42]. Although these platforms offer 

advantages in cost and wearability, challenges such as 

temporal lag, variable perspiration rates, enzymatic 

instability, and matrix interference limit their diagnostic 

reliability [16], [27]. 

Despite ongoing innovation, VOC-based diagnostics 

face considerable translational challenges. Physiological 

and environmental variability, including diet, circadian 

rhythm, microbial activity, medications, and humidity, can 

influence VOC concentrations [10], [31]. Breath sampling 

remains non-standardized across studies, contributing to 

inconsistent diagnostic performance. Sensor drift, cross-

reactivity, and limited longitudinal validation further 

constrain clinical applicability. Additionally, most VOC 

studies are small-scale (<100 participants), single-center 

trials and often lack rigorous blinding, reference standard 

alignment, or multi-VOCs profiling [10], [29]. These gaps 

highlight the need for standardized sampling protocols, 

biomarker consensus, and large-cohort, multicenter 

validation. 

Given these challenges, there is a critical need to 

consolidate knowledge on the diagnostic performance, 

sensing mechanisms, clinical applicability, and 

translational potential of VOC-based systems relative to 

conventional and minimally invasive diagnostics. This 

systematic review synthesizes 50 studies evaluating 

biochemical, CGM, breath-based VOC sensing, E-nose 

systems, and sweat-/saliva-based sensing approaches for 

early DM detection. It compares diagnostic accuracy, 

sensing methodologies, biomarker relevance, machine-

learning integration, and key limitations, thereby providing 

insight into the feasibility of VOC-based breathomics as an 

accessible, cost-effective, and non-invasive alternative for 

early diabetes screening. 

2. METHODOLOGY 

This systematic review was conducted in 

accordance with the PRISMA-2020 guidelines and the 

PRISMA-DTA extension for diagnostic accuracy 

reporting, ensuring methodological transparency and 

reproducibility [36], [37]. The review protocol defined the 

research questions, eligibility criteria, search strategy, and 

data extraction approach; however, it was not 

prospectively registered. The objective was to evaluate and 
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compare conventional biochemical testing, continuous 

glucose monitoring (CGM), volatile organic compound 

(VOC)-based breath analysis, electronic-nose (E-nose) 

systems, and non-invasive sweat or saliva biosensing 

platforms used for the early detection of diabetes mellitus. 

A comprehensive electronic search was performed across 

PubMed, Scopus, IEEE Xplore, Web of Science, and 

ScienceDirect. The search strategy combined free-text 

terms and controlled vocabulary associated with diabetes 

diagnosis and non-invasive technologies. Boolean 

operators were applied using combinations of terms such 

as “diabetes mellitus,” “type 1 diabetes,” “type 2 diabetes,” 

“diagnosis,” “screening,” “breath analysis,” “volatile 

organic compounds,” “GC-MS,” “IMS,” “gas sensor,” 

“electronic nose,” “biosensor,” “sweat,” and “saliva.” The 

search was restricted to studies published in English 

between 2014 and 2025, a period selected due to the rapid 

acceleration in VOC-based and wearable biosensing 

research [10], [11], [13], [18], [19]. Additional records 

were identified by screening the reference lists of eligible 

studies to ensure comprehensive coverage. Overall, 1,855 

records were retrieved, including 1,780 through database 

searching and 75 from supplemental sources. 

After duplicate removal, 1,165 unique articles 

remained and were screened by title and abstract. During 

this phase, 895 studies were excluded due to irrelevance, 

inadequate diagnostic focus, lack of primary data, or 

absence of reference standards. The remaining 270 full-

text articles were assessed against predefined eligibility 

criteria. Studies were included if they evaluated a 

diagnostic modality for diabetes in human subjects, used 

an accepted clinical reference method—fasting plasma 

glucose (FPG), oral glucose tolerance test (OGTT), or 

glycated hemoglobin (HbA1c)—and reported at least one 

diagnostic accuracy metric such as sensitivity, specificity, 

accuracy, area under the ROC curve (AUC), or mean 

absolute relative deviation (MARD). Exclusion criteria 

comprised absence of reference standard comparison, 

incomplete diagnostic data, non-peer-reviewed 

publications, conference abstracts, animal or in-vitro 

studies, simulated data only, and sample sizes fewer than 

ten. Following full-text evaluation, 50 studies met the 

eligibility criteria and were included in the qualitative 

synthesis, and 35 of these provided extractable quantitative 

diagnostic performance outcomes. These steps are 

illustrated in the PRISMA flow diagram (Figure 1). 

Eligible studies were categorized based on 

diagnostic modality to allow structured synthesis. The 

groups included conventional biochemical assays such as 

FPG, OGTT, and HbA1c [4]–[7]; continuous glucose 

monitoring systems evaluated across ambulatory and 

inpatient settings [8], [9], [17]; VOC-based exhaled-breath 

analysis using techniques such as gas chromatography–

mass spectrometry (GC-MS), proton-transfer-reaction 

mass spectrometry (PTR-MS), selected-ion flow-tube 

mass spectrometry (SIFT-MS), and gas chromatography–

ion mobility spectrometry (GC-IMS) [30], [38]; E-nose 

and metal-oxide semiconductor (MOS) sensor devices for 

VOC fingerprinting [31], [39], [44]; and electrochemical 

or colorimetric biosensors utilizing sweat or saliva as 

analytes [16], [27], [42]. This classification enabled 

comparison of sensing mechanisms, biomarker specificity 

(e.g., acetone, ethanol, isopropanol), analytical platforms, 

and clinical practicality. 

Data extraction was performed independently by 

two reviewers who used a structured template to ensure 

consistency. Extracted information included author names, 

publication year, country, patient demographics, sample 

size, diagnostic modality, analytical platform details, target 

biomarkers, reference standard, and diagnostic 

performance metrics. For VOC-based studies, additional 

fields included sampling method, VOC panel composition, 

sensor material characteristics, and machine-learning 

integration details when applicable [10], [18], [38]. Any 

disagreements were resolved by consensus with the 

involvement of a third reviewer when necessary, ensuring 

reliable data compilation. Risk of bias and methodological 

rigor were evaluated using the QUADAS-2 framework, the 

recommended tool for diagnostic accuracy studies [36]. 

Four domains—patient selection, index test, reference 

standard, and flow/timing were evaluated and classified as 

low, unclear, or high risk. Most studies demonstrated low 

risk in patient selection; however, several VOC-based 

studies exhibited unclear risk in the index-test and 

flow/timing domains due to insufficient reporting of 

operator blinding, inconsistent breath-sampling 

procedures, or variability in environmental control [10], 

[18], [29]. These factors were considered during result 

interpretation to contextualize heterogeneity across 

modalities. 

Quantitative synthesis was performed when 

studies reported comparable diagnostic outcomes. 

Sensitivity, specificity, AUC, and accuracy were extracted 

for GC-MS and GC-IMS studies, while MOS and E-nose 

platforms incorporating machine-learning classifiers were 

evaluated using the highest reported diagnostic accuracy 

values [23], [39], [44]. CGM studies reporting MARD 

values were analyzed separately due to differences in 

accuracy representation [8], [9]. A random-effects model 

was applied to account for inter-study variability when 

dataset homogeneity permitted [14], [39]. Heterogeneity 

was assessed using I² statistics, and publication bias was 

evaluated through visual inspection of funnel plots. Due to 

substantial methodological variability—including 

population differences, nonuniform VOC profiling, and 

heterogeneous reporting—meta-analysis across all 
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modalities was not feasible; thus, quantitative aggregation 

was limited to subsets with adequate homogeneity. 

Primary outcome measures included sensitivity, 

specificity, AUC, overall accuracy, and MARD (for CGM 

systems). Secondary outcomes evaluated sampling 

requirements, portability, response time, material 

composition, and overall feasibility for clinical or point-of-

care deployment. Together, these methodological steps 

ensured thorough, unbiased synthesis of evidence 

regarding the diagnostic utility and translational promise 

of non-invasive and VOC-based technologies for diabetes 

detection. 

Fig 1: Prisma Flow Diagram 

 

3. RESULTS 

3.1 Study Selection 

A total of 50 studies met the inclusion criteria and 

were included in this systematic review, of which 35 

provided extractable diagnostic accuracy data suitable for 

quantitative comparison. These investigations were 

conducted across diverse geographical regions, including 

North America, Europe, and Asia, and were published 

between 2005 and 2025, with over 80% published after 

2020. This temporal trend highlights the rapidly growing 

scientific interest in non-invasive and VOC-based diabetes 

diagnostics. Sample sizes varied considerably, ranging 

from fewer than twenty to more than five hundred 

participants; however, most studies included fewer than 

one hundred subjects, reflecting the predominantly 

exploratory and early-stage nature of this research domain. 

The characteristics of included studies are summarized in 

Table 1, and the selection workflow is outlined in Figure 1. 

3.2 Characteristics of Included Studies 

The 50 included studies were published between 

2005 and 2025, with most (≈80%) published after 2020, 

reflecting recent acceleration in non-invasive diagnostic 

research. Sample sizes ranged from <20 participants to 

more than 500, although two-thirds enrolled fewer than 

100 subjects, highlighting the early-stage and exploratory 

nature of many breathomics and biosensor investigations. 

Studies originated from North America, Europe, and Asia, 

illustrating the global interest in VOC-based diabetes 

diagnostics. 

The included works were categorized into five primary 

diagnostic modalities: 

(1) conventional biochemical testing, 

(2) continuous glucose monitoring (CGM) systems, 

(3) breath VOC profiling using analytical chemistry 

methods, 

(4) electronic-nose (E-nose) and metal-oxide 

semiconductor (MOS) sensor-based devices, and 

(5) sweat/saliva-based sensing platforms. 

Of the 50 studies, 8 evaluated conventional 

diagnostic approaches [4], [5], [6], [7], 5 assessed CGM 

accuracy in different populations [8], [9], [17], [27], 18 

focused on VOC-based breath analysis using GC-MS, 

PTR-MS, SIFT-MS, or IMS [10], [13], [18], [19], [20], 

[21], [29], [30], 10 investigated E-nose or MOS sensor 

systems [11], [12], [22], [23], [24], [25], [31], and 9 

explored sweat and saliva-based non-invasive glucose 

monitoring [16], [27], [28], [32]. 

Year Modality 
Reference 
Standard 

Sample 
Size 

Primary 
Biomarker 

2023 Biochemical HbA1c 320 N/A 

2022 CGM FPG 78 Glucose 

2021 
GC-MS 
VOC 

OGTT 52 Acetone 

2022 
SIFT-MS 
VOC 

HbA1c 67 
Acetone, 
Ethanol 

2025 Breath VOC OGTT 108 
Metabolite 
panel 

2020 E-nose HbA1c 55 Multi-VOC 

2023 MOS HbA1c 90 Acetone 

2019 Sweat OGTT 40 Glucose 

2024 Sweat/Saliva FPG 65 Glucose 

Table 1 summarizes each study’s modality, country of origin, sample 

size, diagnostic index, and reference standard. 

Most studies evaluating breath analytes assessed 

acetone, isopropanol, ethanol, methyl nitrate, or mixed 

VOC panels. Several groups also applied machine learning 

approaches, including XGBoost, SVM, and CNN 

architectures to discriminate diabetic from non-diabetic 

subjects using high-dimensional VOC profiles [23], [39], 

[44], [46]. 

 

3.3 Diagnostic Performance by Modality 

3.3.1 Conventional Clinical Diagnostics 
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Traditional diagnostics including fasting plasma glucose 

(FPG), oral glucose tolerance (OGTT), and HbA1c remain 

the established gold standards in clinical practice [4]. 

Reported diagnostic sensitivity ranged between 50–64% 

for HbA1c and 49–59% for FPG in defining diabetes, 

although specificity generally exceeded 92% across 

studies [5]–[7]. OGTT demonstrated higher sensitivity 

than FPG and HbA1c but remains time-consuming and 

impractical for population-scale screening. Despite their 

biochemical robustness, these assays require venipuncture, 

trained personnel, and laboratory infrastructure, limiting 

frequent monitoring and patient adherence. 

Method 
Sensitivity 
(%) 

Specificity 
(%) 

AUC Comments 

FPG 49–59 >92 ~0.75 
Poor 
sensitivity 

HbA1c 50–64 >92 ~0.78 
Misses 
early 
diabetes 

OGTT 70–80 >90 ~0.81 
Better 
accuracy; 
slow 

CGM 
(MARD) 

— — — 
MARD 11–
16% 

Table 2 summarizes representative diagnostic accuracy metrics for 

conventional methods. 

3.3.2 Continuous Glucose Monitoring (CGM) 

Five studies investigated factory-calibrated CGM 

devices across outpatient, inpatient, and hemodialysis 

cohorts [8], [9], [17]. CGMs remained semi-invasive, 

requiring subcutaneous filament insertion, but 

demonstrated high usability. Median absolute relative 

deviation (MARD) values ranged from 11–16%, consistent 

with prior performance reports. Accuracy decreased under 

conditions of rapid glycemic fluctuation or compromised 

peripheral perfusion, particularly among critically ill or 

dialysis patients [8], [9]. Nevertheless, CGM systems 

offered continuous 24-hour glycemic profiling and 

improved patient acceptance compared to repeated finger-

stick monitoring. 

Figure 2 compares MARD and mean bias across CGM studies. 

3.3.3 Breath VOC Profiling (GC–MS, PTR-MS, SIFT-

MS, IMS) 

A major subset of included studies (n = 18) 

investigated breath volatile organic compounds as 

surrogate biomarkers for glycemic state. Acetone 

consistently emerged as the most prominent VOC 

associated with ketosis and dysregulated glucose 

metabolism [10], [13], [18], [19], [21], [29], [30]. 

Analytical platforms including GC-MS, SIFT-MS, PTR-

MS, and GC-IMS enabled sensitive quantification of VOC 

panels with detection limits in the ppb–ppt range [13], [30], 

[38]. Diagnostic accuracies for VOC-based breath assays 

varied across platforms. GC-IMS achieved reported 

accuracy of 93%, with 92% sensitivity and 94% specificity 

in distinguishing diabetic from non-diabetic subjects [6]. 

GC-MS–based multi-VOC panels yielded AUC values up 

to 0.988, demonstrating excellent classification 

performance [21]. Studies employing in-vehicle sampling 

and point-of-collection workflows demonstrated 

promising feasibility for real-world screening [17]. 

Platform Biomarker(s) 
Sensitivity 
(%) 

Specificity 
(%) 

Accuracy 
(%) 

AUC 

GC-IMS Acetone 92 94 93 0.94 

GC-MS Acetone panel 96 95 95 0.98 

SIFT-MS Mixed VOC 88 90 — 0.92 

PTR-MS Mixed VOC 85 82 — 0.88 

E-nose 
(MOS) + 
ML 

VOC 
signature 

91 92 93 0.91 

MOS 
(MgCr2O4) 

Acetone 86 88 87 0.89 

Table 3 summarizes VOC biomarkers, analytical platforms, and 

diagnostic performance metrics. 

Despite strong analytical performance, VOC 

profiles exhibited inter-individual variability driven by 

diet, comorbidities, and environment. Most studies 

enrolled <100 participants, limiting generalizability. 

 

3.3.4 Electronic Nose (E-nose) and MOS Sensor 

Platforms 

Ten studies applied MOS, polymer-based, or 

hybrid nanomaterial sensing arrays to capture multi-

component breath signatures [11], [12], [22], [23], [25], 

[31]. E-nose platforms demonstrated accuracy values up to 

93.3%, with CNN models further improving classification 

[23], [44]. CNT- and WO3-based sensors selectively 

detected acetone in physiologic ranges, supporting their 
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application in diabetes screening [13], [40]. Sensor-level 

limitations included drift, poor humidity tolerance, and 

cross-reactivity, although recent hybrid nanomaterials 

(e.g., ZnO/graphene composites) showed improved 

selectivity [15], [31]. Studies integrating onboard machine 

learning demonstrated real-time inference and suggest 

future integration with portable breathalyzer-style devices. 

 

Figure 3 illustrates representative architectures of MOS-based VOC 

sensors. 

3.3.5 Sweat and Saliva-Based Non-Invasive Sensors 

Nine studies explored enzymatic, 

electrochemical, and colorimetric sensors for detecting 

glucose concentrations in sweat and saliva [16], [27], [28], 

[32], [42]. Flexible wearable sweat sensors enabled 

continuous monitoring with reported correlation 

coefficients above 0.9 compared to interstitial or blood 

glucose [27], though temporal lags remained an issue. 

Microneedle and porous colorimetric systems 

demonstrated minimally invasive glucose extraction and 

visible readout within minutes [32]. Paper-based saliva 

biosensors showed promise for ultra-low-cost self-testing, 

though sensitivity and enzymatic stability remain 

challenges [42]. 

Sensor Type Sample 
Correlation 

(R²) 
Time Comments 

Electrochemical 

wearable 
Sweat 0.91 Continuous 

Good 

correlation 

Paper-based 

biosensor 
Saliva/Sweat 0.88 <5 min Low-cost 

Microneedle 

patches 
ISF — <2 min 

Minimally 

invasive 

Table 4 summarizes sensing mechanisms, sample types, and correlation 

metrics. 

3.4 Quantitative Synthesis 

Due to methodological heterogeneity, pooled meta-

analysis across all modalities was not performed. 

However, for VOC-based GC-IMS and GC-MS subsets, 

sensitivity and specificity demonstrated relatively low 

variance, enabling summary ROC comparison. GC-IMS 

showed aggregate AUC >0.90, while multi-VOC GC-MS 

panels demonstrated AUC values up to 0.99 [21], [30]. 

CGM performance (MARD 11–16%) remained consistent 

across studies [8], [9]. Conventional assays demonstrated 

high specificity (>92%) but lower sensitivity (50–64%) for 

early disease detection. 

 

Figure 4 shows pooled accuracy estimates for VOC-based modalities. 

3.5 Quality Assessment (QUADAS-2) 

Study-level quality assessment using QUADAS-2 

revealed variable risk across domains. Most studies 

demonstrated low risk regarding patient selection; 

however, VOC studies frequently exhibited unclear risk in 

the index-test and flow/timing domains due to lack of 

blinding and heterogeneous sampling conditions [36], 

[37]. Reference standards were generally consistent with 

accepted clinical practice (FPG, OGTT, HbA1c) [4]–[7]. 

Overall, VOC-based studies demonstrated moderate to 

high methodological rigor but require larger cohorts and 

standardized sampling conditions to mitigate bias. 

 

Figure 5 provides a summary plot of QUADAS-2 assessments. 

4. Discussion 

4.1 Interpretation of Main Findings 

This review systematically evaluated conventional blood-

based diagnostics alongside continuous glucose 

monitoring (CGM), volatile organic compound (VOC)–

based breathomics, electronic nose (E-nose) systems, and 

non-invasive biosensors for early diabetes detection. 

Conventional fasting plasma glucose (FPG), oral glucose 

tolerance test (OGTT), and HbA1c remain standard and 

clinically validated; however, their diagnostic performance  
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varies across populations. HbA1c sensitivity has been 

reported between 45–70% depending on ethnicity and 

comorbidity, and OGTT accuracy is influenced by pre-test 

metabolic variability [5]–[7]. These limitations are  

particularly consequential in pre-diabetic individuals, 

where early metabolic shifts may not be reflected in 

glucose or HbA1c levels. 

CGM platforms demonstrated improved temporal 

resolution and practical utility for individualized glycemic 

profiling, though accuracy varied significantly under 

physiologic extremes such as hemodialysis or inpatient 

stress, where mean absolute relative difference (MARD) 

values occasionally exceeded 15% [8], [9]. Despite 

performance benefits, CGM remains cost-restricted and 

minimally invasive, limiting suitability for large-scale 

screening. VOC-based diagnostics, particularly breath 

acetone quantification via GC-MS, SIFT-MS, and PTR-

MS, showed strong correlation with glycemic status in 

multiple cohorts, achieving sensitivity between ~70–91% 

and specificity up to 92% [14], [18], [19], [38]. E-nose  

devices demonstrated accuracy up to 93.3% when paired 

with CNN-based classifiers [23], [44], highlighting the 

promise of machine-learning–driven breath fingerprinting. 

Importantly, VOC studies targeting acetone, ethanol, and 

isoprene consistently reported elevated breath 

concentrations under hyperglycemic states, reinforcing 

metabolic mechanistic relevance. Complementary 

biosensing strategies, including sweat, saliva, and 

microneedle-based glucose sampling, were evaluated but 

remain early-stage and exhibit limited analytical 

robustness. Wearable pH/glucose platforms demonstrated 

feasibility but suffer from signal drift and inconsistent 

molecular capture efficiency [16], [27]. 

Although novel non-invasive modalities remain 

exploratory, aggregated evidence suggests that VOC-based 

breath biomarkers and advanced E-nose platforms 

demonstrate the strongest potential for scalable, painless, 

rapid screening. However, heterogeneity in sampling 

methods, patient preparation, sensor architecture, and 

signal interpretation currently limits reproducibility. 

Collectively, results suggest that VOC-based screening 

could operate as a first-tier, low-cost, pre-diagnostic tool, 

followed by confirmatory blood-based assays. 

 

 

 

 

 

 

Fig 6: Comparison of methods 

4.2 Clinical Implications 

The growing diabetes burden and low rates of early 

detection highlight the need for accessible, non-invasive 

approaches. VOC breath diagnostics and E-nose platforms 

could substantially improve screening frequency due to 

their painless workflow and need for minimal user training. 

Such approaches may be particularly advantageous in 

underserved regions where conventional blood sampling is 

logistically challenging. From a patient-centered 

perspective, non-invasive breath testing may improve 

compliance, especially among pediatric, geriatric, and 

needle-averse populations. Integration with CGM or home 

monitoring tools could deliver continuous metabolic 

profiling, enabling early intervention and personalized 

lifestyle adjustments. 

Health-economic analysis favors VOC-based screening, 

given the potential to avoid consumables (test strips, 

lancets) and laboratory processing. By enabling earlier 

diagnosis, downstream complication-related costs could be 

significantly reduced. Additionally, portable VOC 

platforms are compatible with primary-care or community-

level deployment, enabling population-scale screening 

programs. However, translation into clinical pathways 

requires standardization of sampling conditions—e.g., 

fasting status, breath volume, environmental exposure. 

VOC-based platforms must also demonstrate 

reproducibility and clinical relevance across demographic 

groups to avoid biased diagnostic outcomes. 

 

 

Modality Invasiveness Cost TRL Status 

FPG Invasive Low 9 Widely used 

OGTT Invasive 
Low-
Mod 

9 Widely used 

HbA1c Invasive 
Low-
Mod 

9 Widely used 

CGM Min. invasive Moderate 7.5 Limited/expanding 

GC–MS Non-invasive Moderate 5.5 Research only 

GC–IMS Non-invasive 
Low-
Mod 

5.5 Early research 

MOS E-
nose 

Non-invasive Low 5 Experimental 

Polymer E-
nose 

Non-invasive   5 Experimental 

CNT/Hybrid Non-invasive Low 4.5 Pre-clinical 
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4.3 Translational Challenges 

Despite promising performance, VOC-based diagnostics 

face substantial barriers to real-world deployment. The 

foremost limitation is sensor calibration drift—an intrinsic 

challenge in MOS-based systems—leading to signal 

instability over time. Environmental confounding 

(humidity, temperature, ambient VOCs) introduces noise 

that complicates real-world interpretation. Cross-reactivity 

to chemically similar VOC species remains problematic, 

though integration of hybrid nanomaterials (e.g., 

ZnO/graphene) has shown improved specificity [15], [31]. 

A significant challenge is the lack of standardized pre-

analytical workflow. Breath VOC concentration varies 

with diet, microbiome, metabolic status, smoking, 

medications, circadian rhythm, and exhalation technique. 

Without harmonized sampling and data-collection 

protocols, inter-study comparisons are difficult. 

Reproducibility is further constrained by heterogeneity in 

analytical platforms—GC-MS, SIFT-MS, MOS-arrays—

and inconsistent reporting metrics. Methodological 

discrepancies across studies (population selection, 

reference standards, index test timing) contribute to 

diagnostic heterogeneity and uncertain generalizability. 

Standard statistical endpoints (AUC, PPV/NPV) are 

inconsistently published, impeding comparative 

evaluation.Regulatory approval adds another challenge, as 

most systems operate with black-box machine learning 

models. Explainability, dataset shift, and algorithmic bias 

must be addressed to satisfy safety and transparency 

requirements. Interoperability with digital health 

platforms, EHRs, and CGM ecosystems remains 

underdeveloped. 

 

4.4 Technology and Research Gaps 

Several gaps emerged from this review. Most critically, 

few studies conducted large-sample validation (>500 

participants). Small, single-center evaluations limit 

confidence in VOC diagnostic ranges across demographic 

and lifestyle variations. Breathomics data were particularly 

limited in pediatric and pre-diabetic cohorts, despite being 

clinically important intervention groups. Second, there is 

no standardized VOC biomarker panel for diabetes. 

Studies targeted distinct metabolites—acetone, isoprene, 

ethanol—without consensus on diagnostic thresholds or 

combined multi-marker signatures. Creation of unified 

reference databases and spectral libraries is needed to 

enable biomarker consistency. 

Third, real-world sensor performance remains poorly 

characterized, particularly longitudinally. Few studies 

assessed durability, intra-device or inter-device 

reproducibility, or drift compensation strategies. Sensor 

surfaces also remain vulnerable to humidity and biological 

fouling.Fourth, although ML-based systems improved 

classification accuracy, most were trained on small 

datasets, risking overfitting. Few models employed 

external validation or domain adaptation, limiting 

generalizability. The lack of explainability (XAI) reduces 

clinical interpretability and regulatory acceptance. Finally, 

socioeconomic and geographic variability were poorly 

examined. VOC levels vary with diet, environment, and 

ethnicity, yet few studies addressed these confounders. 

This remains a major barrier to globally deployable 

diagnostic thresholds. 

 

4.5 Future Directions 

Advancing VOC-based diabetes diagnostics requires a 

multi-pronged strategy. From a technical standpoint, 

standardized sampling protocols and calibration 

frameworks must be established. Large-scale, multicenter 

trials with harmonized reporting will be essential to 

determine true diagnostic performance. Development of 

universal VOC biomarker panels—potentially through 

multi-omics integration combining VOCs, salivary 

metabolites, and sweat biomarkers—could improve 

robustness. Advances in hybrid nanomaterials and low-

temperature MOS designs may mitigate cross-reactivity 

and humidity sensitivity. Integration of onboard drift 

correction and machine-learning–assisted noise filtering 

will further enhance stability. AI-driven classification 

should incorporate external validation, explainability, and 

federated learning pipelines to reduce dataset bias and 

accelerate clinical certification. 

Future platforms will likely be portable, AI-enabled breath 

analyzers with automated normalization, real-time 

inference, and smartphone connectivity. Integration with 

CGM, home monitoring, EHRs, and cloud-based analytics 

could support continuous metabolic profiling and 

personalized decision support. Point-of-care breath 

analyzers deployed in community settings could 

significantly expand screening reach at low cost. From a 

regulatory perspective, formal frameworks for VOC-based 

diagnostics must be developed, including standards for 

analytical characterization, sensor stability, ML validation, 

and cybersecurity. Early dialogue with regulatory agencies 

will expedite translation. Ultimately, non-invasive VOC 

screening could serve as a first-line, population-scale 

triage mechanism, followed by confirmatory blood-based 

assays to enable early, cost-effective diabetes care. 

5. Conclusion 

This systematic review evaluated 50 studies comparing 

diabetes diagnostic approaches spanning conventional 

biochemical tests, continuous glucose monitoring (CGM), 
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and emerging volatile organic compound (VOC)–based 

breath technologies. Conventional tools—FPG, OGTT, 

and HbA1c—demonstrated high specificity (90–97%) but 

modest sensitivity (50–65%) for early-stage disease, 

contributing to delayed detection and reduced intervention 

efficacy. CGM provided dynamic glycemic profiling with 

mean absolute relative deviation (MARD) values of 11–

16%, yet its semi-invasive nature, calibration 

requirements, and operational cost hinder widespread 

implementation. In contrast, VOC-based breath 

diagnostics showed competitive accuracy. GC-IMS and 

GC-MS studies reported accuracies up to 93%, with 

sensitivities and specificities frequently exceeding 90%. E-

nose platforms incorporating metal-oxide semiconductor 

(MOS), polymeric, or hybrid nanomaterial arrays achieved 

classification accuracies up to 93.3%, particularly when 

integrated with machine-learning models (CNN, 

XGBoost). These tools demonstrated capability to detect 

breath acetone concentrations within physiologic diabetic 

ranges (0.8–3.0 ppm), revealing strong metabolic linkage 

to ketogenesis. Quantitative synthesis suggests VOC 

sensing offers diagnostic performance comparable to early 

biochemical assays while being non-invasive, rapid (< 

minutes), and low-cost. 

Despite promise, heterogeneity across studies—breath 

sampling protocols, sensor calibration, ambient 

interference, and analytic pipelines—remains a major 

translational barrier. Most investigations involved small 

cohorts (<100 subjects), lacked standardized VOC panels, 

and did not perform multicenter validation. Few platforms 

reached advanced technology readiness levels (TRL ≥6), 

limiting immediate clinical adoption. Overall, VOC-based 

sensing presents a compelling direction for democratizing 

diabetes screening and monitoring. By reducing cost and 

removing the requirement for blood sampling, breath 

diagnostics can enhance diagnostic frequency, patient 

comfort, and public health accessibility. Future efforts 

should prioritize standardization, biomarker reference 

ranges, and portable system development to enable 

clinically actionable deployment. 

 

6. Future Scope  

Advancing VOC-based diabetes diagnosis requires 

coordinated progress across biomarker science, sensor 

engineering, and clinical validation. Key priorities include 

establishing standardized breath collection protocols, 

controlled sampling environments, and validated 

biomarker panels—particularly for acetone, isopropanol, 

and isoprene—in relation to disease stage and glycemic 

fluctuation. Large, multicenter cohorts are essential to 

characterize population variability, evaluate confounders 

(diet, exercise, microbiome), and define diagnostic 

cutoffs.Technologically, future systems should integrate 

hybrid nanomaterials with humidity-tolerant coatings, 

onboard temperature-pressure compensation, and 

automated calibration to minimize drift. Embedded AI/ML 

pipelines enabling edge inference can facilitate real-time 

glucose risk scoring. Integration with smartphones and IoT 

health platforms will enable patient-driven monitoring and 

telemedicine workflows, particularly beneficial for 

resource-limited settings.Pathways toward 

commercialization require early engagement with 

regulatory agencies and health-economic evaluation to 

demonstrate cost-effectiveness versus current standards. 

Ultimately, miniaturized breath analyzers with robust 

specificity, regulatory approval, and EMR connectivity 

have the potential to transform diabetes care—supporting 

screening, early diagnosis, and continuous disease 

management within precision-medicine ecosystems. 
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