

RetinoAI: An Intelligent Deep Learning System for Diabetic Retinopathy Detection

¹Dr. P. D. Halle, ²Gayatri Jaykar, ³Kavita Dudhate, ⁴Ritisha Dangi, ⁵Samuel Kumarkunta

¹ Assistant Prof SKN Sinhgad Institute of Technology & Science, Lonavala, Maharashtra
^{2,3,4,5} UG students SKN Sinhgad Institute of Technology & Science, Lonavala, Department of Information Technology

ABSTRACT: - Diabetic retinopathy (DR) is one of the most common and serious complications of diabetes, often leading to irreversible vision loss if not diagnosed and treated in its early stages. With the global rise in diabetes prevalence, the demand for efficient and scalable diagnostic tools has grown significantly. Traditional DR screening methods rely heavily on manual evaluation by ophthalmologists, which can be time-consuming, subjective, and limited by the availability of medical professionals. This study addresses the urgent need for an automated, accurate, and efficient method for DR detection and classification using advanced artificial intelligence techniques. To tackle this challenge, we implemented a deep learning approach using convolutional neural networks (CNNs) to automatically classify the severity of diabetic retinopathy from retinal fundus images. The dataset underwent thorough preprocessing to enhance image quality and ensure uniformity, thereby improving the model's learning efficiency. The CNN model was trained and validated on a large, labeled dataset and its performance was benchmarked against traditional machine learning methods and assessments by expert ophthalmologists. Results demonstrated that the proposed deep learning model achieved high accuracy, sensitivity, and specificity in classifying DR stages, outperforming conventional approaches. These findings underscore the potential of deep learning to support early diagnosis, enable timely medical intervention, and ultimately reduce the burden on healthcare systems while improving patient outcomes.

Keywords: Diabetic Retinopathy, Deep Learning, Convolutional Neural Networks, Automated Detection, Image Preprocessing, Early Diagnosis, Artificial Intelligence (AI).

I. INTRODUCTION

Diabetic retinopathy is a leading cause of blindness among adults with diabetes, making early detection crucial for effective treatment. However, manual diagnosis of retinal images is time consuming and prone to human error. This project addresses this challenge by leveraging machine learning techniques to develop a web application for automated diabetic retinopathy detection. By training a convolutional neural network (CNN) on a dataset of retinal images, the model can accurately classify images and provide timely diagnoses. The use of Flask, a lightweight web framework in Python, facilitates the deployment of the model as a user friendly web application. This allows for easy accessibility to

users who can upload their retinal images and receive instant diagnoses, empowering them to take proactive measures for their eye health. By leveraging large-scale datasets of retinal images and advanced neural network architectures, this study contributes to the development of a reliable, automated screening tool that can be integrated into healthcare systems, especially in regions with limited access to specialists. Ultimately, this research demonstrates how combining medical expertise with deep learning technology can enhance early diagnosis, improve patient outcomes, and contribute to broader goal of AI-driven healthcare innovation.

II. LITERATURE SURVEY

Attia *et al.* [1] survey examined DR classification methods with a general focus on deep learning techniques and a high focus on classical methods. Gupta and Chhikara [2] reviewed DR detection techniques utilising Adaboost, Random forest, SVM etc, gradually showcasing the gap that these classical techniques present in regards to learning more disease related features. These comparisons are based on quality of the fundus image, since some publicly available datasets have poor contrast and image quality.

Alyoubi *et al.* [3] reviewed a total of 33 papers that use deep learning for DR classification and reiterate the importance of constant improvements to deep learning models given the increase in diabetes cases worldwide. Authors also highlighted the use of data augmentation to reduce overfitting in model training. Attia *et al.* [4] and Asiri *et al.* [5] survey papers later reviewed novel DL pipelines and ML processes, discussing different DR grading tasks (i.e. optic disc, blood vessels, lesions, and grading).

Valarmathi and Vijayabhanu. [6] discussed recent state-of the-art (SoTA) CNN variants for DR classification while highlighting the inconsistency in evaluation metrics for the assessment of models in literature.

Shamshad *et al.* [7] provides a comprehensive overview of how transformers work for various medical imaging objectives, including: segmentation, classification, detection, and reconstruction. The survey highlights that

transformer-based research for medical imaging reached its peak around Dec 2021, with more than 40 recent publications. The survey also shows that 73% of the papers published in 2021 use vision transformers for segmentation tasks whereas 27% of the papers published between 2012 and 2015 use CNNs. This indicates higher demand for transformer-based approaches in segmentation tasks.

Gulshan, V. Peng L. Coram, M. et al. [8] This study presents a deep convolutional neural network (CNN) trained on a large dataset of retinal images to detect referable diabetic retinopathy. The model achieved high sensitivity and specificity, demonstrating performance comparable to ophthalmologists, suggesting potential for use in clinical screening.

Quellec, G. Charrière, K. Boudi, Y. et al.[9] This study presents an ensemble method combining multiple CNNs for improved DR detection. The ensemble approach reduces false positives and increases robustness, making it suitable for real-world deployment.

Tjoa, E., Guan, C.[10] This survey reviews methods for making AI systems in DR detection explainable. It categorizes explainability techniques and discusses their effectiveness in clinical settings, highlighting the need for interpretable models in medical AI.

Rakhlin, A. Shvets, A. Iglovikov, V. Kalinin, A. [11] The authors propose a hybrid approach combining CNN and ensemble techniques to classify diabetic retinopathy stages. Results show improved classification performance over traditional CNNs, especially in moderate and severe DR cases.

The proposed method will ensure maximum lesion visibility and efficiency in feature extraction in an effort to enhance DR classification performance while incurring a lower computational expense.

III. PROBLEM STATEMENT

Diabetic Retinopathy (DR) is a diabetes complication that affects the eyes and can lead to blindness if not detected and treated in time. Early diagnosis through retinal image analysis is critical for effective treatment. However, access to expert ophthalmologists and diagnostic facilities is limited in many regions, leading to delayed or missed diagnoses. To address this issue, we aim to develop a Flask-based web application that integrates a TensorFlow deep learning model to automate the classification of retinal images for Diabetic Retinopathy detection. The application should allow users (e.g., medical practitioners or technicians) to upload retinal images and receive instant diagnostic predictions. The treatment and diagnosis of diabetic retinopathy may be revolutionized by the successful design of this automated diagnostic system.

IV. PROPOSED METHODOLOGY

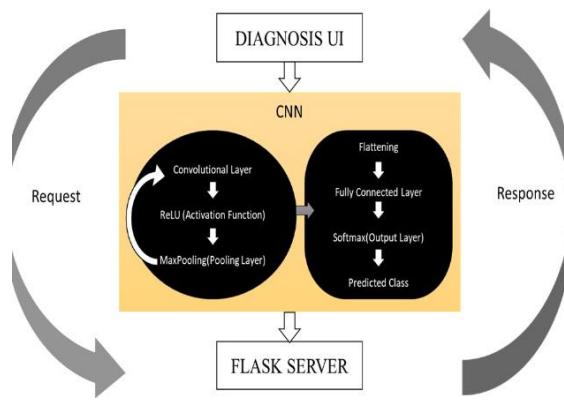


Fig:- System Architecture

The proposed system aims to detect and classify Diabetic Retinopathy (DR) from retinal fundus images using Deep Learning techniques. The main goal of this system is to assist ophthalmologists in the early detection of diabetic retinopathy, thereby preventing vision impairment and improving patient care. The system automates the diagnostic process by utilizing a Convolutional Neural Network (CNN) model, which is integrated with a Flask-based web interface to ensure accessibility, scalability, and ease of use.

The architecture of the proposed system consists of three primary components:

1. Diagnosis User Interface (UI)

This is the user-facing module that allows users or medical professionals to upload retinal fundus images for analysis. The interface is designed to be simple and interactive, providing an efficient medium to communicate with the backend model.

2. CNN-Based Image Classification Model

The core of the system is a Convolutional Neural Network that performs image processing and classification. The uploaded retinal image is passed through several convolutional layers, where important features such as blood vessel patterns, microaneurysms, and hemorrhages are extracted. The ReLU (Rectified Linear Unit) activation function is applied to introduce non-linearity, followed by pooling layers that reduce dimensionality and improve computational efficiency. After feature extraction, the data is flattened and passed through fully connected layers that learn the complex patterns associated with different stages of diabetic retinopathy. The final softmax layer outputs the probability distribution across multiple classes — typically No DR, Mild, Moderate, Severe, and Proliferative DR.

3. Flask Server

The Flask server acts as a bridge between the user interface and the CNN model. When an image is uploaded, the server sends the image data to the CNN model for processing. After prediction, the Flask server receives the classification results and sends them back to the UI, where the outcome and confidence score are displayed to the user.

V. CONCLUSION

Deep learning is transforming the classification of diabetic retinopathy by automating the detection of retinal abnormalities with high accuracy, significantly enhancing efficiency and scalability. These models can analyze large volumes of retinal images swiftly, making early diagnosis more accessible. However, challenges remain, such as ensuring high data quality and improving model interpretability. High-quality, diverse datasets are crucial for training effective models, while understanding how these models make decisions is important for clinical trust and adoption. Despite these hurdles, continued advancements in deep learning technologies promise to refine diagnostic tools further, integrating them more seamlessly into clinical practice. This evolution is expected to lead to better patient outcomes through earlier detection and more precise management of diabetic retinopathy. local people and communities, providing access to practical and vital information related to farming, markets etc. Panchayats should be provided with adequate technological resources in order to play a meaningful role for the developmental purpose. We provide a solution for an application model that can be included as a part of e-governance.

VI. REFERENCES

[1] Gulshan, V., Peng, L., Coram, M., Stumpe, M., Wu, D., & Patel, S. N., et al. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. *JAMA*, 316(22), 2402-2410. General, R., 2019. Provisional population totals, census of India, 2019. New Dehli: Office of the Registrar General.

[2] Rajalakshmi, & P. M. S. (2018). Automated diabetic retinopathy detection in smartphone-based fundus photography using deep learning. *Eye*, 32(6), 1138-1144. Dhillon, Resham & Laxmi, Vijay. —Reaching Rural Population for E-Governance Through E-Panchayat: A Review Paper, International Journal of Computer Science and Technology.

[3] Dai, L., Ding, X., & Zhou, F. (2021). Deep learning-based methods for diabetic retinopathy detection: A review. *IEEE Access*, 9, 11486-11500.

[4] Wang, Y., Li, Y., & Chen, Z. (2021). Performance evaluation of deep learning algorithms for detecting diabetic retinopathy from fundus images. *Medical Image Analysis*, 71, 1020

[5] Pratt, H., Coenen, F., Broadbent, D. M., Harding, S. P., & Zheng, Y. (2016). Convolutional Neural Networks for Diabetic Retinopathy. *Procedia Computer Science*, 90, 200–205.

[6] Voets, M., Møllersen, K., & Bongo, L. A. (2019). Reproduction study using public data of deep learning-based detection of diabetic retinopathy. *PloS One*, 14(6), e0217541.

[7] Abramoff, M. D., Lavin, P. T., Birch, M., Shah, N., & Folk, J. C. (2018). Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. *NPJ Digital Medicine*, 1(1), 39.

[8] Tan, J. H., Bhandary, S. V., Sivaprasad, S., Hagiwara, Y., Bagchi, A., Raghavendra, & Acharya, U. R. (2018). Age-related Macular Degeneration and Diabetic Retinopathy classification using CNN. *Information Sciences*, 420, 66–76.

[9] 1. Halle, P. and Shiyamala, S. (2019) "Architectural Integration for Wireless Communication Security in terms of integrity for Advanced Metering Infrastructure-Survey Paper", Asian Journal For Convergence In Technology (AJCT) ISSN-2350-1146. Available at

[10] 2. Halle, P. and Shiyamala, S. (2019) "Secure Routing through Refining Reliability for WSN against DoS Attacks using AODSD2V2 Algorithm for AMI," International Journal of Innovative Technology and Exploring Engineering. Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences

Publication-

BEIESP.<https://doi.org/10.35940/ijitee>
18178.0881019 (Scopus)

- [11] Halle, P.D., Shiyamala, S.and Rohokale, Dr.V.M. (2020) "Secure Direction-finding Protocols and QoS for WSN for Diverse Applications-A Review." International Journal of Future Generation Communication and Networking, Vol. 13 No.3(2020)Available.<https://sersc.org/journals/index.php/IJFGCN/article/view/26983>.
- [12] 4. Halle, P.D. and Shiyamala, S. (2020) Trust and Cryptography Centered Privileged Routing Providing Reliability for WSN Considering Dos Attack Designed for AMI of Smart Grid," International Journal of Innovative Technology and Exploring Engineering. Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication-BEIESP. doi:10.35940/ijitee.b7449.019320.
- [13] 5. Halle, P.D. and Shiyamala, S. (2021) Ami and its wireless communication security aspects with QOS: A Review, SpringerLink. Springer Singapore.
- [14] 6. Halle, P.D. and Shiyamala, S. (2022) "Secure advance metering infrastructure protocol for smart grid power system enabled by the internet of things," Microprocessors and Microsystems, 95, p. 104708. Available at: <https://doi.org/10.1016/j.micpro.2022.104708> (SCD)

