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Abstract— Brain stroke detection (SD) is a critical medical task 
that can be effectively performed using magnetic resonance 
imaging (MRI). However, one of the major challenges in real-time 
systems is digital image denoising, as medical images often suffer 
from high noise levels and low resolutions. Noise arises from inter- 
and intra-signal variances during image acquisition, leading to 
significant degradation of image quality. Stroke-related MRI 
images are commonly affected by various types of noise, including 
Gaussian, speckle, impulsive, and mixed noise, which complicates 
reliable diagnosis.Traditional denoising methods—such as non-
linear median filters, Bayesian filters, wavelet-based shearlet 
transforms, non-local filters, and autoencoders—have been widely 
applied to reduce noise. Although these methods can handle 
specific noise types (e.g., speckle or Gaussian noise), their 
effectiveness is limited in medical imaging because of the 
simultaneous presence of additive, multiplicative, and Gaussian 
noise. Furthermore, the problem of sparsity in low signal-to-noise 
ratio (SNR) images remains unresolved with these conventional 
techniques, particularly in ultrasound and MRI-based stroke 
detection.To address these limitations, a hybrid non-linear 
filtering and segmentation-based ensemble learning framework is 
proposed. This approach enhances the denoising capability across 
different imaging modalities by leveraging the strengths of 
multiple techniques in a unified framework. Experimental results 
on real-time noisy images demonstrate that the proposed method 
outperforms conventional denoising approaches, thereby 
improving the reliability of stroke detection. 

Index Terms— Brain stroke, feature extraction, stroke 
classification, machine learning models. 

I. INTRODUCTION  

Images play a fundamental role in human life and are 
an essential component of modern data processing. 
Digital image processing is employed to enhance 
the quality of the images, enabling computers to 
modify the image data for improved clarity, 
sharpness, and detail, thereby facilitating effective 
information extraction and analysis. Digital image 
processing, a subfield of signal processing, takes an 

image as input and produces either a processed 
image or quantitative parameters that define specific 
features and operations (Cevik, 2011). 

In many cases, noisy images are generated when a 
clean image is corrupted by external noise. Image 
denoising, the process of removing the noise 
component, has become a critical research area, with 
numerous techniques proposed, developed, and 
implemented over time. Advancements in 
technology have further increased the reliance on 
image acquisition and transmission as a preferred 
mode of information sharing, making efficient image 
processing indispensable. 

Digital image processing serves two primary 
purposes: (i) improving the visual representation of 
an image for better human interpretation and (ii) 
enabling automated machine perception. Its 
applications are extensive, spanning medical 
imaging, biometrics, acoustic imaging, remote 
sensing and military surveillance. At its core, 
image processing involves applying computational 
operations to make the image content more 
meaningful and usable. 

However, limitations in image sensors and 
transmission media often introduce noise, which 
manifests as signal disturbances that degrade image 
quality and hinder accurate monitoring, analysis, and 
evaluation. In such cases, image enhancement and 
restoration techniques are applied to recover the 
degraded or blurred images. Among these, image 
denoising is a critical step in image reconstruction algorithms, 

COMPUTER RESEARCH AND DEVELOPMENT  (ISSN NO:1000-1239)  VOLUME 25 ISSUE 10 2025

PAGE NO: 65



 

supporting both direct photographic improvements and 
advanced technical applications. 

A degraded image impairs automated processing and 
feature extraction, whereas a properly denoised 
image provides a reliable foundation for downstream 
tasks, such as biometric recognition, medical 
diagnostics, environmental monitoring, remote 
sensing, and defense applications. Thus, efficient 
image denoising remains central to the advancement 
of computer vision and intelligent image analysis. 

As image acquisition devices evolve, their sensitivity to 
noise increases owing to the growing number of pixels per unit 
area. Consequently, image denoising techniques have become 
essential for minimizing the effects of noise and artifacts on 
image quality. Noise typically manifests as random fluctuations 
in pixel intensity or color values, arising from factors such as 
acquisition errors, quantization, transmission through noisy 
channels or environmental disturbances. Identifying the type of 
noise present in an image is often a prerequisite for applying 
suitable denoising algorithms. 

A significant body of research in digital image processing is 
dedicated to denoising, including the development of novel 
algorithms and refinement of existing approaches under varying 
conditions. Because images can be corrupted during capture, 
transmission, or compression, denoising is a crucial step before 
any analytical or recognition tasks. Image restoration seeks to 
reduce the degradation caused by electronic and photometric 
noise, motion blur, and transmission errors. Among the many 
noise types, additive white Gaussian (AWG) noise, Poisson 
noise, thermal noise, salt-and-pepper noise, JPEG artifacts, and 
structured stripe noise are the most common. In this study, the 
focus is placed specifically on AWG noise. 

Mathematical models based on partial differential 
equations (PDEs), including nonlinear diffusion and energy 
functional minimization, have been extensively explored. 
Earlier PDE-based models focused on speed control using 
smoothing operators or Laplacian-based formulations, whereas 
later approaches introduced coupled nonlinear diffusion 
equations to refine the control functions. The Total Variation 
(TV) method has also been influential in introducing a dynamic 
regularization framework. Variants include the Split Bregman 
iteration for the TV-ROF model, multiplicative regularization 
schemes for deblurring, and adaptive diffusion methods using 
local variance measures. Other models differentiate between 
noise-corrupted and noise-free pixels to achieve more selective 
denoising. 

In addition to PDE-based methods, the Discrete Wavelet 
Transform (DWT) is widely employed for image denoising, 
particularly in applications such as texture analysis, object 
recognition, and segmentation. Recently, more advanced 
approaches have emerged, including Non-Local Means (NLM) 
and PCA-based adaptive filters, which improve precision. For 
example, PCA has been leveraged to derive surrogate 

respiratory signals from single-lead ECGs to enhance the 
morphological analysis. 

Traditional imaging systems also face challenges in effective 
signal processing due to increasing data complexity and limited 
computational resources. Compressive sensing (CS) has been 
introduced as an efficient alternative that reconstructs original 
signals from fewer measurements than Nyquist sampling. CS 
has proven especially useful in medical imaging modalities such 
as MRI, ultrasound, and CT, which are prone to random noise 
owing to radiation exposure. In particular, CS has been effective 
in reducing impulse and Gaussian noise in Synthetic Aperture 
Radar (SAR) images. 

Overall, image denoising remains a critical research domain 
involving preprocessing, segmentation, classification, and 
parameter estimation to restore clean signals. Although 
numerous algorithms have been proposed, optimization 
challenges persist in achieving robustness against noise, scale, 
and variation in viewpoints. Denoising strategies can be broadly 
categorized into thresholding- and segmentation-based 
approaches. Thresholding separates image values into desired 
and undesired regions using an optimal threshold, whereas 
segmentation-based methods rely on the structural and 
contextual features of image regions. 

Figure 1 illustrates the general workflow of image 
reconstruction, where filtering techniques are applied to 
suppress noise and enhance the brightness of high-resolution 
images. Effective denoising not only improves image quality but 
also provides a reliable foundation for subsequent tasks in 
medical imaging, remote sensing, biometrics and defence 
applications. 

 

 

    

Figure 1: Segmentation-based image denoising 
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II. LITERATURE SURVEY 

 In this study, a novel image denoising approach is proposed 
that integrates wavelet transformation with optimized 
thresholding functions to effectively suppress noise. Wavelet 
threshold Denoising exhibits enhanced effectiveness relative to 
conventional methods, including Universal, SureShrink, and 
BayesShrink. Among the existing methods, BayesShrink 
produces outputs closest to high-quality images with minimal 
blurring, whereas VisuShrink and Universal methods perform 
poorly in handling salt-and-pepper noise. 

The proposed method improves the denoising results by 
combining wavelet-based decomposition with advanced 
threshold selection. Because the choice of threshold is critical in 
wavelet-based denoising, this study introduces an adaptive 
thresholding strategy that leverages the spatial context 
modeling of wavelet coefficients for more accurate noise 
suppression. Experimental evaluations on multiple natural 
images indicate that the proposed technique significantly 

outperforms conventional PCA-based methods, delivering 
higher visual quality and robustness for different noise types. 

Furthermore, a multivariate statistical method was 
introduced for denoising multispectral images in the wavelet 
domain by leveraging the correlations among different spectral 
components. To achieve this, the application of the recently 
developed hyperanalytic wavelet transform (DWT) has been 
suggested [15–18]. 

The proposed algorithm for image denoising utilizes a 
combination of wavelet transformation and optimized 
thresholding functions, resulting in a fast and effective noise 
removal method. The simulation results and comparisons show 
that the performance of the proposed method is superior to that 
of previous thresholding methods. Additionally, an iterative 
image reconstruction technique using the Maximum Likelihood 
Expectation Maximization wavelet-based thresholds (EM) was 
proposed to overcome the difficulties associated with large 
amounts of data and noise in Compton scatter camera data. This 
method leads to less reconstruction errors than other algorithms  

 

such as MLEM and Gaussian smoothing, and is also stable. 
Another method proposed in the literature is the amendment of 
the projection operation in existing Principal Component 
Analysis (PCA) kernel denoising algorithms in order to avoid 
poor denoising results caused by geometric arguments[19-20]. 

Estimating multidimensional probability density functions 
(PDFs) is a challenging task in signal processing. To address 
this, [21] introduced an iterative Gaussianizing rotational 
family, which applies marginal transformations for univariate 
Gaussianization, followed by orthonormal transformations, 
thereby simplifying PDF estimation. 

Wavelet-based thresholding methods have also attracted 
significant attention. As suggested in [22], these methods 
outperform conventional approaches; however, threshold 
estimation and selection remain difficult. To overcome this, a 
new continuous high-order threshold function is proposed, 
making it suitable for gradient-based techniques, such as neural 

Universal Denoising Algorithm: 

Step 1: Apply the wavelet transform to the noisy image. 

Step 2: Calculate the threshold value using the universal

threshold formula, which is based on the wavelet 

coefficients' spatial context modeling. 

Step 3: Apply the thresholding function to the wavelet 

coefficients, setting all coefficients below the threshold to 

zero. 

Step 4: Apply the inverse wavelet transform to the

thresholded coefficients to obtain the denoised image. 

Sure Shrink Denoising Algorithm: 

Step 1: Apply the wavelet transform to the noisy image. 

Step 2: Calculate the threshold value using the sure

shrink formula, which is based on the standard deviation of 

the wavelet coefficients. 

Step 3: Apply the thresholding function to the wavelet
coefficients, setting all coefficients below the threshold to
zero. 

Step 4: Apply the inverse wavelet transform to the

thresholded coefficients to obtain the denoised image. 

Bayes Shrink Denoising Algorithm: 

Step 1: Apply the wavelet transform to the noisy image. 

Step 2: Calculate the threshold value using the Bayes

shrink formula, which is based on the prior probability 

distribution of the wavelet coefficients. 

Step 3: Apply the thresholding function to the wavelet 

coefficients, setting all coefficients below the threshold to 

zero. 

Step 4: Apply the inverse wavelet transform to the

thresholded coefficients to obtain the denoised image. 

 

Initialize the wavelet coefficients of the noisy image and 

the noise standard deviation for each sub- band. 

Perform the Expectation step: 

Estimate the probability that each wavelet coefficient 

belongs to the noise or signal class. Update the noise standard 

deviation for each sub-band based on the estimated 

probability. Perform the Maximization step: 

Update the wavelet coefficients of the denoised image

based on the estimated probability and the noise standard 

deviation. 

Repeat steps 2 and 3 until convergence, or a set number of 

iterations is reached. Perform the inverse wavelet transform to 

obtain the denoised image. 
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thresholds (TNN). Within this framework, the Least Mean 
Square (LMS) algorithm is employed to estimate the threshold 
values for the wavelet subband coefficients.. Beyond 
conventional hard and soft threshold operators, semi-soft and 
Stein thresholding are also evaluated in the shrinkage step, 
particularly for medical image denoising across various wavelet 
families. Experimental results on textured and satellite images, 
measured using PSNR and classification accuracy, demonstrate 
that anisotropic distributions yield effective denoising 
performance. 

Complementary approaches have been proposed for image 
denoising using partial differential equations (PDEs) [23]. Three 
PDE-based techniques were compared using metrics such as the 
average absolute difference, SNR, PSNR, image fidelity, and 
MSE. The results confirm their superiority over traditional 
techniques. Furthermore, the use of bi-dimensional empirical 
mode decomposition (BEMD) was explored, with theoretical 
insights validating its numerical performance in digital image 
denoising. 

Edge preservation is another critical issue in denoising. In [24], 
a directional denoising system with an integrated directional 
interpolator was proposed to mitigate structural distortions that 
typically occur at image edges during denoising. Similarly, [25] 
enhances the Singular Value Decomposition (SVD) 
framework by embedding it within a filter bank structure. This 
advancement facilitates the design of anti-forensic techniques 
aimed at eliminating compression fingerprints, specifically 
targeting JPEG and wavelet-based artifacts. 

Machine learning has also been used for image denoising and 
classification. Feature extraction is often performed using 
Gabor filters to capture local edges and texture patterns, 
whereas classification is enhanced using the AdaBoost 
algorithm, which combines multiple weak classifiers to 
improve decision accuracy. Performance evaluations before and 
after boosting demonstrated notable improvements, particularly 
in the classification of stroke tissue images, underscoring the 
effectiveness of ensemble-based machine learning in medical 
image analysis. 

The remainder of this paper is structured as follows: Section 2 
presents the hybrid stroke detection framework, focusing on 
feature extraction and the classification models. Section 3 
discusses the simulation results of the stroke prediction model 
and its performance metrics. Finally, Section 4 concludes the 
paper and highlights the observed performance improvements 
of the proposed method. 

III. PROPOSED MODEL 

A very important aspect of image analysis is texture, which is 
usually utilized to recognize objects or areas of interest. One 
widely employed statistical technique of texture analysis is the 
gray-level co-occurrence matrix (GLCM), or gray spatial 
dependency matrix. 

The GLCM captures the spatial relationship between pixels by 
quantifying how often pairs of pixels with specific intensity 
values occur in an image. Various statistical descriptors can be 
extracted from this matrix to represent the texture. 

Formally, let FFF be a rectangular discrete image with a finite 
number of gray levels defined over a given domain. The 
extracted texture features should not only describe image 
patterns but also relate to clinical aspects, such as disease 
progression and its impact on patient outcomes. For instance, 
the consistency of the association between extracted features 
and stroke occurrence can be assessed, as well as their 
correlation with outcomes such as hospitalization or mortality. 

A crucial consideration is whether these features can be 
influenced or modified by medical interventions. Controlled 
trials and randomized studies provide evidence of whether 
changes in feature status translate into meaningful clinical 
outcomes, including survival. It is also essential to determine 
whether the extracted features capture short- or long-term 
effects and to scientifically validate whether such variations 
significantly affect prognosis. 

Unlike natural objects, lesions in medical images often lack a 
consistent shape, rendering shape-based features less reliable. 
Instead, texture is a dominant factor, as medical images are 
typically rich in textural details. Although local regions may 
appear irregular, the overall image often exhibits a certain 
degree of regularity, commonly referred to as texture. 
Consequently, texture analysis plays a vital role in the effective 
interpretation and recovery of information from medical 
images. 

Non-linear Filtering approach 

In data filtering algorithm, sensitive attributes specific to the 
user are added to the filtering process. To provide privacy, 
probabilistic noise was added to these attributes and a perturbed 
dataset was obtained to use in the mean clustering stage. In the 
hybrid perturbed mean clustering algorithm, new perturbed data 
clustered classes are generated using kkk representative centers 
and a weighting measure. The privacy-preserving classification 
was subsequently done using the resulting kkk-clustered training 
data. Lastly, ensemble classification model was used to predict 
the test samples using the clustered training data. 

Algorithm1: Data filtering algorithm 

Algorithm 1: Algorithm 1 outlines the filtering process 
applied to a large input dataset for mean clustering with privacy 
preservation. In Steps 1 and 2, the input dataset, along with its 
sensitive attributes, is acquired. In Step 3, each sensitive 
attribute undergoes a transformation using sine and cosine 
measures. In Steps 5–8, additional privacy is ensured by 
applying probabilistic noise to sensitive attributes. Finally, a 
perturbed dataset was generated and prepared for the mean 
clustering process. 
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Proposed Feature Extraction Measure: Log Inverse 
Differential Moment (LIDM): 

 
The LIDM is employed to evaluate the homogeneity of image 
structures and serves as a discriminative feature for effective 
image classification. 

Max Correlation Inertia: MCI 

MCI is used to determine the maximal correlation 

between the gray-level linear dependence among 

pixels at given positions. 

The Probabilistic Gray-Level Co-occurrence 

Matrix (PGLCM) algorithm computes 

probabilistic measurements of image texture based 

on the spatial relationships between pixels of the 

same gray level. The steps of the GLCM algorithm 

are as follows: 

 Convert the image to a grayscale image if it is not 

already grayscale. 

 The distance and direction parameters for the GLCM 

matrix are defined as follows: The distance parameter 

determines the number of pixels away from a given 

pixel that will be used to calculate the co- occurrence 

probability. The direction parameter determines the 

direction in which the co-occurrence probability is 

calculated. 

 The GLCM matrix is initialized with zeros. The 

matrix has a size of (L × L), where L is the number of 

gray levels in the image. 

 The algorithm iterates through each pixel in the 

image. For each pixel, the co-occurrence probability 

is calculated with the pixel that is at a specified 

distance and direction away. The co-occurrence 

probability is calculated as follows: 

 P(i, j) = n(i, j) / (M * N) 

 where n(i, j) is the number of occurrences of the pair 

of gray levels i and j, and M and N are the number of 

rows and columns in the image, respectively. 

 The corresponding element in the GLCM matrix is 

incremented by the co-occurrence probability 

calculated in step 4. 

 After iterating through all the pixels, the GLCM 

matrix is normalized by dividing each element by the 

sum of all elements in the matrix. 

 The normalized GLCM matrix was used to calculate 

probabilistic measurements, such as energy, entropy, 

contrast, and homogeneity. These measurements 

were calculated using the following equations: 

 Energy = sum(P(i, j)^2) 

 Entropy = -1 * sum(P(i, j) * log(P(i, j))) 

 Contrast = sum((i - j)^2 * P(i, j)) 

 Homogeneity = sum(P(i, j) / (1 + (i - j)^2)) 

 return the probabilistic measurements 

Max Entropy Texture extraction measure: MEM 

Statistical entropy measures the disorder or complexity of an 
image. 

Non-linear Kernel Estimator: NLKE 

NLKE is used to find the nonlinear structure of the image 
patterns using the Gaussian distribution measure. 

The nonlinear kernel estimator (NLKE) algorithm is a 

technique used to estimate probability density functions (PDFs) 

in nonlinear, high-dimensional spaces. The algorithm is based 

on kernel functions to approximate the underlying PDF. 

The main steps of the NLKE algorithm are as follows. 

 Select a kernel function, k(x,y), which is used to 
approximate the underlying PDF. Common choices 
for kernel functions include the Gaussian and 
Epanechnikov kernels. 

 A bandwidth parameter, h, which controls the width 

of the kernel function, is defined. A larger bandwidth 

leads to a smoother PDF estimate, whereas a smaller 

bandwidth results in a more detailed estimate. 

 Estimate the density at each data point, x, by 

averaging the kernel function over all data points: 

f_hat(x) = (1/nh) * Sum(k((x-x_i)/h)) for i=1 to n 

Input: Dataset DS, Features space SA.  
Output : Perturbed transformed values PD.  
Procedure: 
Read input dataset DS 
Read sensitive attributes SA from the input dataset DS. 
Transform sensitive attributes SA using sin and cos 
measures as 

 

 

 DS '  v cos(v) if i!=j 
 =vsin(v) if i==j 

To each value in the sensitive attributes SA 

Do 

Compute probability noise to the transformed sensitive attribute as
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where n is the number of data points and x_i is the i-th data 
point. 

 Normalize the density estimate by dividing by the 

total sum of the density estimate: f_hat(x) = f_hat(x) 

/ Sum(f_hat(x)) 

 Use the density estimate to calculate the 

probability of observing a new data point, x_new, 

by evaluating the density estimate at x_new: 
 P(x_new) = f_hat(x_new) 

 Repeat steps 3-5 for different values of h to 

determine the optimal bandwidth parameter that 

results in the best PDF estimate. 

Proposed Bayesian feature selection 

The Bayesian probabilistic measure is evaluated using the 
following function: 

The optimal compressive sensing reconstruction measure is 
computed using the following equation: 

�� = (1 + �)
��

2

����(�0
2 − ��

2, 0)
 

       Bf  uniCV(D); / / Unique column values 

HBf  Histobins[]  histogrambin(D) 

Gaussian Kernel : GK(, )  e
2 

/ (2 * log()) 

  gkv  GK(HBf ,1 / 2Bf ); 

Exponential Gaussian Probability  KP(D)  

| HBf / (log()* HBf ) | 

PolyDiffusion  PD  KP(D).  
�

�
∫(��������� (�, �) −

������ (�, �))�����  +m.
�����������(�,�)

���  

���{�(�)} = ��.
1

2
  ⃦��

� − ��
�   ⃦� + ��. ∅(�)

Where, ϕ(x)\phi(x)ϕ(x) represents the non-linear and 
non-smooth regularizer. The proposed iterative method 
is employed to solve R(x)R(x)R(x), enabling the 
restoration of the noisy input image with a high PSNR 
value and a low error rate. 

 

Algorithm 2: hybrid filtering mean clustering algorithm 
Input: Perturbed dataset PD 
Output: Perturbed dataset with clustered class labels  
Procedure: Initialize k randomized centers as 
representative objects in the PD. Compute the mean 
perturbed measure using the following formula 

 
Compute the filtering membership function using the following 
formula 

�� �
��

��
� � = ∅(��).

|�� − ��|����

∑ |�� − ��|�����
���

 

�� �
��

��
� � = ∅(��).

|�� − ��|�(���)

∑ |�� − ��|�(���)�
���

 

To each perturbed object, compute the weight of the object for 
membership update as 

��(��) = ∅(��).
|�� − ��|����

�∑ |�� − ��|�(���)�
��� �

� 

Updating the centroid location by using the 

�� =
∑ �� �

��
��

� � . ��(��). ��
�
���

∑ �� �
��

��
� � . ��(��)�

���

 

 

Repeat the procedure till k clusters.  

Assign each filtering object vi to cluster j by using the highest 

membership value Pm (Cj / vi ) . 

���
��  Pm (Cj / vi ) 

 

The algorithm 2 shows the mean clustering methodology to 
predict the class labels on the filtered dataset. In the first step, 
as representative objects in the perturbed dataset (PD), kkk 
randomized centers are identified. The ϕvalue used to estimate 
membership is calculated using the mean perturbed measure in 
Step 2. Cluster memberships in Steps 4-6 are computed based 
on the proposed equation. Lastly, Steps 7-8 involves updating 
the weighted memberships (according to the calculated 
measures). 

�(��) = ��� �
∑ ��������

�
|N|
���

∑
1

|�����
��� |

�
|�|
�=1

�; r=1..|R| 
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Algorithm 3: Input training and testing classification model 

 
Figure 1: Proposed Model 

 
The classification learning process of the proposed model 

with clustered learning dataset is described in Algorithm 3. 

Under this approach, mean, covariance, and ensemble learning 

approaches are used to conduct the training and testing. The 

difference in the values of the delta between the predicted 

values is calculated by the Euclidean norm and the one with 

the smallest norm is taken as the final label of the classes. 

In the proposed boosting system, a pool of weak classifiers 

is utilized in order to increase the overall classification rate. In 

particular, weak learners in the AdaBoost system are decision 

trees. Entropy- and conditional- entropy-based decision trees 

are optimized (improved) to enhance their performance by 

using a modified attribute ranking measure during 

construction. The classifier that has the lowest error rate in 

classification is eventually selected in predicting instances. 

IV. EXPERIMENTAL RESULTS 

Experimental evaluations were performed on multiple training 
datasets for stroke disorder prediction. To support this, a new 
classification model was developed and deployed on an 
Amazon AWS server with 20 GB RAM, enabling the 
prediction of novel disorder types.The experiments were 
conducted using the Java programming environment, with 
simulations performed on a dedicated stroke image database. 

  

Figure 2: Sample stroke image 

 
Figure 3: Comparative analysis of proposed model to the 

traditional techniques  
 

Table 1, describes average PSNR ratio for all images with 
different types of noise levels. 
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Input : Training data ���
�� 

Procedure: 
To each instance in ���

�� 
Do 

��
�

= �����(���
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�

�

������(���
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Done 
To each test sample t in ���

��  
��

� = �����(���
�� ∪ {�}) 

 

� =

�∗

�

������(���
�� ∪ {�}) 

��
∗ =  �������� ����, ���

�∗
, �.

�∗

�

�� 

Find ∆�� ����� �ℎ� (��, ��
∗) ass Euclidean norm 

 

Class(t) = argmin(∆��) 
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Figure 4: Comparative analysis of proposed model to the 
traditional techniques  

 

Figure 5: Comparative analysis of proposed model to the 
traditional techniques  

V. CONCLUSION 

Prediction of disease in the vertebral column dataset is a 
challenging task, primarily due to noise and feature selection 
issues in stroke disorder analysis. Identifying relational patterns 
among disc features is particularly difficult because of 
variations in disc parameters. Traditional filtering, 
segmentation, and classification models often treat image 
features independently, without considering their 
interrelationships in disc disorder characterization. 

In order to deal with these shortcomings, a hybrid-threshold 
based image segmentation and classification model is 
suggested in order to predict disorder. The model combines a 
hybrid property selection process and a powerful decision tree 
classifier that is able to narrow important features to make 
correct predictions. The results of the experiments prove that 
the model is superior to the known techniques, and the model 
has high performance with the following values: TP rate = 
0.979133, accuracy = 0.98233, and error rate = 0.0216, as well 
as F-measure and recall improvements. 

For future work, an advanced feature selection–based 
classification learning approach will be explored to further 
enhance prediction accuracy in stroke detection. 
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