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Abstract 

Cancer encompasses a group of diseases marked by the uncontrolled proliferation of cells and 

their tendency to infiltrate or metastasize to various organs. This progression stems from 

genetic mutations that interfere with normal cellular regulations. Among the types, Lung 

cancer ranks as a leading global cause of cancer mortality, claiming more lives than breast, 

prostate and colorectal cancers combined. Tobacco use remains the most significant risk 

factor. Common treatments include chemotherapy (cisplatin, carboplatin, and etoposide), 

targeted therapies (afatinib, erlotinib, and osimertinib) and immunotherapies (pembrolizumab 

and nivolumab). This investigation focuses on the binding specificity of Afatinib against 

critical molecular drivers of lungs cancer namely Anaplastic Lymphoma Kinase (ALK), 

Epidermal growth factor receptor (EGFR), Kirsten rat sarcoma viral oncogene (KRAS), 

Protein Phosphatase 2A (PP2A), ROS proto-oncogene 1 (ROS1) and Vascular Endothelial 

Growth Factor (VEGF). Using Schrodinger’s molecular docking tools and computational 

simulations, the study assessed Afatinib’s interaction potential and pharmacokinetic 

characteristics. Findings indicate Afatinib exhibits stronger affinity for EGFR and ALK, 

suggesting its therapeutic promise could be optimized based on target expression within the 

tumor microenvironment.  

Keywords: Cancer; lung cancer; molecular docking; Schrodinger; In Silico; Afatinib; binding 

affinities; ADME. 
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Introduction 

Cancer arises from disrupted cellular signals and metabolism, leading to unchecked cell growth 

and survival. Various biological and environmental triggers contribute to its onset and 

progression [1]. These illnesses represent over a hundred genetically varied disorders that share 

similar molecular and metabolic traits [2 & 3]. The influence of tissue microenvironment and 

inflammation on tumor growth and persistence is widely acknowledged [4 & 5].  Despite 

ongoing research, the precise triggers of cancer remain unclear. Numerous genetic mutations 

have been linked to the transformation of healthy cells into tumor forming cancer cells [6 & 

7]. Overtime, many scientific and technological strategies have been used to study and combat 

these complex diseases. Oncological research has drawn from fields like genetics, molecular 

biology, immunology, proteomics, and computational biology [8]. Treating cancer with a single 

drug is challenging due to the wide diversity in cancer types and patient-specific variations [9, 

10, and 11].  

 

Lung cancer therapies target key proteins such as VEGF, EGFR, KRAS, ALK, ROS1, BRAF, 

RET, MET, NTRK, HER2, HER3, and pathways like PI3K/AKT/mTORC,  as well as immune 

check points like PD1 and CTLA-4 [12]. Lung cancer treatment involves various drug 

categories: 

Chemotherapy 

Used for both NSCLC and SCLC to target rapidly dividing cells: 

 Cisplatin, Carboplatin, Paclitaxel, Docetaxel 

 Gemcitabine, Pemetrexed, Vinorelbine 

 Etoposide, Topotecan and Doxorubicin  

Targeted Therapy: 

Focus on specific genetic mutations (mainly in NSCLC):  

 EGFR inhibitors: Erlotinib, Gefitinib, Osimertinib 

 ALK inhibitors: Crizotinib, Alectinib, Brigatinib, Ceritinib, Lorlatinib  

 Others: Bevacizumab, Ramucirumab, Selpercatinib, Entrectinib, Capmatinib and 

Sotorasib  

Immunotherapy  

Enhances immune response against cancer cells:  
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 PD-1/PD-L1 inhibitors: Nivolumab, Pembrolizumab, Atezolizumab, Durvalumab 

 CTLA-4 inhibitors: Ipilimumab and Tremelimumab 

Other Notable Agents  

Advances or specified treatments: 

 Lurbinectedin (SCLC), Amivantamab (NSCLC) 

 Fam-trastuzumab deruxtecan for NSCLC [13 and 14].  

Researchers worldwide are working to develop effective lung cancer therapies using diverse 

methods. Molecular docking, a key technique in drug discovery, helps evaluate how well a drug 

binds to its target. In this study, in silico analysis was used to assess Afatinib’s specificity 

towards the target proteins Anaplastic Lymphoma Kinase (ALK) [15], Epidermal growth factor 

receptor (EGFR) [16], Kirsten rat sarcoma viral oncogene (KRAS) [17], Protein Phosphatase 2A 

(PP2A) [18], ROS proto-oncogene 1 (ROS1) [19] and Vascular Endothelial Growth Factor 

(VEGF) [20].  

 

ALK, a receptor tyrosine kinase from the insulin receptor superfamily, shares structural features 

with LTK and is encoded by a gene on chromosome 2p23. It matures into a 200-220 kDa protein 

with three main components: an extracellular ligand-binding domain, a short transmembrane 

segment, and an intracellular tyrosine kinase domain involved in cellular signaling [21]. EGFR, 

or erbB1, is a receptor tyrosine kinase within the erbB family that shares structural domains with 

HER2, erB3, and erB4 but differs in its kinase activity. Upon ligand binding, EGFR undergoes 

conformational changes and phosphorylation, triggering signaling cascades such as MAPK, 

PI3/Akt, and STAT that regulates cell proliferation and survival by suppressing apoptosis [16].  

 

KRAS, a key member of the RAS GTPase family, acts as a molecular switch that cyles between 

inactive and active states to regulate cellular signaling, impacting processes such as cell growth, 

differentiation, and apoptosis. Structurally, it contains domains that anchor it to membranes and 

enable interaction with downstream effectors like RAF1 and PI3K, playing a pivotal role in 

cancer-related pathways including MAPK and PI3K-AKT [22]. PP2A is a Serine/Threonine 

phosphatase composed of catalytic, structural, and regulatory subunits that overseas major 

cellular signaling processes, including apoptosis, proliferation, and DNA repair. Its 

dysregulation plays a key role in cancer progression, making both its reactivation and inhibition 
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valuable strategies in therapeutic development alongside kinase inhibitors and conventional 

treatments [18]. 

ROS-1 encodes a transmembrane with tyrosine kinase activity and structural similarity to insulin 

receptors and ALK, playing a role in epithelial differentiation during embryonic development. 

Its oncogenic potential was uncovered through a fusion with the FIG gene, resulting in abnormal 

activation of signaling pathways and tumorigenesis, making it a targetable driver in certain 

[19].VEGF) is a critical driver of tumor angiogenesis, comprising several isoforms (VEGFA –E 

and placental growth factor) that stimulate new blood vessel formation and vascular 

permeability. Discovered and characterized between 1939 and the early 1990s, VEGF is now 

recognized for its central role in promoting tumor growth, metastasis, and malignant cell 

survival by enhancing oxygen and nutrient delivery through activated endothelial cells [23]. 

 

Afatinib is an irreversible ErbB family tyrosine kinases inhibitor approved for treating advanced 

NSCLC with EGFR mutations and as a second-line therapy for squamous cell NSCLC. It is also 

under investigation for HER2-positive breast cancer cases resistant to trastuzumab, though not 

yet FDA approved for that use. Alongside gefitinib and erlotinib, afatinib is one of the three 

TKIs used for advanced NSCLC treatment. While it shows comparable efficacy to erlotinib in 

EGFR mutant cases, afatinib demonstrates better outcomes in advanced squamous cell 

carcinoma [24]. 

 

Molecular docking is a vital technique in drug design that predicts how a ligand interacts with a 

protein’s 3D structure to identify potential binding modes. It enables virtual screening and 

ranking of compounds from chemical libraries, helping generate structural insights that guide 

lead optimization of a protein [25]. Docking techniques also support in vitro assays by predicting 

key properties like lipophilicity, solubility, and plasma stability during a ligand’s absorption, 

distribution, metabolism and excretion (ADME) process. These insights help assess a 

compound’s pharmacological profile before its progresses to in vivo studies and clinical trials. 

[26]. Computational protocol helps forecast potential ADME characteristics and toxicity 

concerns, significantly reducing the need for extensive animal based experiments. By refining 

early stage drug profiling, they support ethical research while streamlining candidate selection 

for further testing [27]. 

COMPUTER RESEARCH AND DEVELOPMENT  (ISSN NO:1000-1239)  VOLUME 25 ISSUE 8 2025

PAGE NO: 97



This study involves an in silico molecular docking assessment of Afatinib targeting lung cancer 

related proteins including ALK, EGFR, KRAS, PP2A, ROS1 and VEGF using Schrödinger 

software. The selected protein structures, retrieved from protein data bank, include PDBIDs such 

as 2XP2, 3AOX (ALK), 1M17, 4WKQ (EGFR), 6OIM (KRAS), 2IE4 (PP2A), 3ZBF (ROS1) 

and 3B8R (VEGF). Afatinib’s drug-likeness and ADME properties were evaluated based on 

Lipinski’s rule of five to support pharmacokinetic profiling. 

 

Materials and Methods 

Protein Preparation  

The 3D crystal structures of key lung cancer related proteins were retrieved for docking studies, 

including ALK (PDB IDs: 2XP2 and 3AOX), EGFR (1M17 and 4WKQ), KRAS (6OIM), PP2A 

(2IE4), ROS1 (3ZBF) and VEGF (3B8R). The three-dimensional (3D) crystal structures of the 

following proteins were retrieved from the protein data bank (PDB) (https://www.rcsb.org).  

 AKT (PDB IDS):  2XP2 – 1.90 Å; 3OAX – 1.75 Å) [28, 29] 

 EGFR (1M17 – 2.60 Å; 4WKQ – 1.85 Å) [30, 31] 

 KRAS (6OIM – 1.65 Å) [32] 

 PP2A (2IE4 – 2.60 Å) [33] 

 ROS1 (3ZBF – 2.20 Å) [34] 

 VEGF (3B8R – 2.70 Å) [35] 

These high resolution protein structures were imported into the “Protein preparation wizard” for 

preprocessing. Appropriate modeling calculations were performed using Schrodinger software to 

optimize the protein geometry and ensure suitability for further molecular studies [36]. 

The protein structures obtained from the protein data bank included heavy atoms, metal ions, 

missing hydrogen atoms, water molecules, co-crystallized ligands, and incomplete or terminal 

amide groups. Using the protein Preparation Wizard, corrections were applied to bond orders 

and formal charges, missing protons were added, metals were appropriately treated, and water 

molecules beyond 5Å from hetero atoms were removed. Ionization states of the ligand were 

generated using Epik [37]. Finally, the protein structures were subjected to controlled 

minimization using the OPLS-2005 force-filed, maintaining a root mean square deviation 

(RMSD) tolerance of 0.3 Å [38]. 
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Receptor Grid Generation 

The ligands present in all proteins structures were retained, and grids were generated using the 

receptor grid generation module of the Schrodinger software suite. Grid placement was centered 

on the ligand bound within the active site of the protein. The resulting cubical centroid formation 

delineates the active site region, facilitating accurate docking simulations [39, 40]. 

 

Ligand Preparation  

The molecular structure and formula of Afatinib (C24H25ClFN5O3) was retrieved from PubChem 

(https://pubchem.ncbi.nlm.nih.gov/compound/Afatinib) and saved in .SDF format (Fig.1). The 

ligand was then imported into the LigPrep module of Schrodinger maestro 14.2, where its 2D 

structure was converted into a low energy 3D conformation [39]. Multiple ligand variants were 

generated, encompassing possible ionization states, tautomers, stereo-isomers, and ring 

conformations. Geometry optimization and energy minimization were performed to refine the 

structures. Using the Epik module, ionization and tautomeric states were predicted within a 

physiological pH range of 6.8 to 7.2. Final minimization was carried out using the OPLS- 2005 

force-filed, achieving a root mean square deviation (RMSD) of 1.8 Å [41]. 

 

Molecular Docking 

Molecular docking studies were carried out using the Glide module of Schrodinger, utilizing the 

previously generated receptor grid and prepared ligand structures. Ligand binding interactions 

were assessed and ranked using the Ligand docking program within Glide. Docking calculations 

employed the Extra Precision (XP) mode along with the OPLS- 2005 force-field to ensure 

reliable conformational sampling and scoring.  

A flexible docking protocol was applied to explore multiple ligand-receptor interaction modes. 

The algorithm incorporated a series of hierarchical filters to identify favorable interactions such 

as hydrophobic contacts, hydrogen bonding and metal coordination while penalizing steric 

clashes and unfavorable binding geometries. In the final phase, the docked poses underwent 

energy minimization using OPLS-2005, and the optimized conformations were re-ranked using 

the Glide Scoring function [42]. 
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Lipinski Rule and the Analysis of ADME Properties 

In silico analysis plays a crucial role in the early preclinical evaluation of new chemical entities, 

helping to minimize late-stage failures in the drug discovery process. By streamlining 

development timelines and reducing resource expenditure, it offers a more efficient pathway for 

molecule assessment. Notably, nearly 40% of drug candidates fail due to poor adsorption, 

distribution, metabolism and excretion (ADME) characteristics. To counter this, high-throughput 

screening (HTS) techniques are employed to predict ADME profiles and eliminate unsuitable 

candidates early on. Remarkably, this approach also enables structural optimization of failed 

compounds, enhancing their drug-like properties to meet ADME criteria more effectively [43]. 

 

 

 

Figure 1: The structure of Afatinib 

Bioavailability of a molecule is more effectively assesses using Lipinski’s rule of five, a widely 

accepted filter in drug discovery. According to this rule, a compound is considered to have 

favorable drug-like properties if it meets the following criteria: 

 Molecular weight < 500 daltons 

  Hydrogen bond donors ≤ 5 

  Hydrogen bond acceptors ≤ 10 
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 Octanol-water partition coefficient (log P) ≤ 5 [44] 

These guidelines serve as a foundational checkpoint for predicting oral bioavailability and 

ensuring molecular suitability for further development. Additionally, pharmacokinetic 

parameters – absorption, distribution, metabolism, and excretion (ADME) – were computed 

using the QikProp tool (Schrodinger 2024.4), offering high-throughput in silico insights into a 

compound’s drug-likeness [45, 46]. 

 

Results and Discussion 

Molecular docking studies were carried out to investigate the interaction of the ligand Afatinib 

with the active sites of several lung cancer-related target proteins using Schrodinger maestro 

version 14.2, an advanced computational docking tool. Was initially processed and optimized 

using the LigPrep module, ensuring structural accuracy and readiness for docking analysis. The 

target proteins selected for the study included ALK, EGFR, KRAS, PP2A, ROS1 and VEGF, all 

of which ae implicated in lung cancer pathogenesis. These proteins were meticulously prepared 

through the protein preparation wizard tool to ensure proper geometry, protonation states, and 

minimized energy structures suitable for molecular docking. 

To define the binding regions, a cube shaped grid was generated using the receptor grid 

generation module. This grid was strategically positioned to encompass the active site of each 

target protein, enabling precise docking simulations with Afatinib. The docking analysis assessed 

the binding affinity of Afatinib to each protein target. Based on the docking scores and 

interaction profiles, the protein were ranked to determine which targets exhibited the strongest 

affinity towards Afatinib. These results contribute valuable insights into Afatinib’s potential 

mechanisms and efficacy in targeting multiple molecular pathways involved in lung cancer.  

Molecular docking simulations were conducted for all six target proteins implicated in lung 

cancer such as ALK, EGFR, KRAS, PP2A, ROS1, and VEGF using the GLIDE module in 

Schrodinger. The ligand Afatinib was docked against each protein to evaluate in binding 

potential and interaction profile. Key parameters such as docking score, Glide evdw (Van Der 

Waals energy), ecoul (Coulomb energy), and Glide energy were analyzed in detail. Additionally, 

the nature of molecular interactions including Hydrogen bonds and π- π stacking interactions 

between Afatinib and the active site residues of each protein was meticulously examined. 
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The results revealed that Afatinib successfully docked into the binding sites of all six proteins, 

exhibiting favorable binding conformations and interaction energies. These findings suggest a 

strong affinity between Afatinib and the target proteins, highlighting its potential efficacy in 

disrupting multiple oncogenic pathways. For clarity, results corresponding to ALK, EGFR, 

KRAS, PP2A, ROS1 and VEGF are designated as A, B, C, D, E  and F respectively (see Table 

1). 

The molecular docking study revealed that Afatinib displayed favorable interactions with all six 

lung cancer-associated target proteins. The binding affinities, as determined by docking scores, 

followed the order: EGFR > ALK > VEGF > ROS1 > KRAS > PP2A. These results suggest that 

Afatinib has the strongest binding interaction with EGFR, followed by ALK, indicating their 

potential as primary molecular targets. The docking scores of the EGFR protein are -10.23 (PDB 

ID: 1M17) & -11.14 (PDB ID: 4WKQ), ALK protein are -9.55 (PDB ID: 2XP2), & -7.63 (PDB 

ID: 3AOX), VEGF protein is -8.62 (3B8R), ROS1 protein is -8.62 (PDB ID: 3ZBF), KRAS 

protein is -7.01 (PDB ID: 6OIM) and PP2A protein is -4.77 (PDB ID: 2IE4) respectively.  

In molecular docking analysis, a lower docking score typically corresponds to a stronger binding 

affinity between the ligand and receptor. Based on the principle, Afatinib demonstrates the most 

potent interaction with EGFR (particularly with PDB ID: 4WKQ), followed closely by ALK, 

while PP2A exhibited the weakest affinity. These insights highlight Afatinib’s potential in 

targeting EGFR and ALK-driven oncogenic pathways in lung cancer. 

A detailed molecular docking study was carried out to examine the energetic interactions 

between the ligand Afatinib and six lung cancer-associated target proteins ALK, EGFR, KRAS, 

PP2A, ROS1 and VEGF using the glide module of Schrodinger. The van der Waals (Glide 

evdw) values indicated significant hydrophobic interactions between Afatinib and the binding 

pockets of the target proteins. Among them EGFR (PDB ID: 4WKQ) exhibited the lowest evdw 

value at -51.15, suggesting a strong van der Waals interaction, followed by VEGF (-49.01) and 

EGFR (-48.40, PDB ID: 1M17). ALK showed moderate values (-41.89, -42.19), while KRAS (-

34.82) and PP2A (-32.33) had the least evdw interaction energies. 

The Coulomb energy (Glide ecoul) values provided insights into electrostatic contributions. 

EGFR proteins presented notable ecoul values (-13.17, -15.70), closely matched by ALK (16.04, 

-6.41) and ROS1 (-11.88), KRAS (-9.91), PP2A (-9.54), and VEGF (-6.64) exhibited 

comparatively lower electrostatic interactions. The total Glide energy combined van der Waals 
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and Coulomb contributions, reflecting the overall binding strength of Afatinib with each target. 

EGFR proteins displayed the strongest interactions (-61.57, -66.86), followed by ALK (-57.93, -

48.60), VEGF (-55.66), ROS1 (-54.46), KRAS (-44.73), and PP2A (-41.87).  

Furthermore, Afatinib exhibited notable interactions through hydrogen bonding, π-π stacking, 

and polar contacts with amino acids at the active sites of all target proteins. These molecular 

interactions are tabulated in Table 1, highlighting the specific residues involved in stabilizing the 

ligand-receptor complexes.  

 

Table 1: The Table provides the docking scores, Glide van der Waals energy (Glide evdw), 

Coulomb energy (Glide ecoul), interacting residues, and the types of interactions between 

Afatinib and various lung cancer marker proteins. The docking scores were calculated using 

Glide module of Schrodinger (Version 2024.4). In the table: HB denotes hydrogen bonding; Pi-Pi 

denotes π-π stacking interaction. 

 

Ligand 

Name 

Target 

protein 

PDB 

ID 

Docking 

Score 

Glide 

Ecoul  

Glide 

energy  

Glide 

evdw 

Interacting 

residues/type 

(HB/Pi-Pi) 

Afatinib 

ALK 
2XP2 - 9.55 - 16.04 - 57.93 - 41.89 

GLU1210, SER1206, 

LEU1122, ASP1203, 

& MET1199 

3AOX - 7.63 - 6.41 - 48.60 - 42.19 MET1199 

EGFR 

1M17 - 10.23 - 13.17 - 61.57 - 48.40 
ASP776, CYS773, 

MET769, & THR766 

4WKQ - 11.14 - 15.70 - 66.86 - 51.15 
LEU792, THR854, 

ASP800 

KRAS 6OIM -7.01 -9.91 -44.73 -34.82 
GLN61, ARG68 (Pi-

cation) TYR96 (pi-pi) 

PP2A 2IE4 - 4.77 - 9.54 - 41.87 - 32.33 
GLU192, GLY215, & 

ARG214 

ROS1 3ZBF - 8.48 - 11.88 - 54.46 - 42.58 ASP2033 & LEU2028 

VEGF 3B8R - 8.62 - 6.64 - 55.66 - 49.01 
LEU840 & CYS919, 

LYS868 (pi-cation) 
 

Figures 2 to 5 depict the 3D and 2D molecular interactions of Afatinib with the series of lung 

cancer marker proteins, based on the docking simulations. These include: 

 ALK: Panels A1 (PDB ID: 2XP2) and A2 (PDB ID: 3AOX) 

 EGFR: Panels B1 (1M17) and B2 (4WKQ) 
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 KRAS: Panel C (6OIM) 

 PP2A: Panel D (2IE4) 

 ROS1: Panel E (3ZBF)  

 VEGF Panel F (38BR) 

Each figure highlights Afatinib’s binding orientation, along with hydrogen bonding, π–π 

stacking, and π–cation interactions observed within the active sites of these proteins.   

 

 

Figure 2: Binding orientations of Afatinib with the crystal structure of ALK (Panels A1 and A2), 

highlighting key bond interactions with amino acid residues in the active site.   
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Figure 3: Binding orientations of Afatinib with the crystal structure of EGFR (Panels B1 and 

B2), highlighting key bond interactions with amino acid residues in the active site.   
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Figure 4: Binding orientations of Afatinib with the crystal structure of KRAS and PP2A (Panels 

C and D), highlighting key bond interactions with amino acid residues in the active site.   
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Figure 5: Binding orientations of Afatinib with the crystal structure of ROS1 and VEGF (Panels 

E and F), highlighting key bond interactions with amino acid residues in the active site.   

 

Validation of the Docking Programme 

The reliability of the molecular docking protocol was validated by examining the binding 

conformations of Afatinib with its respective target proteins, based on the lowest-energy poses 

generated through the Glide scoring function. The docking scores obtained were consistent with 

experimental binding profiles established via X-ray crystallography, reinforcing the accuracy of 

the computational predictions.  

Key parameters used for validation included the analysis of hydrogen bonding interactions and 

the calculations of root mean square deviation (RMSD) between the predicted ligand poses and 

their experimentally resolved conformations. To further enhance accuracy, Extra Precision (XP) 

docking mode was employed by intentionally removing the native co-crystallized ligand from 
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the binding site and re-docking Afatinib, thereby assessing its ability to replicate experimentally 

observed interactions [33]. The docking scores for each target were subsequently compared. 

Notably, Afatinib demonstrated strong and consistent binding affinities across all eight lung 

cancer-associated proteins. The ranking of binding strength, based on Glide score analysis is as 

follows: 

EGFR > ALK > VEGF > ROS1 > KRAS > PP2A 

 

Lipinski Rule and ADME Properties 

The ADME (Absorption, Distribution, Metabolism, and Excretion) characteristics of the 

investigational drug Afatinib were further evaluated through the QikProp module of Schrodinger 

software, focusing specifically on compliance with Lipinski’s Rule of Five – a key set of criteria 

used to assess drug-likeness and oral bioavailability. The parameters analyzed included: 

 Molecular weight (MW) 

 Hydrogen bond donor count (HBD) 

 Hydrogen bond acceptor count (HBA) 

 Predicted octanol/water partition coefficient (QPlogP (O/W) 

 Number of Rule of Five violations.  

Afatinib’s predicted values were MW: 485.945 (<500), HBD: 2 (<5), HBA: 9.45 (<10), QPlogP 

(O/W): 3.956 (<5) and Rule of Five violations: 0 respectively (Table 2). All measured 

parameters remained within the recommended thresholds, indicating that Afatinib adheres to 

Lipinski’s criteria and exhibits favorable pharmacokinetic potential.  

 

Table 2: Scores of Afatinib predicted by the QikProp module in Schrodinger software, based on 

Lipinski Rule of Five. MW denotes molecular weight, HB refers to hydrogen bonding 

characteristics, and QPLogP (O/W) indicates the predicted octanol/water partition co-efficient 

logP.  

Name of the 

Drug 

Factors of Lipinski rule of 5 

MW 

(<500) 

HB-Donor 

(<5) 

HB-Acceptor 

(<10) 

QPlogP (O/W) 

(<5) 
Rule of 5 (0) 

Afatinib 485.945 2 9.45 3.956 0 
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The pharmacokinetic properties of Afatinib were computed using the QikProp module in 

Schrodinger, with focus on parameters relevant to drug absorption and distribution. These 

included: 

 Aqueous solubility (QPlogS) 

 Predicted IC50 value for HERG K+ channel blockade (QplogHERG) 

 Brain/blood partition coefficient (QPlogBB) 

 Predicted human oral absorption (PHOA) 

 Cell permeability via Caco-2 monolayer (QPPCaco)  

The corresponding predicted values were: QPlogS: -5.683 (range: -6.5 to 0.5), QplogHERG: -

7.352 (< -5indicates potential HERG inhibition), QPlogBB: 0.309 (range: -3.0 to 1.2), PHOA:  

95.357 (% absorption; >80 = high, < 25 = poor) and QPPCaco: 337.316 (nm/s; >500 = high 

permeability, <25 = poor) respectively (Table 3).  

Table 3: ADME parameters of Afatinib, calculated using the QikProp module of Schrodinger 

software. The listed properties include: QPlogS: Aqueous solubility, QplogHERG: Predicted 

IC50 value for blockage of HERG K+ channels, QPlogBB: Brain/blood partition coefficient, 

PHOA: Predicted human oral absorption, and QPPCaco: Gut-blood barrier/cell permeability in 

nm/s 

Name of 

the Drug 

Pharmacokinetic properties 

QPlogS 

(-6.5 to 0.5) 

QplogHERG 

(< -5) 

QPlogBB  

(-3 to 1.2) 

PHOA 

(>80 high, < 25 

poor) 

QPPCaco 

(>500 high, <25 

poor) 

Afatinib -5.683 -7.352 -0.309 95.357 337.316 

 

The pharmacokinetic assessment of Afatinib revealed that all predicted values fell within 

acceptable parameters, indicating no deviation from established limits. Additionally, the in silico 

analysis demonstrated strong binding affinity of Afatinib toward the target protein. The 

compound successfully compiled with Lipinski’s Rule of Five and met the criteria for key 

ADME properties, reinforcing its potential as a drug candidate. 
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Conclusion 

The present study systematically evaluated the molecular interactions and pharmacokinetic 

properties of Afatinib with selected target proteins namely ALK, EGFR, KRAS, PP2A, ROS1 

and VEGF using the Schrodinger Maestro platform. Molecular docking and ADME analyses 

were conducted utilizing the GLIDE and QikProp modules respectively. The results revealed 

strong binding affinities of Afatinib to the target proteins, facilitated by hydrogen bonding, polar 

interactions, and π–π stacking.  

The predicted ADME parameters and Lipinski’s rule scores were found to be within acceptable 

limits, underscoring the drug’s potential drug-likeness. Notably, Afatinib exhibited low 

interaction energies with the lung cancer-related proteins, suggesting effective inhibitory activity. 

Among the six proteins, EGFR and ALK demonstrated the highest binding affinities, followed 

by VEGF, ROS1, KRAS and PP2A respectively. 

These findings highlight Afatinib’s promise as a candidate for targeted anticancer therapy. 

Moreover, the data support the strategic use of Afatinib based on the expression levels of these 

target proteins within the tumor microenvironment, potentially aiding in personalized treatment 

approaches. 
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