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ABSTRACT

Detecting heart disease at an early stage is essential for lowering death rates and ensuring timely
medical care. This study introduces a two-stage hybrid deep learning model that integrates
Electrocardiogram (ECG) and Echocardiogram (Echo) images for accurate heart disease prediction.
For both data types, features are extracted using advanced vision-based models such as Vision
Transformer (ViT) and Swin Transformer. A metaheuristic approach Aquila Optimizer (AO) is
employed for optimal feature selection. These refined features are classified using a fine-tuned Multi-
Layer Perceptron (MLP). A comparative study showed that the Swin Transformer-based fusion
outperformed ViT-based models, reaching 96.76% accuracy, 97.98% F1-score, 96.19% precision, and
99.84% recall. This approach demonstrates the effectiveness of combining multimodal imaging data
with AO optimization for enhancing automated heart disease diagnosis systems.

Keywords: Cardiovascular diseases (CVDs), Electrocardiogram (ECG), Echocardiogram (Echo),
Vision Transformer (ViT), Swin Transformer, Aquila Optimizer (AQO), Multi-Layer Perceptron
(MLP), heart diseases.

1. Introduction and intelligent diagnostic systems that can
According to the World Health Organization assist clinicians in accurately identifying

(WHO), cardiovascular diseases continue to be
the leading cause of death worldwide. In 2019,
WHO reported approximately 17.9 million
deaths globally from cardiovascular-related
conditions[2][3]. By 2022, -cardiovascular
conditions represented nearly 32% of all
deaths worldwide, about 19.8 million cases,
with around 85% linked to heart attacks and
strokes. [1]. These diseases encompass a wide
range of conditions affecting the heart and
blood vessels, such as coronary artery disease,
irregular heart rhythms, and heart failure. The
prevalence of CVDs is increasing rapidly due
to lifestyle choices, aging populations, and
delayed detection, especially in low and
middle-income nations [1][15]. Early and
accurate detection of heart disease is critical to
reducing fatal outcomes and facilitating
prompt medical intervention. As a result, there
is an increasing need for advanced, automated,

CVDs with minimal human error and high
reliability [2]. CVDs are commonly diagnosed
using techniques like electrocardiography
(ECG), echocardiography, computed
tomography (CT), angiography and magnetic
resonance imaging (MRI). Classic diagnostic
methods like electrocardiography [32] and
echocardiography [9] are crucial in evaluating
the heart's condition. ECG records the
electrical activity of the heart and is effective
in detecting arrhythmias and myocardial
infarctions [11], while Echo uses ultrasound to
visualize heart structures, offering detailed
insights into heart chamber size, valve
functions, and pumping capacity.
Echocardiograms play a vital role in
diagnosing and treating various heart
conditions, including cardiomyopathy, heart
failure, and valvular heart diseases like aortic
stenosis and mitral regurgitation[2][3]. By
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evaluating important factors such as ejection
fraction and diastolic function, and employing
Doppler techniques to assess blood flow and
cardiac hemodynamics, echocardiograms aid
in detecting irregularities in pressure and flow.
Nevertheless, the interpretation of these
imaging modalities necessitates specialized
knowledge, which is typically scarce in
settings with limited resources. Thanks to
recent progress in artificial intelligence (Al)
and deep learning, automated diagnostic
models [10] have become increasingly popular
in medical image analysis, leading to more
precise and efficient disease prediction.
Despite the existence of multiple diagnostic
techniques [12], accurately and promptly
identifying heart disease continues to pose a
significant challenge. Traditional approaches
heavily depend on expert interpretation, which
can result in inconsistencies in diagnosis and
place a greater burden on medical
professionals. Additionally, while researchers
have investigated deep learning techniques for
medical imaging analysis, most studies have
focused on a single modality, such as ECG or
echocardiogram images, which restricts the
predictive capabilities of the models. It is
crucial to develop a comprehensive approach
that incorporates elements from both imaging
modalities to enhance the accuracy of
predictions and facilitate better clinical
decision-making. In this study, we focus on
creating a multimodal deep learning
framework that combines information from
both ECG and Echo images. The process of
feature extraction is performed using ViT [4]
and Swin Transformer models [5] separately,
and then classification is achieved using a
fine-tuned multi-layer perceptron (MLP).The
study also employs a metaheuristic
optimization technique Aquila Optimizer (AO)
to enhance the selection of the most relevant
features before classification. This hybrid
approach leverages AQO’s strong exploration
and exploitation capability to navigate the
feature space effectively. While single-
modality models offer useful insights, they
often lack the depth provided by multimodal

data fusion. Experimental results reveal that
models integrating multiple data modalities,
coupled with optimized feature selection via
AO significantly outperform those based on a
single modality.

2. Literature Review
Progress in Al and deep Ilearning has
significantly = improved medical image
analysis, allowing quicker and more precise
diagnoses. This review highlights the growing
role of deep learning in heart disease
prediction, particularly through ECG and
Echocardiogram imaging. While many studies
apply CNNs, RNNs, ResNet, VGG, and
EfficientNet family on individual modalities to
extract features from ECG, Echo images and
train the model to predict heart diseases, the
use of multimodal fusion remains limited.
Models like ViT and Swin Transformer
demonstrate strong potential but are frequently
limited to single-modality use. Moreover,
existing machine learning and deep learning
fusion approaches rarely incorporate advanced
optimization or automated feature selection,
indicating a gap in fully integrated and
optimized multimodal frameworks.
Muhammad Raoof et al., [2] used the latest
VGG16 deep learning model to automatically
detect heart disease from echocardiogram
images, and they achieved an accuracy of
94.92%. Muhammad Mahtab et al., [3]
developed a deep learning model called
EfficientNetB3, which was made to identify
critical congenital heart disease (CCHD) from
echocardiogram pictures. This model got an
accuracy of 94.53%.
Chunyu Fan et al., [4] introduced a new model
named ViT-FRD, which mixes features from a
Vision Transformer (ViT) and a CNN using a
process called knowledge refinement. This
model showed very high precision, with a
success rate of 96.90%.
Zeynep Hilal Kilimci et al., [5] did a study to
detect heart disease using ECG images. They
used vision transformer models like Google's
ViT, Microsoft's Beit, and Swin-Tiny. The
Beit model performed the best, achieving an

PAGE NO: 116



COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 9 2025

accuracy of 95.9%, which was better than the
other two models.

Jingyuan Yi et al., [25] made an improved
transformer model aimed at boosting heart
disease prediction accuracy. They used particle
swarm optimization (PSO) to reach a
classification accuracy of 96.5%.

Tb Ai Munandar [21] proposed an MLP model
that used different activation functions like
tanh, logistic, and ReLu. The MLP model with
the tanh activation function performed better
than the logistic and ReLu models in terms of
accuracy. When trained using tanh and k-fold
cross-validation, the MLP model achieved a
classification accuracy of 78.8%.

Alexey Dosovitskiy et al., [6] did a study on
using transformers for image recognition.
They treated an image as a set of patches and
used a transformer encoder, which is typically
used for natural language processing, to
analyze the image. The Vision Transformer
(ViT) performed much better than leading
CNNs and needed fewer computational
resources to train.

Mahmoud Khalil et al., [7] did a detailed
review of past research on vision transformers
for image classification, organizing the models
in the order they were developed.

Koki Nakanishi et al., [9] conducted a review
on the possible heart-related causes of stroke
and evaluated how important
echocardiography is in clinical settings.

Priya Dubey et al., [10] wrote a paper that
gives a detailed overview of various deep
learning methods used to predict heart disease,
including CNNs, RNNs, and hybrid models.
They also discussed current diagnostic and
predictive  techniques wused in clinical
evaluations and imaging methods.

Lerina Aversano et al., [11] used ECG images
linked to different heart issues to predict heart
disease with deep learning tools. They found
that the CNN-2D model was able to correctly
identify heart disease in ECG images about
91% of the time.

Numerous studies have been widely applied
CNNs to analyze ECG data for arrhythmia
classification and to Echocardiograms for

segmenting heart chambers and detecting
cardiomyopathies. However, their inability to
model long-range dependencies limits their
effectiveness in complex medical imaging. To
address this, our study employs transformer-
based architectures like Vision Transformer
(ViT) and Swin Transformer—which have
shown promising results in recent biomedical
imaging research by capturing global context
and deeper feature representations.
3. Proposed Methodology

The literature review emphasizes that most
existing studies rely on single-modality ECG
or Echo imaging data and often lack
sophisticated feature fusion or optimization
methods. To address these gaps, our research
introduces a novel dual-modality framework
that combines ECG and Echo features
extracted via Vision Transformer (ViT) and
Swin Transformer. A metaheuristic algorithm,
Aquila Optimizer (AO) is used for selecting
the most relevant features prior to
classification. The proposed pipeline includes
imaging datasets acquisition, pre-processing of
datasets, features extraction from datasets,
multimodal features fusion, AO based feature
selection, and classification using a fine-tuned
MLP classifier. The proposed approach
enhances  diagnostic ~ performance by
leveraging both structural and electrical heart
characteristics for more accurate heart disease
prediction.

3.1 Datasets Acquisition

In this study, we utilize two real-time imaging
datasets as Electrocardiogram (ECG) and
Echocardiogram (Echo) and these are
collected manually from Government General
Hospital [35]. Each dataset comprises 4500
images, including 2500 normal and 2000
abnormal cases, representing the same
individuals across both imaging modalities.
Table 1 presents the distribution of normal and
abnormal images of each dataset, and also
figure 1, figure 2 illustrates sample normal and
abnormal ECG and Echo images from both
categories.

Table 1: Presents total images in ECG, Echo
datasets
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ECG images | Echo
images
Normal 2500 2500
images
Abnormal 2000 2000
images
Total images 4500 4500
(a) (b)

Figure 1: Represents (a) normal ECG image
(b) abnormal ECG image

(a)

Figure 2: Represents (a) normal Echo image
(b) abnormal Echo image

3.2 Datasets Pre-processing

In this study, we utilize Vision Transformer
(ViT) and Swin Transformer to extracting
features from ECG and Echo images, these
two are deep learning models based on the
Transformer architecture [6]. Since the
original datasets contain images in varying
3.3 Features Extraction, Fusion and
Selection

To effectively capturing spatial and contextual
patterns in ECG and Echo images, in this
study, we employ Vision Transformer (ViT)
[19][38] and Swin Transformer models for
features extraction. ViT segments input images
into 16x16 patches and applies global self-
attention mechanisms[31] to extract deep
features, utilizing its encoder blocks while
excluding the built-in classifier as shown in
figure4[6][7]. Swin Transformer adopts a

sizes of 112x112, 192x192, and 224x224, so
all images in the datasets are resized to
224x224 to meet models input requirements
and converted to RGB colour format. To
improve image quality, Gaussian filtering is
applied for noise reduction, followed by z-
score normalization using ImageNet mean and
standard deviation to transform pixel values
into the range of [0, 1]. Image augmentation
techniques such as rotation, flipping, and
brightness adjustment are employed to
enhance data  variability and  model
generalization. Heatmap is generated from the
datasets confirm balanced class distributions,
eliminating the need for further rebalancing.
From the figure 3, it is evident that the datasets
are already balanced, so there is no need to
balance them again.

Distribution of ECG and Echo Images in a Dataset

I 4500

Normal images =

- 3500

Abnormal images

- 3000

= 2500
Total images

' - 2000
Echo images

ECG images

Figure 3: Represents total normal and
abnormal cases in ECG, Echo datasets

hierarchical architecture with shifted window-
based attention, enabling efficient local and
global feature learning through progressive
stages and patch merging as depicted in
figure5[7]. In both models, only the feature
extraction layers are used, while a separate
fine-tuned MLP is employed for final heart
disease classification.

Algorithm 1: Feature Extraction, Fusion,
and Selection using AO metaheuristic
Input: ECG and Echo image datasets.
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Output: Optimal fused and selected features

Steps:
Step 1: Image Data Acquisition

Load ECG and Echocardiogram image

datasets
Step 2: Image Pre-processing
Resize all images to 224x224 pixels,
convert grayscale images to RGB,
normalize pixel values to range [0, 1],
denoise using Gaussian filtering,
perform data augmentation, convert
images to tensors.
Step 3: Feature Extraction using ViT and
Swin Transformer

ViT (Vision Transformer):

Used pre-trained ViT Base/16 and
Input: 224x224, Patch size: 16x16

Extract global features from final

encoder block.

Swin Transformer:

Used pre-trained Swin-Tiny model
and Patch size: 4x4, embedding dim: 96

Extract hierarchical local + global
features from final stage.
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Step 4: Feature Fusion

Concatenate features:

ViT_ECG + ViT_Echo — ViT Fused
and Swin_ECG + Swin_Echo — Swin_Fused
Step 5: Feature Selection using Aquila
Optimizer (AQO)

Initialize population of binary vectors
(agents), size N = 30.

Apply Aquila Optimizer (AO):

Perform exploration:

Expanded & mnarrowed exploration
inspired by eagle hunting behavior.

Perform exploitation:

Narrowed & expanded exploitation to
refine local optima.

Use fitness function:

Evaluate each agent (feature subset)
using a classification score (e.g., accuracy
using a temporary model) and Select optimal
feature subset with highest fitness score.

Algorithm 1: Presents features extraction,
fusion and features selection
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Figure 4: Represents ViT architecture
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Figure 5: Represents Swin Transformer architecture
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Algorithm 2: Model Building, Training, and
Evaluation Using MLP
Input: Selected fused features

Output:  Predicted class labels and
performance metrics

Steps:

Step 1: Dataset Preparation

Split selected features and
corresponding labels into train set (80%) and
test set (20%).

Step 2: MLP Classifier Design

Input Layer: size = number of selected features
Hidden Layers: 128 — 64 — 32 neurons
Output Layer: 1 neuron with sigmoid
activation

Activation: ReLU and Optimizer: AdamW
Dropout: 0.3 after each hidden layer

Loss: Binary Cross-entropy

Learning Rate: 0.00002 and Batch Size: 32
Epochs: 20, with Early Stopping (patience = 5)
Step 3: Model Training

Train MLP on the training data using
selected features.

Step 4: Model Evaluation

Predict outcomes on the test set.

Compute performance metrics:

Accuracy, Precision, Recall, F1-score,

ROC-AUC and Generate: Confusion

Matrix, ROC Curve, and Precision-

Recall Curve.

Algorithm 2: Presents MLP classifier design,
training and evaluation

In this research, first we extract rich high-level
features from ECG and Echo images using
ViT [39] and Swin Transformer models,
respectively. These models capture
complementary  spatial and  structural
representations. We then fused the feature
vectors extracted from both modalities into a
unified, high-dimensional representation per
subject. Merging both spatial and structural
patterns from multiple modalities results in a
feature vector that enhances the understanding
of cardiac conditions and improves prediction
accuracy. While this fusion enhances the

representational strength of the model, it also
introduces redundant and irrelevant features,
leading to possible overfitting and increased
computational complexity. To address this
challenge, in this study, we utilize the Aquila
Optimizer (AO), a nature-inspired
metaheuristic algorithm modeled after the
strategic hunting patterns of eagles, to perform
feature selection [27]. AO balances global
exploration and local exploitation by
simulating different stages of eagle hunting,
such as soaring at high altitudes to survey
large areas and diving swiftly to target specific
prey. These adaptive behaviors allow AO to
conduct a wide-ranging search across the
feature space initially and then gradually refine
the search to focus on the most promising
feature subsets. This approach effectively
reduces the dimensionality of the combined
ECG and Echocardiogram feature sets by
discarding irrelevant and redundant features,
thereby improving classification accuracy and
enhancing the generalization performance of
the heart disease prediction model. This step
was crucial in tailoring the model to focus on
medically significant features across both ECG
and Echo domains, ultimately enhancing heart
disease prediction accuracy.

In this study, to effectively selecting optimal
features from the fused ECG and
Echocardiogram dataset, we utilize the Aquila
Optimizer (AO) [34]. The AO algorithm
operates through four strategic movements,
each governed by mathematical formulations
that simulate exploratory and exploitative
behaviors across the feature space [28][37] and
the figure6 shows the behavior of Aquila. In
the exploration phase, AO simulates high
soaring with vertical stooping to search
broadly across the solution space. The position
of each solution (feature subset) is updated
using the equation (1):

XH] = chan- A. | B. chan‘ Xt| (1)

Here, X; is the current solution, Xmen 1S the
mean position of the population, and A and B
are  adaptive  coefficients  controlling
exploration range. This formula promotes
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global search by encouraging individuals to
move away from the current best solution.
During exploitative behavior, the AO
simulates contour flight with short glide
attacks to fine-tune the search in promising
areas. The exploitation mechanism is modeled
with formula (2) as:

X= G- (I-D) e L (2)

Where Guest is the best-so-far solution, t is the
current iteration, T is the maximum number of
iterations, € is a random coefficient, and L is a
Lévy flight step. This phase enhances
convergence by gradually reducing the search
scope around the global optimum.

To perform binary feature selection, AO
solutions are encoded as binary vectors, and a
transfer function converts continuous positions
into selection probabilities using the equation

3):
1
S(Xi;) = ey (3)
A threshold-based rule is then applied:

x'(t.+1) — {1 if rand() < S(Xl,])
b 0 otherwise

“)

X

Figure 6: Represents the behavior of Aquila

3.4 Classification Using Fine-Tuned MLP
In our proposed model, we use a Multi-Layer
Perceptron (MLP) as the classifier to make the

Where rand () is a uniformly generated
random number in the range [0, 1]. This
determines whether the j" feature is selected
(1) or discarded (0).

The quality of each feature subset is evaluated
using a fitness function that balances
predictive performance and feature reduction:

Fitnessi = a. Accuracy + f3. (1 -
)5)

Number of selected features

Total features

Here, o and [ are weighting factors
representing the trade-off between
classification accuracy and feature
minimization.

By applying these AO-based strategies, the
algorithm effectively navigates the feature
space, selecting the most informative and non-
redundant attributes for accurate heart disease
classification. Algorithm 1 presents the
datasets acquition, pre-processing, features
extraction, fusion and selection.

final decision. The MLP uses most relevant
features that have been combined and selected
from ECG signals and echocardiogram
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images. An MLP is a kind of computer brain
model with three parts: an entry area, secret
areas, and an outcome zone, as depicted in
Figures 7 [15] [18]. In every group of brain
cells, each cell links to all others in the
following group, enabling the system to
recognize intricate details within information.
In this study, we use one input layer, three
hidden layers and one output layer of the MLP
classifier design. ReLU acts as the non-linear
activator for internal stages, and the sigmoid
function operates in the final stage due to our

binary categorization goal. We trained the
model using the Adam optimizer and the
cross-entropy loss function. Important settings
such as the learning rate, batch size, number of
training rounds (epochs), and the number of
hidden layers (3) are carefully adjusted. This
setup helped the MLP turn the chosen features
into reliable predictions for heart disease.
Table 2 shows the specific setup of the MLP
classifier, and Algorithm 2 describes how the
MLP is designed, trained, and evaluated along
with the performance results.

Table 2: Presents used hyperparameters with values of MLP classifier design

No. of hidden layers 3

Input Activation function ReLu
Optimizer Adam

Loss function Cross entropy
Learning rate 0.0001

Batch size 32

Dropout 0.2

No. of epochs 20

Output activation function Sigmoid

Input Layer Hidden Layers

Feature #1

Feature #N

N
‘ \‘s%'.'-{“\/

Feature #2 “‘V"“;g. “ . \
L R 30 e
Feature #3 7 ) .“

Output Layer

Figure 7: Represents used MLP classifier architecture
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ECG Images

Echo Images

Normal ECG

e Normal Echo

Abnormal ECG

Abnormal Echo

Datasets

e «

Resize images to Image augmentation

224x224 with RGB color
- T
Noise removal ——{ Normalization of images

v

Features extraction ECG, Echo images using ViT, Swin
Transformers individually

v

Integration of features from both datasets of individual

transformer model

Features selection from datasets using AO metaheuristic

algorithm

Train dataset (80%) Test Dataset (20%)

& ey

.

Pre-processing

Features Extraction, Fusion,

Selection

Dataset split

MLP model
trained with
combined
features of ViT

MLP model trained
with combined
features of Swin
Transformer

MLP model
tested with
combined
features of VIiT

MLP model tested
with combined
features of Swin
Transformer

Model Train and Test

Result:

0- no heart disease

1- Heart disease

Figure 8: Represents Work flow diagram of Proposed Model

3.5 Performance Evaluation Metrics

To evaluate the efficiency of the proposed
deep heart disease
prediction, several performance measures are
applied, including accuracy, precision, recall,
Fl-score, and AUC [12][13]. These indicators
provide a comprehensive assessment of how
well the model distinguishes between
individuals with cardiovascular risk and those
without.

learning model for

Confusion Matrix: The confusion matrix in
Figure 9 presents the relationship between the
for heart
into

actual and predicted outcomes
disease classification, dividing them
positive and negative classes. It is used to
calculate accuracy, sensitivity (also called
recall), precision, and the F1-score.
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Actual Values

Positive (1) MNegative (0)

Positive (1) TP FP

MNegative (0) FMN TN

Predicted Values

Figure 9: Represents confusion matrix

In this context: TP (True Positive): Correctly
predicted positive cases, TN (True Negative):
Correctly predicted negative cases, FP (False
Positive): Incorrectly predicted as positive, and
FN (False Negative): Incorrectly predicted as
negative.

Accuracy: Accuracy measures the overall
correctness of the model and is expressed as

using the equation 5:
TP+TN
TPTTNIFPIFN (6)
TP+TN+FP+FN
Precision: Precision shows how many of the

cases the model predicted as positive are
actually positive. It is given by equation 6:

TP
TP+FP (7)

Recall (Sensitivity): Recall shows how many
of the actual positive cases the model correctly
identified. Equation 7 is used to calculate

Accuracy =

Precision =

recall.
TP
Recall = —— ®)

F1-Score: The Fl-score is a way to balance
precision and recall by taking their average,

which is useful when the classes are not

equally common.

2xprecision*recall
F1 — score = P> OnTecaz 9
precision+recall

ROC curve: The Receiver Operating
Characteristic (ROC) curve demonstrates the
trade-off between the True Positive Rate
(TPR) and False Positive Rate (FPR) across
different threshold values. These are computed
as using equations 10 and 11.

TP+FN
TPR = — (10)
FPR = —— (11)
FP+TN

AUC (Area under the Curve): The AUC
summarizes the ROC curve into a single value,
ranging between 0 and 1. A higher AUC score
reflects stronger predictive performance, with
values closer to 1 indicating the model’s
superior ability to separate positive and
negative cases effectively.

4. Experimental Results
4.1 Experimental Setup
In this study, we conducted all experiments
using Jupyter notebook within the Anaconda3
software environment, utilizing python 3.11.5
as the core programming language with
several libraries and frameworks to evaluating
our work. Pytorch and TensorFlow are utilized
for constructing and training Vision
Transformer, Swin Transformer and MLP
models. Scikit-learn are utilized for tuning the
MLP classifier, evaluating performance
metrics, and implementing the AO-PSO fitness
function. Numpy and Pandas are utilized for
data manipulation and pre-processing, while
Opencv and pil are employed for image
resizing and transformation. Matplotlib is used
to create visualizations like confusion matrices
and ROC curves.
4.2 Experimental Results Analysis
Four separate experiments are carried out as
shown in table 3, each focusing on a different
combination of electrocardiogram (ECG) and
echocardiogram (Echo) data. The ECG and
Echo images are analyzed using ViT and Swin
Transformer models to extract relevant
features. These features are then fed into a
highly refined MLP classifier. Each
configuration is assessed using important
performance metrics: accuracy, precision,
recall, and fl-score. These experiments aided
in comprehending the impact of individual
modalities and transformer architectures on the
classification task.
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Table 3: Represents performance metric values of individual datasets features of

ViT, Swin with MLP classifier

Experiment Accuracy Precision Recall F1-score
Swin-ECG — MLP 86.78% 87.09% 86.78% 86.79%
ViT-ECG — MLP 73.40% 63.05% 73.40% 62.15%
Swin-Echo — MLP 81.70% 79.33% 82.66% 80.66%
ViT-Echo — MLP 73.37% 74.33% 73.37% 73.64%

In this study,we employs multimodal fusion by
combining features extracted individually from
ECG and Echo images wusing Vision
Transformer (ViT) and Swin Transformer
architectures. For each transformer, ECG and
Echo features are first extracted independently
and then fused to form a comprehensive
feature representation. To refine this high-
dimensional fused vector and eliminate
redundant or irrelevant attributes, we introduce
an Aquila Optimizer for feature selection. This
method  effectively  enhanced  model
generalization while reducing complexity. The
optimized feature subsets are then classified
using a fine-tuned Multi-Layer Perceptron

(MLP) model. Results indicate that the Swin
Transformer-based fusion, optimized with AO
and classified using MLP, achieved the best
performance (96.76% accuracy and 97.98%
Fl-score), surpassing the ViT-based fusion
(87.68% accuracy and 92.75% Fl-score).
These findings validate the effectiveness of
combining  multimodal  features  with
optimization and highlight the superior
discriminative power of Swin Transformer in
capturing cardiac image patterns for accurate
heart disease prediction.This performance
metric result is outlined in table 4.

Table 4: Presents performance metric values of combined features of ViT with MLP and combined

features of Swin with MLP classifier

Experiment Accuracy Precision Recall F1-score
Swin-ECG+Swin-Echo+ MLP 96.76% 96.19% 99.84% 97.98%
ViT-ECG + ViT-Echo + MLP 87.68% 86.48% 100% 92.75%

The experimental findings clearly show a
significant difference in performance between
single-modality and multimodal fusion
approaches in heart disease prediction. Among
the single-modality models, Swin Transformer
-ECG — MLP showed better accuracy
(86.78%) than other configurations, especially
outperforming ViT-ECG — MLP (73.40%).
Similarly, Swin Transformer -Echo — MLP
(81.70%) slightly surpassed ViT-Echo —
MLP (73.37%). However, the most significant
performance boost is observed in the
multimodal fusion. The combination of Swin
Transformer-extracted ECG and  Echo
features, optimized using the AO algorithm
and classified with a fine-tuned MLP,

achieved the highest accuracy of 96.76% and
an F1-score of 97.98%. The Swin-based fusion
also improved over individual models but
remained lower, with 87.68% accuracy and a
92.75% F1-score. These outcomes highlight
the effectiveness of feature fusion and the
strength of AO in selecting informative
features for enhanced prediction. Our
experimental findings reveal that although
Vision Transformer (ViT) demonstrates good
performance in heart disease prediction, Swin
Transformer  delivers  superior  results,
especially in terms of accuracy and feature
extraction. The hierarchical structure of Swin
Transformer enables it to learn more
effectively from both ECG and Echo images,
leading to improved predictive performance.
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Performance Comparison of ViT vs Swin on ECG & Echo (MLP Classifier)
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Figure 10: Represents Performance Comparison of ViT and Swin with MLP on individual datasets

4.3 Model Performance Metrics Analysis

To evaluate the effectiveness of the proposed
multimodal fusion approaches for heart
disease prediction, we analyzed the confusion
matrices of both models, along with key
performance metrics including accuracy,
precision, recall, and fl-score. We also
evaluated the ROC-AUCscores. These
assessments are carried out for both fusion
pipelines: ViT-ECG + ViT-Echo + MLP and
Swin-ECG + Swin-Echo + MLP.

Confusion Matrix Analysis: Confusion
matrices are plotted for the ViT-ECG + ViT-
Echo + MLP and Swin-ECG + Swin-Echo +
MLP models to visually assess prediction
outcomes in terms of true positives, true
negatives, false positives, and false negatives.
The model’s confusion matrix showcased a
significant presence along the diagonal,
suggesting exceptional accuracy in classifying
data with minimal errors. In contrast, the
Swin-based model, while somewhat effective,
exhibited a few more off-diagonal elements,
indicating a higher frequency of incorrect
predictions.

Actual
Actual Normal

Actual Abnormal

Confusion Matrix of ECG-Swin+Echo-Swin+MLP

Predicted Normal Predicted Abnormal
Predicted

Figure 11: Represents confusion matrix of
ECG-Swin+Echo-Swin+tMLP

Actual
Actual Normal

Actual Abnormal
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Figure 12: Represents confusion matrix of
ECG-ViT+Echo-ViT+MLP

Accuracy, Recall, Precision and F1 score
Analysis: Performance metrics including
accuracy, precision, recall, and fl-score are
evaluated for both fusion models. The Swin
Transformer-ECG + Swin Transformer-Echo +
MLP configuration outperformed with an
accuracy of 96.76%, precision of 96.19%,
recall of 99.84%, and an fl-score of 97.98% as
shown in figure 13 . Meanwhile, the ViT-
based model reached 87.68% accuracy,
86.48% precision, perfect recall of 100%, and
a 92.75% fl-score as presented in figure
14.These  results highlight the Swin
Transformer-based fusion model’s advantage
in delivering more balanced and robust
predictive performance.

Performance Metrics of the Model
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Figure 13: Performance Metrics of ViT-ECG +
ViT-Echo + MLP

Performance Metrics of the Model

Accuracy Precision Recall F1 Score

0.9984
Lo 0.9676 0.9619 LTS

0.8

0.6

score

0.4

02

0.0

Acturacy Precision Recall F1 Score
Metric

Figure 14: Performance metrics of Swin-
ECG+Swin-Echo+ MLP

ROC and AUC Analysis: Furthermore, we
plotted ROC curves for both fusion models to
evaluate their ability to differentiate between
the presence and absence of heart disease at
different thresholds. The areaunder the curve
(AUC) for the ViT-based fusion model was
closer to 1, indicating a high level of
discrimination. The Swin-based fusion model
also achieved a high AUC, but it was slightly
lower than that of the ViT-based model. The
results of these visually presented in figure
15and figure 16.

ROC Curve

0.8 1

o
-]

041

True Positive Rate

—— AUC = 0.88

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 15: Results of ROC curve with AUC
value of ViT-ECG+ViT-Echo+ MLP
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Figure 16: Results of ROC curve with AUC of
Swin-ECG+Swin-Echo+ MLP

4.4 Comparative Performance

We compare the performance of our proposed
a Two-Stage Hybrid Deep Learning Model
with already existed single and multimodality
models. The table 2 presents a comparative
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evaluation of heart disease prediction models of  highlighting
based on accuracy reported by various
researchers and also figure 17 shows the

Table 5: Comparison of different existing models with our proposed model

accuracy
performance of our model.

the superior

Author name, Reference No Model used Accuracy
N. Revathi et al.,[20] MLP 75.60%
Tb Ai Munandar [21] MLP with Tanh 78.80%
Songhee Cheon et al.,[26] PCA with DNN 83.48%
Majumder et al.,[36] Random Forest with WOA 86.53%
Pengpai Li et al.,[22] LSTMs+GA 87.3%
Archana Agarwal et al.,[33] Random Forest 90.24%
Mohammad Shokoubhifar et al.,[30] EHMFFL 91.8%
Geetha Narasimhan et al.,[24] GAORF 92%
Prabu Pachiyannan et al.,[14] ML-CHDPM(LSTM-+Attention Mechanism) 94.28%
Muhammad Tayyeb et al.,[15] MLP 94.40%
Muhammad Mabhtab et al.,[3] EfficientNetB3 94.53%
Fande Kong et al.,[23] LDGO 94. 6%
Muhammad Raoof et al.,[2] VGG16 94.92%
Zeynep Hilal Kilimci et al.,[ 5] BeiT 95.90%
Rayudu Srinivas et al.,[40] ACLS-RCNN model with ICSOA 95.64%
Proposed Model Two-Stage Hybrid Deep Learning Model 96.76%
Comparison of Models by Accuracy
Two-Stage HDL (Proposed Model) 9676
ACLS-RCNN + ICSOA - 95.64
BeiT e
VGG16 A 94 92%
LDGO - 94 60%
EfficientNetB3 94.53%
MLP (2nd) 1 bt i
?u; LSTM+Attention Mechanism - 94.28%
E GAORF - 92 00%
EHMFFL - 91.80%
Random Forest - 90.24
LSTMs+GA - B7.30%
Random Forest with WOA - 85.53%
PCA with DNN 83 48%
MLP with Tanh 78.80%
MLP - 75.60
0 2l0 4I0 6I0 Brﬂ 160

Accuracy (%)

Figure 17: Represents accuracy comparison of proposed model with existing models
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5. Conclusion and Future work

In this study, we introduce an advanced deep
learning  framework for heart disease
prediction using ECG and Echocardiogram
(Echo) images. Feature extraction was
performed using Vision Transformer (ViT)
and Swin Transformer architectures, followed
by classification through a fine-tuned Multi-
Layer Perceptron (MLP). Among all
configurations, the fusion of ECG and Echo
features extracted via Swin Transformer and
optimized using an Aquila Optimization
algorithm demonstrated the best performance,
achieving 96.76% accuracy and a 97.98% F1-
score. The integration of AO effectively
refined the fused feature set by selecting the
most relevant features, enhancing
classification accuracy while reducing
complexity. Findings confirm that integrating
multimodal fusion with transformer-based
extraction and metaheuristic optimization
substantially enhances predictive outcomes.
This study highlights that Swin Transformer,
when utilized with ECG and Echo image data,
achieves better predictive accuracy, more
efficient feature extraction, and enhanced
generalization compared to Vision
Transformer (ViT). The hierarchical attention
mechanism employed by Swin Transformer
allows it to better capture both local and global
features, thereby making it a more effective
model for multimodal heart disease prediction.
Future directions include incorporating clinical
tabular data, applying attention-based fusion
techniques, tuning hyperparameters,
expanding the dataset, and wvalidating the
model in clinical environments to further
increase reliability and generalizability.
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