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Abstract— Brain stroke detection (SD) is a critical medical task
that can be effectively performed using magnetic resonance
imaging (MRI). However, one of the major challenges in real-time
systems is digital image denoising, as medical images often suffer
from high noise levels and low resolutions. Noise arises from inter-
and intra-signal variances during image acquisition, leading to
significant degradation of image quality. Stroke-related MRI
images are commonly affected by various types of noise, including
Gaussian, speckle, impulsive, and mixed noise, which complicates
reliable diagnosis.Traditional denoising methods—such as non-
linear median filters, Bayesian filters, wavelet-based shearlet
transforms, non-local filters, and autoencoders—have been widely
applied to reduce noise. Although these methods can handle
specific noise types (e.g., speckle or Gaussian noise), their
effectiveness is limited in medical imaging because of the
simultaneous presence of additive, multiplicative, and Gaussian
noise. Furthermore, the problem of sparsity in low signal-to-noise
ratio (SNR) images remains unresolved with these conventional
techniques, particularly in ultrasound and MRI-based stroke
detection.To address these limitations, a hybrid non-linear
filtering and segmentation-based ensemble learning framework is
proposed. This approach enhances the denoising capability across
different imaging modalities by leveraging the strengths of
multiple techniques in a unified framework. Experimental results
on real-time noisy images demonstrate that the proposed method

outperforms conventional denoising approaches, thereby
improving the reliability of stroke detection.
Index Terms— Brain stroke, feature extraction, stroke

classification, machine learning models.

L INTRODUCTION

Images play a fundamental role in human life and are
an essential component of modern data processing.
Digital image processing is employed to enhance
the quality of the images, enabling computers to
modify the image data for improved clarity,
sharpness, and detail, thereby facilitating effective
information extraction and analysis. Digital image
processing, a subfield of signal processing, takes an

image as input and produces either a processed
image or quantitative parameters that define specific
features and operations (Cevik, 2011).

In many cases, noisy images are generated when a
clean image is corrupted by external noise. Image
denoising, the process of removing the noise
component, has become a critical research area, with
numerous techniques proposed, developed, and
implemented over time. Advancements in
technology have further increased the reliance on
image acquisition and transmission as a preferred
mode of information sharing, making efficient image
processing indispensable.

Digital image processing serves two primary
purposes: (i) improving the visual representation of
an image for better human interpretation and (ii)
enabling automated machine perception. Its
applications are extensive, spanning medical
imaging, biometrics, acoustic imaging, remote
sensing and military surveillance. At its core,
image processing involves applying computational
operations to make the image content more
meaningful and usable.

However, limitations in image sensors and
transmission media often introduce noise, which
manifests as signal disturbances that degrade image
quality and hinder accurate monitoring, analysis, and
evaluation. In such cases, image enhancement and
restoration techniques are applied to recover the

degraded or blurred images. Among these, image
denoising is a critical step in image reconstruction algorithms,
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supporting both direct photographic
advanced technical applications.

improvements and

A degraded image impairs automated processing and
feature extraction, whereas a properly denoised
image provides a reliable foundation for downstream
tasks, such as biometric recognition, medical
diagnostics, environmental monitoring, remote
sensing, and defense applications. Thus, efficient
image denoising remains central to the advancement
of computer vision and intelligent image analysis.

As image acquisition devices evolve, their sensitivity to
noise increases owing to the growing number of pixels per unit
area. Consequently, image denoising techniques have become
essential for minimizing the effects of noise and artifacts on
image quality. Noise typically manifests as random fluctuations
in pixel intensity or color values, arising from factors such as
acquisition errors, quantization, transmission through noisy
channels or environmental disturbances. Identifying the type of
noise present in an image is often a prerequisite for applying
suitable denoising algorithms.

A significant body of research in digital image processing is
dedicated to denoising, including the development of novel
algorithms and refinement of existing approaches under varying
conditions. Because images can be corrupted during capture,
transmission, or compression, denoising is a crucial step before
any analytical or recognition tasks. Image restoration seeks to
reduce the degradation caused by electronic and photometric
noise, motion blur, and transmission errors. Among the many
noise types, additive white Gaussian (AWG) noise, Poisson
noise, thermal noise, salt-and-pepper noise, JPEG artifacts, and
structured stripe noise are the most common. In this study, the
focus is placed specifically on AWG noise.

Mathematical models based on partial differential
equations (PDEs), including nonlinear diffusion and energy
functional minimization, have been extensively explored.
Earlier PDE-based models focused on speed control using
smoothing operators or Laplacian-based formulations, whereas
later approaches introduced coupled nonlinear diffusion
equations to refine the control functions. The Total Variation
(TV) method has also been influential in introducing a dynamic
regularization framework. Variants include the Split Bregman
iteration for the TV-ROF model, multiplicative regularization
schemes for deblurring, and adaptive diffusion methods using
local variance measures. Other models differentiate between
noise-corrupted and noise-free pixels to achieve more selective
denoising.

In addition to PDE-based methods, the Discrete Wavelet
Transform (DWT) is widely employed for image denoising,
particularly in applications such as texture analysis, object
recognition, and segmentation. Recently, more advanced
approaches have emerged, including Non-Local Means (NLM)
and PCA-based adaptive filters, which improve precision. For
example, PCA has been leveraged to derive surrogate

respiratory signals from single-lead ECGs to enhance the
morphological analysis.

Traditional imaging systems also face challenges in effective
signal processing due to increasing data complexity and limited
computational resources. Compressive sensing (CS) has been
introduced as an efficient alternative that reconstructs original
signals from fewer measurements than Nyquist sampling. CS
has proven especially useful in medical imaging modalities such
as MRI, ultrasound, and CT, which are prone to random noise
owing to radiation exposure. In particular, CS has been effective
in reducing impulse and Gaussian noise in Synthetic Aperture
Radar (SAR) images.

Overall, image denoising remains a critical research domain
involving preprocessing, segmentation, classification, and
parameter estimation to restore clean signals. Although
numerous algorithms have been proposed, optimization
challenges persist in achieving robustness against noise, scale,
and variation in viewpoints. Denoising strategies can be broadly
categorized into thresholding- and segmentation-based
approaches. Thresholding separates image values into desired
and undesired regions using an optimal threshold, whereas
segmentation-based methods rely on the structural and
contextual features of image regions.

Figure 1 illustrates the general workflow of image
reconstruction, where filtering techniques are applied to
suppress noise and enhance the brightness of high-resolution
images. Effective denoising not only improves image quality but
also provides a reliable foundation for subsequent tasks in
medical imaging, remote sensing, biometrics and defence
applications.

Image

A

Different variations
of noise

A 4

Image filtering

methods
A4
Image Image
Segmentation Classification

Figure 1: Segmentation-based image denoising
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II.  LITERATURE SURVEY

In this study, a novel image denoising approach is proposed
that integrates wavelet transformation with optimized
thresholding functions to effectively suppress noise. Wavelet
threshold Denoising exhibits enhanced effectiveness relative to
conventional methods, including Universal, SureShrink, and
BayesShrink. Among the existing methods, BayesShrink
produces outputs closest to high-quality images with minimal
blurring, whereas VisuShrink and Universal methods perform
poorly in handling salt-and-pepper noise.

The proposed method improves the denoising results by
combining wavelet-based decomposition with advanced
threshold selection. Because the choice of threshold is critical in
wavelet-based denoising, this study introduces an adaptive
thresholding strategy that leverages the spatial context
modeling of wavelet coefficients for more accurate noise
suppression. Experimental evaluations on multiple natural
images indicate that the proposed technique significantly

Universal Denoising Algorithm:
Step 1: Apply the wavelet transform to the noisy image.

Step 2: Calculate the threshold value using the universal
threshold formula, which is based on the wavelet
coefficients' spatial context modeling.

Step 3: Apply the thresholding function to the wavelet
coefficients, setting all coefficients below the threshold to
Zero.

Step 4: Apply the inverse wavelet transform to the
thresholded coefficients to obtain the denoised image.

Sure Shrink Denoising Algorithm:
Step 1: Apply the wavelet transform to the noisy image.

Step 2: Calculate the threshold value using the sure]
shrink formula, which is based on the standard deviation of]
the wavelet coefficients.

Step 3: Apply the thresholding function to the wavelet
coefficients, setting all coefficients below the threshold to
Zero.

Step 4: Apply the inverse wavelet transform to the
thresholded coefficients to obtain the denoised image.
Bayes Shrink Denoising Algorithm:

Step 1: Apply the wavelet transform to the noisy image.

Step 2: Calculate the threshold value using the Bayes|
shrink formula, which is based on the prior probability|
distribution of the wavelet coefficients.

Step 3: Apply the thresholding function to the wavelet
coefficients, setting all coefficients below the threshold to
Zero.

Step 4: Apply the inverse wavelet transform to the
thresholded coefficients to obtain the denoised image.

outperforms conventional PCA-based methods, delivering
higher visual quality and robustness for different noise types.

Furthermore, a multivariate statistical method was
introduced for denoising multispectral images in the wavelet
domain by leveraging the correlations among different spectral
components. To achieve this, the application of the recently
developed hyperanalytic wavelet transform (DWT) has been
suggested [15-18].

The proposed algorithm for image denoising utilizes a
combination of wavelet transformation and optimized
thresholding functions, resulting in a fast and effective noise
removal method. The simulation results and comparisons show
that the performance of the proposed method is superior to that
of previous thresholding methods. Additionally, an iterative
image reconstruction technique using the Maximum Likelihood
Expectation Maximization wavelet-based thresholds (EM) was
proposed to overcome the difficulties associated with large
amounts of data and noise in Compton scatter camera data. This
method leads to less reconstruction errors than other algorithms

Initialize the wavelet coefficients of the noisy image and
the noise standard deviation for each sub- band.

Perform the Expectation step:

Estimate the probability that each wavelet coefficient
belongs to the noise or signal class. Update the noise standard
deviation for each sub-band based on the estimated
probability. Perform the Maximization step:

Update the wavelet coefficients of the denoised image]
based on the estimated probability and the noise standard
deviation.

Repeat steps 2 and 3 until convergence, or a set number of
iterations is reached. Perform the inverse wavelet transform to
obtain the denoised image.

such as MLEM and Gaussian smoothing, and is also stable.
Another method proposed in the literature is the amendment of
the projection operation in existing Principal Component
Analysis (PCA) kernel denoising algorithms in order to avoid
poor denoising results caused by geometric arguments[19-20].

Estimating multidimensional probability density functions
(PDFs) is a challenging task in signal processing. To address
this, [21] introduced an iterative Gaussianizing rotational
family, which applies marginal transformations for univariate
Gaussianization, followed by orthonormal transformations,
thereby simplifying PDF estimation.

Wavelet-based thresholding methods have also attracted
significant attention. As suggested in [22], these methods
outperform conventional approaches; however, threshold
estimation and selection remain difficult. To overcome this, a
new continuous high-order threshold function is proposed,
making it suitable for gradient-based techniques, such as neural
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thresholds (TNN). Within this framework, the Least Mean
Square (LMS) algorithm is employed to estimate the threshold
values for the wavelet subband coefficients.. Beyond
conventional hard and soft threshold operators, semi-soft and
Stein thresholding are also evaluated in the shrinkage step,
particularly for medical image denoising across various wavelet
families. Experimental results on textured and satellite images,
measured using PSNR and classification accuracy, demonstrate
that anisotropic distributions yield effective denoising
performance.

Complementary approaches have been proposed for image
denoising using partial differential equations (PDEs) [23]. Three
PDE-based techniques were compared using metrics such as the
average absolute difference, SNR, PSNR, image fidelity, and
MSE. The results confirm their superiority over traditional
techniques. Furthermore, the use of bi-dimensional empirical
mode decomposition (BEMD) was explored, with theoretical
insights validating its numerical performance in digital image
denoising.

Edge preservation is another critical issue in denoising. In [24],
a directional denoising system with an integrated directional
interpolator was proposed to mitigate structural distortions that
typically occur at image edges during denoising. Similarly, [25]
enhances the Singular Value Decomposition (SVD)
framework by embedding it within a filter bank structure. This
advancement facilitates the design of anti-forensic techniques
aimed at eliminating compression fingerprints, specifically
targeting JPEG and wavelet-based artifacts.

Machine learning has also been used for image denoising and
classification. Feature extraction is often performed using
Gabor filters to capture local edges and texture patterns,
whereas classification is enhanced using the AdaBoost
algorithm, which combines multiple weak -classifiers to
improve decision accuracy. Performance evaluations before and
after boosting demonstrated notable improvements, particularly
in the classification of stroke tissue images, underscoring the
effectiveness of ensemble-based machine learning in medical
image analysis.

The remainder of this paper is structured as follows: Section 2
presents the hybrid stroke detection framework, focusing on
feature extraction and the classification models. Section 3
discusses the simulation results of the stroke prediction model
and its performance metrics. Finally, Section 4 concludes the
paper and highlights the observed performance improvements
of the proposed method.

1. PROPOSED MODEL

A very important aspect of image analysis is texture, which is
usually utilized to recognize objects or areas of interest. One
widely employed statistical technique of texture analysis is the
gray-level co-occurrence matrix (GLCM), or gray spatial
dependency matrix.

The GLCM captures the spatial relationship between pixels by
quantifying how often pairs of pixels with specific intensity
values occur in an image. Various statistical descriptors can be
extracted from this matrix to represent the texture.

Formally, let FFF be a rectangular discrete image with a finite
number of gray levels defined over a given domain. The
extracted texture features should not only describe image
patterns but also relate to clinical aspects, such as disease
progression and its impact on patient outcomes. For instance,
the consistency of the association between extracted features
and stroke occurrence can be assessed, as well as their
correlation with outcomes such as hospitalization or mortality.

A crucial consideration is whether these features can be
influenced or modified by medical interventions. Controlled
trials and randomized studies provide evidence of whether
changes in feature status translate into meaningful clinical
outcomes, including survival. It is also essential to determine
whether the extracted features capture short- or long-term
effects and to scientifically validate whether such variations
significantly affect prognosis.

Unlike natural objects, lesions in medical images often lack a
consistent shape, rendering shape-based features less reliable.
Instead, texture is a dominant factor, as medical images are
typically rich in textural details. Although local regions may
appear irregular, the overall image often exhibits a certain
degree of regularity, commonly referred to as texture.
Consequently, texture analysis plays a vital role in the effective
interpretation and recovery of information from medical
images.

Non-linear Filtering approach

In data filtering algorithm, sensitive attributes specific to the
user are added to the filtering process. To provide privacy,
probabilistic noise was added to these attributes and a perturbed
dataset was obtained to use in the mean clustering stage. In the
hybrid perturbed mean clustering algorithm, new perturbed data
clustered classes are generated using kkk representative centers
and a weighting measure. The privacy-preserving classification
was subsequently done using the resulting kkk-clustered training
data. Lastly, ensemble classification model was used to predict
the test samples using the clustered training data.

Algorithm1: Data filtering algorithm

Algorithm 1: Algorithm 1 outlines the filtering process
applied to a large input dataset for mean clustering with privacy
preservation. In Steps 1 and 2, the input dataset, along with its
sensitive attributes, is acquired. In Step 3, each sensitive
attribute undergoes a transformation using sine and cosine
measures. In Steps 5-8, additional privacy is ensured by
applying probabilistic noise to sensitive attributes. Finally, a
perturbed dataset was generated and prepared for the mean
clustering process.
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Input: Dataset DS, Features space SA.
Output : Perturbed transformed values PD.
Procedure:
Read input dataset DS
Read sensitive attributes SA from the input dataset DS.
Transform sensitive attributes SA using sin and cos
measures as
DS =vcos(v) ifil=j
=vsin(v) ifi—j
To each value in the sensitive attributes SA

Do
Compute probability noise to the transformed sensitive attribute :
7([:‘35} U;J—;II._“ o)
. 2 | max{D5,(v)}.e “asat
Py(DS,(v)) =————+—= f dl=j
v.cos(v ]'JDS‘A(n
_(cm; O 0
s {DS()} "_?\x'\z
ot gy 2 |m{DS,(v)} e .
9. Pu(DS,(v)=— 2 df 1=
E & v.sin(v).o e o
Done

Final transformed perturbed dataset D is given as
PD=P, (DS, (v)) DS

Proposed Feature Extraction Measure:
Differential Moment (LIDM):

Log Inverse

The LIDM is employed to evaluate the homogeneity of image
structures and serves as a discriminative feature for effective
image classification.

Max Correlation Inertia: MCI

MClT s used to determine the maximal correlation
between the gray-level linear dependence among
pixels at given positions.

The Probabilistic Gray-Level Co-occurrence
Matrix (PGLCM) algorithm  computes
probabilistic measurements of image texture based
on the spatial relationships between pixels of the
same gray level. The steps of the GLCM algorithm
are as follows:

e Convert the image to a grayscale image if it is not
already grayscale.

e The distance and direction parameters for the GLCM
matrix are defined as follows: The distance parameter
determines the number of pixels away from a given
pixel that will be used to calculate the co- occurrence
probability. The direction parameter determines the
direction in which the co-occurrence probability is
calculated.

e The GLCM matrix is initialized with zeros. The
matrix has a size of (L x L), where L is the number of
gray levels in the image.

e The algorithm iterates through each pixel in the
image. For each pixel, the co-occurrence probability
is calculated with the pixel that is at a specified
distance and direction away. The co-occurrence
probability is calculated as follows:

* PG j)=n(j)/M*N)

e where n(i, j) is the number of occurrences of the pair
of gray levels i and j, and M and N are the number of
rows and columns in the image, respectively.

e The corresponding element in the GLCM matrix is
incremented by the co-occurrence probability
calculated in step 4.

e  After iterating through all the pixels, the GLCM
matrix is normalized by dividing each element by the
sum of all elements in the matrix.

e  The normalized GLCM matrix was used to calculate
probabilistic measurements, such as energy, entropy,
contrast, and homogeneity. These measurements
were calculated using the following equations:

e  Energy=sum(P(, j)"2)

e  Entropy = -1 * sum(P(i, j) * log(P(i, j)))

e Contrast =sum((i -j)"2 * P(i, j))

e Homogeneity = sum(P(i,j) / (1 + (i -j)"2))

e  return the probabilistic measurements

Max Entropy Texture extraction measure: MEM

Statistical entropy measures the disorder or complexity of an
image.

Non-linear Kernel Estimator: NLKE

NLKE is used to find the nonlinear structure of the image
patterns using the Gaussian distribution measure.

The nonlinear kernel estimator (NLKE) algorithm is a
technique used to estimate probability density functions (PDFs)
in nonlinear, high-dimensional spaces. The algorithm is based
on kernel functions to approximate the underlying PDF.

The main steps of the NLKE algorithm are as follows.

e Select a kernel function, k(x,y), which is used to
approximate the underlying PDF. Common choices
for kernel functions include the Gaussian and
Epanechnikov kernels.

e A bandwidth parameter, h, which controls the width
of the kernel function, is defined. A larger bandwidth
leads to a smoother PDF estimate, whereas a smaller
bandwidth results in a more detailed estimate.

e Estimate the density at each data point, x, by
averaging the kernel function over all data points:
f hat(x) = (1/nh) * Sum(k((x-x_i)/h)) for i=1 to n
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where n is the number of data points and x_i is the i-th data
point.

e Normalize the density estimate by dividing by the
total sum of the density estimate: f hat(x) = f hat(x)
/ Sum(f hat(x))

e Use the density estimate to calculate the
probability of observing a new data point, X_new,
by evaluating the density estimate at X _new:
P(x_new) ={ hat(x_new)

e Repeat steps 3-5 for different values of h to
determine the optimal bandwidth parameter that
results in the best PDF estimate.

Proposed Bayesian feature selection

The Bayesian probabilistic measure is evaluated using the
following function:

The optimal compressive sensing reconstruction measure is
computed using the following equation:

of
Ir=04+2)
JMax(O'% — 0%,0)
Bf =uniCV(D);// Unique column values
HBf = Histobins[] = histogrambin(D)

Gaussian Kernel : GK(¢,0) = e/ (2*log())

v = gkv = GK(Q_HB;,1/ 2D B,);
Exponential Gaussian Probability = KP(D)

=|HB, / (D log(y)*HB,) |
PolyDiffusion = PD = KP(D).— %f(loriginal @) -
aZIOTiginal(irj)

Pnoise (i;j))kdxdy +m. 9x2

1
min{R(X)} = PD.§||J§ —af ||? + Iz. 0(X)

Where, ¢(x)\phi(x)d(x) represents the non-linear and
non-smooth regularizer. The proposed iterative method
is employed to solve R(x)R(X)R(x), enabling the
restoration of the noisy input image with a high PSNR
value and a low error rate.

Algorithm 2: hybrid filtering mean clustering algorithm
Input: Perturbed dataset PD

Output: Perturbed dataset with clustered class labels

Procedure: Initialize k randomized centers as
representative objects in the PD. Compute the mean
perturbed measure using the following formula

IN|
N max{pp 4,
¢(PD) = min{qg—r—— ax{l 4l

i=1pD, _—cr P
J=11PD g ~Cr |

;r=1..|R|

Compute the filtering membership function using the following
[V; — ¢;| P72

formula
P <C]/ ) = @(PD)
HANAL XN WV =gl

of Vi — | ~®*+%
j — j
A (7f) = 06> E V= gl ®*+D

To each perturbed object, compute the weight of the object for
membership update as

Vi — |72
[E, 1V - gl-@2]’
Updating the centroid location by using the

C:
i=1 P ( ]/Vi) wp (V). V;

" P (C]‘/Vi) wy (V)

Repeat the procedure till k clusters.

w, (V) = @(PD).

Assign each filtering object Vv, to cluster j by using the highest
membership value Py, (Cj /v;).

PDI™ = Py (Cj /v)

The algorithm 2 shows the mean clustering methodology to
predict the class labels on the filtered dataset. In the first step,
as representative objects in the perturbed dataset (PD), kkk
randomized centers are identified. The ¢pvalue used to estimate
membership is calculated using the mean perturbed measure in
Step 2. Cluster memberships in Steps 4-6 are computed based
on the proposed equation. Lastly, Steps 7-8 involves updating
the weighted memberships (according to the calculated
measures).
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Algorithm 3: Input training and testing classification model

Input : Training data PDI"
Procedure:

To each instance in PDI"
Do

u’ = PMean(PDI™)

P
z = CovMat(PDI™)
7

P
P; = classify| Ens, (,uf,z.)

L
Done
To each test sample t in PDI"
1 = PMean(PDI" U {t})

p*
Z = CovMat(PDI" U {t})
7

p*
P! = classify| Ens, <uf*,z.>

L
Find Ap; using the (P;, P;") ass Euclidean norm
Class(t) = argmin(Ap;)

Input datasets

Data filtering algorithm

Ensemble feature
selection

Hybrid probabilistic

Hybrid mean
weighted measure

K-representative
clustering algorithm

centers

Mean K-clustered
training data

data training module

Ensemble classifiers |,
Test data Test class prediction

Figure 1: Proposed Model

The classification learning process of the proposed model
with clustered learning dataset is described in Algorithm 3.
Under this approach, mean, covariance, and ensemble learning

approaches are used to conduct the training and testing. The
difference in the values of the delta between the predicted
values is calculated by the Euclidean norm and the one with
the smallest norm is taken as the final label of the classes.

In the proposed boosting system, a pool of weak classifiers
is utilized in order to increase the overall classification rate. In
particular, weak learners in the AdaBoost system are decision
trees. Entropy- and conditional- entropy-based decision trees
are optimized (improved) to enhance their performance by
using a modified attribute ranking measure during
construction. The classifier that has the lowest error rate in
classification is eventually selected in predicting instances.

IV. EXPERIMENTAL RESULTS

Experimental evaluations were performed on multiple training
datasets for stroke disorder prediction. To support this, a new
classification model was developed and deployed on an
Amazon AWS server with 20 GB RAM, enabling the
prediction of novel disorder types.The experiments were
conducted using the Java programming environment, with
simulations performed on a dedicated stroke image database.

0 0
100 100
200 P 200 -
300 300
a00 400
500 500
600 800
0 10 20 X0 40 50 &0 0 100 200 300 400 500 60O

Figure 2: Sample stroke image

3

0 10 20 B0 o0 W &0

Figure 3: Comparative analysis of proposed model to the
traditional techniques

0 M 20 X0 40 N0 &0 0 10 20 %0 0 N &0 W 20 V0 00 00 &0

Table 1, describes average PSNR ratio for all images with
different types of noise levels.

A. T=0.75
Images Line | Non- | Bayesi | Wavele Prob Propos
ar Line an tT Filter | denoisi ed
Filter ar Filter ng
Filter
SAR 4873 | 4409 4193 4099 3949 3408

PAGE NO: 71



COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 10 2025

DENTAL 4865 | 4511 4024 4407 4092 3356

Hyperspect | 4863 | 4099 3962 3969 3990 3320
ral
B. T=0.8
Images Line Non- Bayesi Wavele Prob Propos
ar Line an tT Filter | denoisi ed
Filter ar Filter ng
Filter
SAR 4867 | 4138 4187 4223 4064 3285
DENTAL 4866 | 4508 3992 4124 3905 3375

Hyperspect | 4836 | 4207 4050 4516 3964 3456
ral

C. T=0.85
Images Line Non- Bayesi Wavele Prob Propos
ar Line an tT Filter | denoisi ed
Filter ar Filter ng
Filter
SAR 4836 | 4098 4144 4103 4168 3485
DENTAL 4865 | 4559 4172 4047 3892 3463
Hyperspect | 4839 | 4836 4135 4266 4169 3481
ral
T=0.8
32.5
32
315
31
g 30.5
g 30
29.5
29
28.5
28, ; ; ! : :
T Linear Non-Linear Bayesian Wavelst Probde Proposed
Filter Filter Filter TFilter noising Madel
= 54R 30.86 30.68 29.63 30.2 3139 32.46
= DENTAL 30.85 31.31 3118 30.5 29.19 3157
m Hyperspectral 31.04 30.05 29.74 29.85 29.18 32.06

Figure 4: Comparative analysis of proposed model to the
traditional techniques

T=0.9

33
32

31
=
= 30
a

29

28

. 4 8

" Unear  Nondinear Bayesian  Wavelet  Probde  Proposed

Filter Fittar Filter TFilter noising Model

W SAR 31.29 29.48 29.25 3101 29.08 314
= DENTAL 30.15 30.87 31.03 29.49 30.4 32.51

= Hyperspectral 30.09 25.69 30.18 30.41 30.36 32.65

Figure 5: Comparative analysis of proposed model to the
traditional techniques

V. CONCLUSION

Prediction of disease in the vertebral column dataset is a
challenging task, primarily due to noise and feature selection
issues in stroke disorder analysis. Identifying relational patterns
among disc features is particularly difficult because of
variations in disc parameters. Traditional filtering,
segmentation, and classification models often treat image
features  independently,  without  considering  their
interrelationships in disc disorder characterization.

In order to deal with these shortcomings, a hybrid-threshold
based image segmentation and classification model is
suggested in order to predict disorder. The model combines a
hybrid property selection process and a powerful decision tree
classifier that is able to narrow important features to make
correct predictions. The results of the experiments prove that
the model is superior to the known techniques, and the model
has high performance with the following values: TP rate =
0.979133, accuracy = 0.98233, and error rate = 0.0216, as well
as F-measure and recall improvements.

For future work, an advanced feature selection—based
classification learning approach will be explored to further
enhance prediction accuracy in stroke detection.
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