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ABSTRACT 

Detecting heart disease at an early stage is essential for lowering death rates and ensuring timely 

medical care. This study introduces a two-stage hybrid deep learning model that integrates 

Electrocardiogram (ECG) and Echocardiogram (Echo) images for accurate heart disease prediction. 

For both data types, features are extracted using advanced vision-based models such as Vision 

Transformer (ViT) and Swin Transformer. A metaheuristic approach Aquila Optimizer (AO) is 

employed for optimal feature selection. These refined features are classified using a fine-tuned Multi-

Layer Perceptron (MLP). A comparative study showed that the Swin Transformer-based fusion 

outperformed ViT-based models, reaching 96.76% accuracy, 97.98% F1-score, 96.19% precision, and 

99.84% recall. This approach demonstrates the effectiveness of combining multimodal imaging data 

with AO optimization for enhancing automated heart disease diagnosis systems. 

 

Keywords: Cardiovascular diseases (CVDs), Electrocardiogram (ECG), Echocardiogram (Echo), 

Vision Transformer (ViT), Swin Transformer, Aquila Optimizer (AO), Multi-Layer Perceptron 

(MLP), heart diseases. 

 

1. Introduction 

According to the World Health Organization 

(WHO), cardiovascular diseases continue to be 

the leading cause of death worldwide. In 2019, 

WHO reported approximately 17.9 million 

deaths globally from cardiovascular-related 

conditions[2][3]. By 2022, cardiovascular 

conditions represented nearly 32% of all 

deaths worldwide, about 19.8 million cases, 

with around 85% linked to heart attacks and 

strokes. [1]. These diseases encompass a wide 

range of conditions affecting the heart and 

blood vessels, such as coronary artery disease, 

irregular heart rhythms, and heart failure. The 

prevalence of CVDs is increasing rapidly due 

to lifestyle choices, aging populations, and 

delayed detection, especially in low and 

middle-income nations [1][15]. Early and 

accurate detection of heart disease is critical to 

reducing fatal outcomes and facilitating 

prompt medical intervention. As a result, there 

is an increasing need for advanced, automated, 

and intelligent diagnostic systems that can 

assist clinicians in accurately identifying 

CVDs with minimal human error and high 

reliability [2]. CVDs are commonly diagnosed 

using techniques like electrocardiography 

(ECG), echocardiography, computed 

tomography (CT), angiography and magnetic 

resonance imaging (MRI). Classic diagnostic 

methods like electrocardiography [32] and 

echocardiography [9] are crucial in evaluating 

the heart's condition. ECG records the 

electrical activity of the heart and is effective 

in detecting arrhythmias and myocardial 

infarctions [11], while Echo uses ultrasound to 

visualize heart structures, offering detailed 

insights into heart chamber size, valve 

functions, and pumping capacity. 

Echocardiograms play a vital role in 

diagnosing and treating various heart 

conditions, including cardiomyopathy, heart 

failure, and valvular heart diseases like aortic 

stenosis and mitral regurgitation[2][3]. By 
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evaluating important factors such as ejection 

fraction and diastolic function, and employing 

Doppler techniques to assess blood flow and 

cardiac hemodynamics, echocardiograms aid 

in detecting irregularities in pressure and flow. 

Nevertheless, the interpretation of these 

imaging modalities necessitates specialized 

knowledge, which is typically scarce in 

settings with limited resources. Thanks to 

recent progress in artificial intelligence (AI) 

and deep learning, automated diagnostic 

models [10] have become increasingly popular 

in medical image analysis, leading to more 

precise and efficient disease prediction. 

Despite the existence of multiple diagnostic 

techniques [12], accurately and promptly 

identifying heart disease continues to pose a 

significant challenge. Traditional approaches 

heavily depend on expert interpretation, which 

can result in inconsistencies in diagnosis and 

place a greater burden on medical 

professionals. Additionally, while researchers 

have investigated deep learning techniques for 

medical imaging analysis, most studies have 

focused on a single modality, such as ECG or 

echocardiogram images, which restricts the 

predictive capabilities of the models. It is 

crucial to develop a comprehensive approach 

that incorporates elements from both imaging 

modalities to enhance the accuracy of 

predictions and facilitate better clinical 

decision-making. In this study, we focus on 

creating a multimodal deep learning 

framework that combines information from 

both ECG and Echo images. The process of 

feature extraction is performed using ViT [4] 

and Swin Transformer models [5] separately, 

and then classification is achieved using a 

fine-tuned multi-layer perceptron (MLP).The 

study also employs a metaheuristic 

optimization technique Aquila Optimizer (AO) 

to enhance the selection of the most relevant 

features before classification. This hybrid 

approach leverages AO’s strong exploration 

and exploitation capability to navigate the 

feature space effectively. While single-

modality models offer useful insights, they 

often lack the depth provided by multimodal 

data fusion. Experimental results reveal that 

models integrating multiple data modalities, 

coupled with optimized feature selection via 

AO significantly outperform those based on a 

single modality. 

2. Literature Review 

Progress in AI and deep learning has 

significantly improved medical image 

analysis, allowing quicker and more precise 

diagnoses. This review highlights the growing 

role of deep learning in heart disease 

prediction, particularly through ECG and 

Echocardiogram imaging. While many studies 

apply CNNs, RNNs, ResNet, VGG, and 

EfficientNet family on individual modalities to 

extract features from ECG, Echo images and 

train the model to predict heart diseases, the 

use of multimodal fusion remains limited. 

Models like ViT and Swin Transformer 

demonstrate strong potential but are frequently 

limited to single-modality use. Moreover, 

existing machine learning and deep learning 

fusion approaches rarely incorporate advanced 

optimization or automated feature selection, 

indicating a gap in fully integrated and 

optimized multimodal frameworks. 

Muhammad Raoof et al., [2] used the latest 

VGG16 deep learning model to automatically 

detect heart disease from echocardiogram 

images, and they achieved an accuracy of 

94.92%. Muhammad Mahtab et al., [3] 

developed a deep learning model called 

EfficientNetB3, which was made to identify 

critical congenital heart disease (CCHD) from 

echocardiogram pictures. This model got an 

accuracy of 94.53%.  

Chunyu Fan et al., [4] introduced a new model 

named ViT-FRD, which mixes features from a 

Vision Transformer (ViT) and a CNN using a 

process called knowledge refinement. This 

model showed very high precision, with a 

success rate of 96.90%.  

Zeynep Hilal Kilimci et al., [5] did a study to 

detect heart disease using ECG images. They 

used vision transformer models like Google's 

ViT, Microsoft's Beit, and Swin-Tiny. The 

Beit model performed the best, achieving an 
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accuracy of 95.9%, which was better than the 

other two models.  

Jingyuan Yi et al., [25] made an improved 

transformer model aimed at boosting heart 

disease prediction accuracy. They used particle 

swarm optimization (PSO) to reach a 

classification accuracy of 96.5%.  

Tb Ai Munandar [21] proposed an MLP model 

that used different activation functions like 

tanh, logistic, and ReLu. The MLP model with 

the tanh activation function performed better 

than the logistic and ReLu models in terms of 

accuracy. When trained using tanh and k-fold 

cross-validation, the MLP model achieved a 

classification accuracy of 78.8%.  

Alexey Dosovitskiy et al., [6] did a study on 

using transformers for image recognition. 

They treated an image as a set of patches and 

used a transformer encoder, which is typically 

used for natural language processing, to 

analyze the image. The Vision Transformer 

(ViT) performed much better than leading 

CNNs and needed fewer computational 

resources to train.  

Mahmoud Khalil et al., [7] did a detailed 

review of past research on vision transformers 

for image classification, organizing the models 

in the order they were developed.  

Koki Nakanishi et al., [9] conducted a review 

on the possible heart-related causes of stroke 

and evaluated how important 

echocardiography is in clinical settings.  

Priya Dubey et al., [10] wrote a paper that 

gives a detailed overview of various deep 

learning methods used to predict heart disease, 

including CNNs, RNNs, and hybrid models. 

They also discussed current diagnostic and 

predictive techniques used in clinical 

evaluations and imaging methods. 

Lerina Aversano et al., [11] used ECG images 

linked to different heart issues to predict heart 

disease with deep learning tools. They found 

that the CNN-2D model was able to correctly 

identify heart disease in ECG images about 

91% of the time. 

Numerous studies have been widely applied 

CNNs to analyze ECG data for arrhythmia 

classification and to Echocardiograms for 

segmenting heart chambers and detecting 

cardiomyopathies. However, their inability to 

model long-range dependencies limits their 

effectiveness in complex medical imaging. To 

address this, our study employs transformer-

based architectures like Vision Transformer 

(ViT) and Swin Transformer—which have 

shown promising results in recent biomedical 

imaging research by capturing global context 

and deeper feature representations. 

3. Proposed Methodology 

The literature review emphasizes that most 

existing studies rely on single-modality ECG 

or Echo imaging data and often lack 

sophisticated feature fusion or optimization 

methods. To address these gaps, our research 

introduces a novel dual-modality framework 

that combines ECG and Echo features 

extracted via Vision Transformer (ViT) and 

Swin Transformer. A metaheuristic algorithm, 

Aquila Optimizer (AO) is used for selecting 

the most relevant features prior to 

classification. The proposed pipeline includes 

imaging datasets acquisition, pre-processing of 

datasets, features extraction from datasets, 

multimodal features fusion, AO based feature 

selection, and classification using a fine-tuned 

MLP classifier. The proposed approach 

enhances diagnostic performance by 

leveraging both structural and electrical heart 

characteristics for more accurate heart disease 

prediction. 

3.1 Datasets Acquisition  

In this study, we utilize two real-time imaging 

datasets as Electrocardiogram (ECG) and 

Echocardiogram (Echo) and these are 

collected manually from Government General 

Hospital [35]. Each dataset comprises 4500 

images, including 2500 normal and 2000 

abnormal cases, representing the same 

individuals across both imaging modalities. 

Table 1 presents the distribution of normal and 

abnormal images of each dataset, and also 

figure 1, figure 2 illustrates sample normal and 

abnormal ECG and Echo images from both 

categories. 

  Table 1: Presents total images in ECG, Echo 

datasets 
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 ECG images Echo 

images 

Normal 

images 

2500 2500 

Abnormal 

images 

2000 2000 

Total images 4500 4500 

 

 
 Figure 1: Represents (a) normal ECG image 

(b) abnormal ECG image 

 
 Figure 2: Represents (a) normal Echo image 

(b) abnormal Echo image 

3.2 Datasets Pre-processing 

In this study, we utilize Vision Transformer 

(ViT) and Swin Transformer to extracting 

features from ECG and Echo images, these 

two are deep learning models based on the 

Transformer architecture [6]. Since the 

original datasets contain images in varying 

sizes of 112×112, 192×192, and 224×224, so 

all images in the datasets are resized to 

224×224 to meet models input requirements 

and converted to RGB colour format. To 

improve image quality, Gaussian filtering is 

applied for noise reduction, followed by z-

score normalization using ImageNet mean and 

standard deviation to transform pixel values 

into the range of [0, 1]. Image augmentation 

techniques such as rotation, flipping, and 

brightness adjustment are employed to 

enhance data variability and model 

generalization. Heatmap is generated from the 

datasets confirm balanced class distributions, 

eliminating the need for further rebalancing. 

From the figure 3, it is evident that the datasets 

are already balanced, so there is no need to 

balance them again. 

 

 

          Figure 3: Represents total normal and 

abnormal cases in ECG, Echo datasets 

3.3 Features Extraction, Fusion and 

Selection  

To effectively capturing spatial and contextual 

patterns in ECG and Echo images, in this 

study, we employ Vision Transformer (ViT) 

[19][38] and Swin Transformer models for 

features extraction. ViT segments input images 

into 16×16 patches and applies global self-

attention mechanisms[31] to extract deep 

features, utilizing its encoder blocks while 

excluding the built-in classifier as shown in 

figure4[6][7]. Swin Transformer adopts a 

hierarchical architecture with shifted window-

based attention, enabling efficient local and 

global feature learning through progressive 

stages and patch merging as depicted in 

figure5[7]. In both models, only the feature 

extraction layers are used, while a separate 

fine-tuned MLP is employed for final heart 

disease classification. 

 

Algorithm 1: Feature Extraction, Fusion, 

and Selection using AO metaheuristic 

Input: ECG and Echo image datasets. 
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Output: Optimal fused and selected features 

Steps: 

Step 1: Image Data Acquisition 

Load ECG and Echocardiogram image 

datasets  

Step 2: Image Pre-processing 

Resize all images to 224×224 pixels, 

convert grayscale images to RGB, 

normalize pixel values to range [0, 1], 

denoise using Gaussian filtering, 

perform data augmentation, convert 

images to tensors. 

Step 3: Feature Extraction using ViT and 

Swin Transformer 

ViT (Vision Transformer): 

Used pre-trained ViT Base/16 and 

Input: 224×224, Patch size: 16×16 

Extract global features from final 

encoder block. 

Swin Transformer: 

Used pre-trained Swin-Tiny model 

and Patch size: 4×4, embedding dim: 96 

Extract hierarchical local + global 

features from final stage. 

Step 4: Feature Fusion 

Concatenate features: 

ViT_ECG + ViT_Echo → ViT_Fused 

and Swin_ECG + Swin_Echo → Swin_Fused 

Step 5: Feature Selection using Aquila 

Optimizer (AO) 

Initialize population of binary vectors 

(agents), size N = 30. 

Apply Aquila Optimizer (AO): 

Perform exploration: 

Expanded & narrowed exploration 

inspired by eagle hunting behavior. 

Perform exploitation: 

Narrowed & expanded exploitation to 

refine local optima. 

Use fitness function: 

Evaluate each agent (feature subset) 

using a classification score (e.g., accuracy 

using a temporary model) and Select optimal 

feature subset with highest fitness score. 

 

Algorithm 1: Presents features extraction, 

fusion and features selection 

 

    Figure 4: Represents ViT architecture  

 

    Figure 5: Represents Swin Transformer architecture 
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Algorithm 2: Model Building, Training, and 

Evaluation Using MLP 

Input: Selected fused features 

Output: Predicted class labels and 

performance metrics 

Steps: 

Step 1: Dataset Preparation 

Split selected features and 

corresponding labels into train set (80%) and 

test set (20%). 

Step 2: MLP Classifier Design 

Input Layer: size = number of selected features 

Hidden Layers: 128 → 64 → 32 neurons 

Output Layer: 1 neuron with sigmoid 

activation 

Activation: ReLU and Optimizer: AdamW 

Dropout: 0.3 after each hidden layer 

Loss: Binary Cross-entropy 

Learning Rate: 0.00002 and Batch Size: 32 

Epochs: 20, with Early Stopping (patience = 5) 

Step 3: Model Training 

Train MLP on the training data using 

selected features. 

Step 4: Model Evaluation 

Predict outcomes on the test set. 

Compute performance metrics: 

Accuracy, Precision, Recall, F1-score, 

ROC-AUC and Generate: Confusion 

Matrix, ROC Curve, and Precision-

Recall Curve. 

 

Algorithm 2: Presents MLP classifier design, 

training and evaluation 

In this research, first we extract rich high-level 

features from ECG and Echo images using 

ViT [39] and Swin Transformer models, 

respectively. These models capture 

complementary spatial and structural 

representations. We then fused the feature 

vectors extracted from both modalities into a 

unified, high-dimensional representation per 

subject. Merging both spatial and structural 

patterns from multiple modalities results in a 

feature vector that enhances the understanding 

of cardiac conditions and improves prediction 

accuracy. While this fusion enhances the 

representational strength of the model, it also 

introduces redundant and irrelevant features, 

leading to possible overfitting and increased 

computational complexity. To address this 

challenge, in this study, we utilize the Aquila 

Optimizer (AO), a nature-inspired 

metaheuristic algorithm modeled after the 

strategic hunting patterns of eagles, to perform 

feature selection [27]. AO balances global 

exploration and local exploitation by 

simulating different stages of eagle hunting, 

such as soaring at high altitudes to survey 

large areas and diving swiftly to target specific 

prey. These adaptive behaviors allow AO to 

conduct a wide-ranging search across the 

feature space initially and then gradually refine 

the search to focus on the most promising 

feature subsets. This approach effectively 

reduces the dimensionality of the combined 

ECG and Echocardiogram feature sets by 

discarding irrelevant and redundant features, 

thereby improving classification accuracy and 

enhancing the generalization performance of 

the heart disease prediction model. This step 

was crucial in tailoring the model to focus on 

medically significant features across both ECG 

and Echo domains, ultimately enhancing heart 

disease prediction accuracy. 

In this study, to effectively selecting optimal 

features from the fused ECG and 

Echocardiogram dataset, we utilize the Aquila 

Optimizer (AO) [34]. The AO algorithm 

operates through four strategic movements, 

each governed by mathematical formulations 

that simulate exploratory and exploitative 

behaviors across the feature space [28][37] and 

the figure6 shows the behavior of Aquila. In 

the exploration phase, AO simulates high 

soaring with vertical stooping to search 

broadly across the solution space. The position 

of each solution (feature subset) is updated 

using the equation (1): 

Xt+1 = Xmean - A. | B. Xmean - Xt |   (1) 

Here, Xt is the current solution, Xmean  is the 

mean position of the population, and A and B 

are adaptive coefficients controlling 

exploration range. This formula promotes 
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global search by encouraging individuals to 

move away from the current best solution.  

During exploitative behavior, the AO 

simulates contour flight with short glide 

attacks to fine-tune the search in promising 

areas. The exploitation mechanism is modeled 

with formula (2) as: 

Xt+1= Gbest . (1- 
�

 � 
) + ε. L         (2)                                                         

Where Gbest is the best-so-far solution, t is the 

current iteration, T is the maximum number of 

iterations, ϵ is a random coefficient, and L is a 

Lévy flight step. This phase enhances 

convergence by gradually reducing the search 

scope around the global optimum. 

To perform binary feature selection, AO 

solutions are encoded as binary vectors, and a 

transfer function converts continuous positions 

into selection probabilities using the equation 

(3): 

����,�� =
�

���
���,�

       (3)                                                                                  

A threshold-based rule is then applied: 

��,�
(���)

= �
1      if rand() < S(X�,�)

0    otherwise
     (4)                                                               

Where rand () is a uniformly generated 

random number in the range [0, 1]. This 

determines whether the jth feature is selected 

(1) or discarded (0). 

The quality of each feature subset is evaluated 

using a fitness function that balances 

predictive performance and feature reduction: 

Fitness� = α. Accuracy + β. �1 −

������ �� �������� ��������

����� ��������
�(5)        

Here, α and β are weighting factors 

representing the trade-off between 

classification accuracy and feature 

minimization. 

By applying these AO-based strategies, the 

algorithm effectively navigates the feature 

space, selecting the most informative and non-

redundant attributes for accurate heart disease 

classification. Algorithm 1 presents the 

datasets acquition, pre-processing, features 

extraction, fusion and selection. 

 

Figure 6: Represents the behavior of Aquila 

3.4 Classification Using Fine-Tuned MLP 

In our proposed model, we use a Multi-Layer 

Perceptron (MLP) as the classifier to make the 

final decision. The MLP uses most relevant 

features that have been combined and selected 

from ECG signals and echocardiogram 
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images. An MLP is a kind of computer brain 

model with three parts: an entry area, secret 

areas, and an outcome zone, as depicted in 

Figures 7 [15] [18]. In every group of brain 

cells, each cell links to all others in the 

following group, enabling the system to 

recognize intricate details within information. 

In this study, we use one input layer, three 

hidden layers and one output layer of the MLP 

classifier design. ReLU acts as the non-linear 

activator for internal stages, and the sigmoid 

function operates in the final stage due to our 

binary categorization goal. We trained the 

model using the Adam optimizer and the 

cross-entropy loss function. Important settings 

such as the learning rate, batch size, number of 

training rounds (epochs), and the number of 

hidden layers (3) are carefully adjusted. This 

setup helped the MLP turn the chosen features 

into reliable predictions for heart disease. 

Table 2 shows the specific setup of the MLP 

classifier, and Algorithm 2 describes how the 

MLP is designed, trained, and evaluated along 

with the performance results. 

Table 2: Presents used hyperparameters with values of MLP classifier design 

No. of hidden layers 3 

Input Activation function ReLu 

Optimizer Adam 

Loss function Cross entropy 

Learning rate 0.0001 

Batch size 32 

Dropout 0.2 

No. of epochs 20 

Output activation function Sigmoid 

 

 

     Figure 7: Represents used MLP classifier architecture 
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Figure 8: Represents Work flow diagram of Proposed Model 

3.5 Performance Evaluation Metrics 

To evaluate the efficiency of the proposed 

deep learning model for heart disease 

prediction, several performance measures are 

applied, including accuracy, precision, recall, 

F1-score, and AUC [12][13]. These indicators 

provide a comprehensive assessment of how 

well the model distinguishes between 

individuals with cardiovascular risk and those 

without. 

Confusion Matrix: The confusion matrix in 

Figure 9 presents the relationship between the 

actual and predicted outcomes for heart 

disease classification, dividing them into 

positive and negative classes. It is used to 

calculate accuracy, sensitivity (also called 

recall), precision, and the F1-score. 
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Figure 9: Represents confusion matrix 

In this context: TP (True Positive): Correctly 

predicted positive cases, TN (True Negative): 

Correctly predicted negative cases, FP (False 

Positive): Incorrectly predicted as positive, and 

FN (False Negative): Incorrectly predicted as 

negative.  

Accuracy: Accuracy measures the overall 

correctness of the model and is expressed as 

using the equation 5: 

Accuracy =
�����

�����������
 (6) 

Precision: Precision shows how many of the 

cases the model predicted as positive are 

actually positive. It is given by equation 6: 

Precision =
��

�����
  (7) 

Recall (Sensitivity): Recall shows how many 

of the actual positive cases the model correctly 

identified. Equation 7 is used to calculate 

recall. 

Recall =
��

�����
  (8)  

F1-Score: The F1-score is a way to balance 

precision and recall by taking their average, 

which is useful when the classes are not 

equally common. 

F1 − score =
�∗���������∗������

����������������
 (9) 

ROC curve: The Receiver Operating 

Characteristic (ROC) curve demonstrates the 

trade-off between the True Positive Rate 

(TPR) and False Positive Rate (FPR) across 

different threshold values. These are computed 

as using equations 10 and 11. 

TPR =
�����

��
   (10) 

FPR =
��

�����
   (11) 

     

AUC (Area under the Curve): The AUC 

summarizes the ROC curve into a single value, 

ranging between 0 and 1. A higher AUC score 

reflects stronger predictive performance, with 

values closer to 1 indicating the model’s 

superior ability to separate positive and 

negative cases effectively. 

4. Experimental Results  

4.1 Experimental Setup 

In this study, we conducted all experiments 

using Jupyter notebook within the Anaconda3 

software environment, utilizing python 3.11.5 

as the core programming language with 

several libraries and frameworks to evaluating 

our work. Pytorch and TensorFlow are utilized 

for constructing and training Vision 

Transformer, Swin Transformer and MLP 

models. Scikit-learn are utilized for tuning the 

MLP classifier, evaluating performance 

metrics, and implementing the AO-PSO fitness 

function. Numpy and Pandas are utilized for 

data manipulation and pre-processing, while 

Opencv and pil are employed for image 

resizing and transformation. Matplotlib is used 

to create visualizations like confusion matrices 

and ROC curves.  

4.2 Experimental Results Analysis 

Four separate experiments are carried out as 

shown in table 3, each focusing on a different 

combination of electrocardiogram (ECG) and 

echocardiogram (Echo) data. The ECG and 

Echo images are analyzed using ViT and Swin 

Transformer models to extract relevant 

features. These features are then fed into a 

highly refined MLP classifier. Each 

configuration is assessed using important 

performance metrics: accuracy, precision, 

recall, and f1-score. These experiments aided 

in comprehending the impact of individual 

modalities and transformer architectures on the 

classification task.  
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Table 3: Represents performance metric values of individual datasets features of  

ViT, Swin with MLP classifier 

Experiment Accuracy Precision Recall  F1-score 

Swin-ECG → MLP 86.78% 87.09% 86.78% 86.79% 

ViT-ECG → MLP 73.40% 63.05% 73.40% 62.15% 

Swin-Echo → MLP 81.70% 79.33% 82.66% 80.66% 

ViT-Echo → MLP 73.37% 74.33% 73.37% 73.64% 

In this study,we employs multimodal fusion by 

combining features extracted individually from 

ECG and Echo images using Vision 

Transformer (ViT) and Swin Transformer 

architectures. For each transformer, ECG and 

Echo features are first extracted independently 

and then fused to form a comprehensive 

feature representation. To refine this high-

dimensional fused vector and eliminate 

redundant or irrelevant attributes, we introduce 

an Aquila Optimizer for feature selection. This 

method effectively enhanced model 

generalization while reducing complexity. The 

optimized feature subsets are then classified 

using a fine-tuned Multi-Layer Perceptron 

(MLP) model. Results indicate that the Swin 

Transformer-based fusion, optimized with AO 

and classified using MLP, achieved the best 

performance (96.76% accuracy and 97.98% 

F1-score), surpassing the ViT-based fusion 

(87.68% accuracy and 92.75% F1-score). 

These findings validate the effectiveness of 

combining multimodal features with 

optimization and highlight the superior 

discriminative power of Swin Transformer in 

capturing cardiac image patterns for accurate 

heart disease prediction.This performance 

metric result is outlined in table 4.  

 

Table 4: Presents performance metric values of combined features of ViT with MLP and combined 

features of Swin with MLP classifier 

Experiment Accuracy Precision Recall  F1-score 

Swin-ECG+Swin-Echo+ MLP 96.76% 96.19% 99.84% 97.98% 

ViT-ECG + ViT-Echo + MLP 87.68% 86.48% 100% 92.75% 

 

The experimental findings clearly show a 

significant difference in performance between 

single-modality and multimodal fusion 

approaches in heart disease prediction. Among 

the single-modality models, Swin Transformer 

-ECG → MLP showed better accuracy 

(86.78%) than other configurations, especially 

outperforming ViT-ECG → MLP (73.40%). 

Similarly, Swin Transformer -Echo → MLP 

(81.70%) slightly surpassed ViT-Echo → 

MLP (73.37%). However, the most significant 

performance boost is observed in the 

multimodal fusion. The combination of Swin 

Transformer-extracted ECG and Echo 

features, optimized using the AO algorithm 

and classified with a fine-tuned MLP, 

achieved the highest accuracy of 96.76% and 

an F1-score of 97.98%. The Swin-based fusion 

also improved over individual models but 

remained lower, with 87.68% accuracy and a 

92.75% F1-score. These outcomes highlight 

the effectiveness of feature fusion and the 

strength of AO in selecting informative 

features for enhanced prediction. Our 

experimental findings reveal that although 

Vision Transformer (ViT) demonstrates good 

performance in heart disease prediction, Swin 

Transformer delivers superior results, 

especially in terms of accuracy and feature 

extraction. The hierarchical structure of Swin 

Transformer enables it to learn more 

effectively from both ECG and Echo images, 

leading to improved predictive performance. 
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Figure 10: Represents Performance Comparison of ViT and Swin with MLP on individual datasets 

 

4.3 Model Performance Metrics Analysis 

To evaluate the effectiveness of the proposed 

multimodal fusion approaches for heart 

disease prediction, we analyzed the confusion 

matrices of both models, along with key 

performance metrics including accuracy, 

precision, recall, and f1-score. We also 

evaluated the ROC-AUCscores. These 

assessments are carried out for both fusion 

pipelines: ViT-ECG + ViT-Echo + MLP and 

Swin-ECG + Swin-Echo + MLP. 

Confusion Matrix Analysis: Confusion 

matrices are plotted for the ViT-ECG + ViT-

Echo + MLP and Swin-ECG + Swin-Echo + 

MLP models to visually assess prediction 

outcomes in terms of true positives, true 

negatives, false positives, and false negatives. 

The model’s confusion matrix showcased a 

significant presence along the diagonal, 

suggesting exceptional accuracy in classifying 

data with minimal errors. In contrast, the 

Swin-based model, while somewhat effective, 

exhibited a few more off-diagonal elements, 

indicating a higher frequency of incorrect 

predictions.  

Figure 11: Represents confusion matrix of 

ECG-Swin+Echo-Swin+MLP 

 

COMPUTER RESEARCH AND DEVELOPMENT  (ISSN NO:1000-1239)  VOLUME 25 ISSUE 9 2025

PAGE NO: 126



Figure 12: Represents confusion matrix of 

ECG-ViT+Echo-ViT+MLP 

Accuracy, Recall, Precision and F1 score 

Analysis: Performance metrics including 

accuracy, precision, recall, and f1-score are 

evaluated for both fusion models. The Swin 

Transformer-ECG + Swin Transformer-Echo + 

MLP configuration outperformed with an 

accuracy of 96.76%, precision of 96.19%, 

recall of 99.84%, and an f1-score of 97.98% as 

shown in figure 13 . Meanwhile, the ViT-

based model reached 87.68% accuracy, 

86.48% precision, perfect recall of 100%, and 

a 92.75% f1-score as presented in figure 

14.These results highlight the Swin 

Transformer-based fusion model’s advantage 

in delivering more balanced and robust 

predictive performance. 

 
Figure 13: Performance Metrics of ViT-ECG + 

ViT-Echo + MLP 

 
Figure 14: Performance metrics of Swin-

ECG+Swin-Echo+ MLP  

ROC and AUC Analysis: Furthermore, we 

plotted ROC curves for both fusion models to 

evaluate their ability to differentiate between 

the presence and absence of heart disease at 

different thresholds. The areaunder the curve 

(AUC) for the ViT-based fusion model was 

closer to 1, indicating a high level of 

discrimination. The Swin-based fusion model 

also achieved a high AUC, but it was slightly 

lower than that of the ViT-based model. The 

results of these visually presented in figure 

15and figure 16. 

 

Figure 15: Results of ROC curve with AUC 

value of ViT-ECG+ViT-Echo+ MLP 

 

Figure 16: Results of ROC curve with AUC of 

Swin-ECG+Swin-Echo+ MLP  

4.4 Comparative Performance 

We compare the performance of our proposed 

a Two-Stage Hybrid Deep Learning Model 

with already existed single and multimodality 

models. The table 2 presents a comparative 
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evaluation of heart disease prediction models 

based on accuracy reported by various 

researchers and also figure 17 shows the 

accuracy of highlighting the superior 

performance of our model. 

Table 5: Comparison of different existing models with our proposed model  

Author name, Reference No Model used Accuracy 

N. Revathi et al.,[20] MLP 75.60% 

Tb Ai Munandar [21]  MLP with Tanh 78.80% 

Songhee Cheon et al.,[26] PCA with DNN 83.48% 

Majumder et al.,[36] Random Forest with WOA 86. 53% 

Pengpai Li et al.,[22] LSTMs+GA 87.3% 

Archana Agarwal et al.,[33] Random Forest 90.24% 

Mohammad Shokouhifar et al.,[30] EHMFFL 91.8% 

Geetha Narasimhan et al.,[24] GAORF 92% 

Prabu Pachiyannan et al.,[14] ML-CHDPM(LSTM+Attention Mechanism) 94.28% 

Muhammad Tayyeb et al.,[15] MLP 94.40% 

Muhammad Mahtab et al.,[3] EfficientNetB3 94.53% 

Fande Kong et al.,[23] LDGO 94. 6% 

Muhammad Raoof et al.,[2] VGG16 94.92% 

Zeynep Hilal Kilimci et al.,[ 5] BeiT 95.90% 

Rayudu Srinivas et al.,[40]  ACLS-RCNN model with ICSOA 95.64% 

Proposed Model Two-Stage Hybrid Deep Learning Model 96.76% 

 

    Figure 17: Represents accuracy comparison of proposed model with existing models 
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5. Conclusion and Future work 

In this study, we introduce an advanced deep 

learning framework for heart disease 

prediction using ECG and Echocardiogram 

(Echo) images. Feature extraction was 

performed using Vision Transformer (ViT) 

and Swin Transformer architectures, followed 

by classification through a fine-tuned Multi-

Layer Perceptron (MLP). Among all 

configurations, the fusion of ECG and Echo 

features extracted via Swin Transformer and 

optimized using an Aquila Optimization 

algorithm demonstrated the best performance, 

achieving 96.76% accuracy and a 97.98% F1-

score. The integration of AO effectively 

refined the fused feature set by selecting the 

most relevant features, enhancing 

classification accuracy while reducing 

complexity. Findings confirm that integrating 

multimodal fusion with transformer-based 

extraction and metaheuristic optimization 

substantially enhances predictive outcomes. 

This study highlights that Swin Transformer, 

when utilized with ECG and Echo image data, 

achieves better predictive accuracy, more 

efficient feature extraction, and enhanced 

generalization compared to Vision 

Transformer (ViT). The hierarchical attention 

mechanism employed by Swin Transformer 

allows it to better capture both local and global 

features, thereby making it a more effective 

model for multimodal heart disease prediction. 

Future directions include incorporating clinical 

tabular data, applying attention-based fusion 

techniques, tuning hyperparameters, 

expanding the dataset, and validating the 

model in clinical environments to further 

increase reliability and generalizability. 
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