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Abstract- 

The Script identification in multilingual manuscripts is a critical task for digital archiving, linguistic analysis, and 

OCR preprocessing, especially in culturally rich and diverse regions like South Asia. In this paper, we propose 

SwinLipi, a manuscript script classification model built upon the Swin Transformer architecture. Unlike traditional 

convolution-based approaches, SwinLipi utilizes hierarchical self-attention mechanisms to effectively model both 

local structures and global dependencies within handwritten and degraded manuscript images. Trained on an 

augmented dataset of Indic scripts including visually similar scripts such as Telugu and Kannada SwinLipi achieves 

high classification accuracy while maintaining robustness to noise, distortions, and varying handwriting styles. Our 

method requires minimal preprocessing and demonstrates strong generalization across script types. The results 

highlight the effectiveness of vision transformers in the domain of historical document analysis, offering a scalable 

solution for script-aware processing in digital humanities and archival systems. 
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1. Introduction 

Manuscripts are invaluable carriers of cultural, 

historical, and linguistic knowledge. With the 

ongoing digitization of heritage collections, there is 

a growing need for automated tools that can analyse 

and classify manuscript content, particularly at the 

script level. Script classification serves as a critical 

preprocessing step for optical character recognition 

(OCR), translation systems, and downstream 

linguistic analysis. In multilingual regions such as 

South Asia, where scripts like Devanagari, Telugu, 

Kannada, Tamil, and others coexist and often share 

visual similarities, the task becomes even more 

challenging due to high intra-class variability and 

low inter-class separability. 

Traditional approaches for script identification 

have relied heavily on handcrafted features and 

convolutional neural networks (CNNs), which, 

while effective in many cases, often struggle with 

degraded manuscripts, cursive handwriting, and 

limited labelled datasets. Recent advances in  

 

vision transformers have shown promising results 

in general image recognition tasks due to their 

ability to capture long-range dependencies and 

global contextual information through self-

attention mechanisms. These models have 

demonstrated superior performance in domains 

where data scarcity, noise, and complex visual 

structures are significant obstacles. 

In this work, we propose SwinLipi, a transformer-

based model designed specifically for script 

classification in multilingual manuscript images. 

Built upon the Swin Transformer architecture, 

SwinLipi leverages hierarchical window-based 

self-attention to capture both local and global 

textual structures, making it highly effective for 

high-resolution document analysis. Unlike 

traditional CNN-based models, SwinLipi 

demonstrates robustness against noise, distortions, 

and script-specific variations, while requiring 

minimal preprocessing. 
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We train and evaluate SwinLipi on a curated and 

augmented dataset of Indic manuscript scripts. The 

model achieves high classification accuracy across 

multiple scripts, including visually similar ones 

such as Telugu and Kannada. More importantly, 

our experiments show that SwinLipi generalizes 

well even under constrained computational and 

data conditions an increasingly vital criterion for 

real-world applications in heritage digitization 

projects. Similar transformer-based approaches 

have also shown reliable performance in low-

resource and noisy document environments, 

reinforcing the viability of this direction [Hu & 

Jiang, 2024; Bechar & Elmir, 2023; Tortelote, 

2024]. These findings underscore SwinLipi’s 

practical value in multilingual manuscript 

classification and its potential for broader adoption 

in digital humanities and archival systems. 

2. Literature Survey 
 

The task of script classification in document images has 

been widely explored over the years, especially in the 

context of printed and handwritten documents. 

Traditional approaches relied heavily on hand-crafted 

features such as stroke width, texture patterns, and 

character structure. These were often fed into classical 

machine learning classifiers like SVMs or Random 

Forests, which showed limited robustness in the face of 

degraded documents and complex handwritten styles. 

With the emergence of deep learning, Convolutional 

Neural Networks (CNNs) became the de facto standard 

for document image analysis. Models such as LeNet, 

AlexNet, and ResNet were adapted for script 

classification, achieving significant improvements over 

classical methods. Several studies focused on Indic 

scripts due to their complexity and variety, using CNNs 

to classify Devanagari, Kannada, Tamil, and other 

scripts. However, CNNs inherently suffer from 

limitations in capturing long-range dependencies, which 

are crucial in processing spatially dispersed or 

stylistically variable manuscript texts. 

Recent developments in Vision Transformers (ViTs) 

have opened new avenues in image classification by 

replacing convolutional layers with self-attention 

mechanisms. Unlike CNNs, transformers process image 

patches as sequences and learn contextual relationships 

across distant regions of the image. Among these, the 

Swin Transformer, introduced by Liu et al. (2021), 

stands out for its hierarchical design and shifted 

window-based self-attention, which enables scalability 

and efficiency for high-resolution visual tasks. 

Building on this foundation, several recent works have 

advanced the application of vision transformers in 

document analysis. For instance, Hu and Jiang (2024) 

proposed a Swin-based hybrid network for historical 

manuscript restoration and classification, achieving 

robustness under noise and limited data. Similarly, 

Tortelote (2024) benchmarked lightweight transformer 

variants on low-resource Indic script datasets, reporting 

significant performance gains over CNNs in 

handwritten and degraded settings. In another study, 

Bechar et al. (2023) demonstrated that combining CNN 

feature extractors with transformer-based attention 

heads improves classification accuracy in multilingual 

document image tasks. 

Several transformer-based models have also been 

explored for structural document processing. For 

example, DocFormer and LayoutLMv2 combine visual, 

spatial, and language cues to understand document 

layouts. However, their direct application to script-level 

classification in multilingual and handwritten 

manuscript contexts remains sparse. 

This gap motivates the development of SwinLipi, a 

vision transformer-based architecture specifically 

tailored for multilingual manuscript script 

classification. By leveraging the hierarchical and 

windowed attention mechanisms of Swin, SwinLipi 

addresses the key limitations of prior CNN-based 

methods and introduces a scalable, data-efficient 

approach for script recognition in complex, low-

resource environments. 

 

3. Proposed Method 

 
In this study, we propose SwinLipi, a transformer-based 

model designed for the task of manuscript script 

classification. The proposed solution leverages the 

hierarchical and window-based self-attention 

mechanism of the Swin Transformer to effectively 

capture both local and global features within 

handwritten and printed manuscript images. 
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The pipeline begins with a preprocessing step, where 

manuscript images are resized to a fixed resolution 

(224×224), normalized, and converted into tensors 

suitable for deep learning models. These processed 

images are then passed through the Swin Transformer 

(Tiny variant) backbone, which partitions the image into 

non-overlapping patches and applies window-based 

attention in a hierarchical manner. This design enables 

the model to focus on fine-grained local patterns like 

character strokes while also understanding broader 

contextual structures essential for distinguishing 

visually similar scripts such as Telugu and Kannada. 

To adapt the Swin Transformer for the classification 

task, we modify its final classification head by 

introducing a dropout layer followed by a fully 

connected layer with output dimensions equal to the 

number of script classes. During inference, the model 

predicts the script label by selecting the class with the 

highest confidence score from the output logits. 

Unlike traditional approaches that require extensive 

manual feature engineering or pre-classification filters, 

SwinLipi offers an end-to-end trainable and 

generalizable pipeline. 

To support lightweight deployment in resource-

constrained environments (e.g., CPU-based systems, 

mobile devices), we use the Swin-Tiny variant, which 

strikes a balance between performance and 

computational efficiency. Swin-Tiny contains 

approximately 28 million parameters and requires only 

~4.5 GFLOPs (Giga Floating Point Operations) per 

forward pass for a 224×224 input, making it well-suited 

for real-time or edge deployment. In contrast, larger 

transformer variants (e.g., Swin-Base or ViT-B) can 

exceed 85M parameters and >16 GFLOPs, which are 

computationally prohibitive for such applications. 

The relatively low compute cost and compact model 

size (~28 MB) allow SwinLipi to achieve over 91% 

accuracy on multilingual Indic scripts, even when 

trained and tested on CPU-only environments with no 

GPU acceleration. This confirms its viability as a 

scalable and robust solution for script recognition, 

particularly in multilingual and low-resource language 

settings, where computing power, data volume, and 

storage are limited. 

 

3.1 Image Preprocessing 
 

The image processing stage plays a crucial role in 

standardizing the input data and ensuring that the 

manuscript images are compatible with the Swin 

Transformer model. Given the diverse nature of 

historical manuscripts which may vary in resolution, 

aspect ratio, noise levels, and colour depth it is essential 

to normalize the data before feeding it into the model. 

Each manuscript image is first resized to a fixed 

resolution of 224×224 pixels, which aligns with the 

input size expected by the Swin Transformer 

architecture. This resizing helps in maintaining 

consistency across the dataset while retaining essential 

visual features such as stroke patterns and spatial layout. 

Following this, the images are converted to RGB format 

(if not already), ensuring that all three-color channels 

are present. The pixel values are then normalized using 

a mean of [0.5, 0.5, 0.5] and a standard deviation of [0.5, 

0.5, 0.5] for each channel, bringing the pixel intensities 

to a standardized scale that accelerates convergence 

during training. The normalized images are further 

transformed into PyTorch tensors, enabling efficient 

batching and GPU acceleration. These preprocessing 

steps not only prepare the data for deep learning but also 

help reduce variability caused by illumination 

differences, scanning artifacts, and handwriting 

inconsistencies, thereby enhancing the robustness of the 

classification model. 

 

3.2 Swin Transformer Backbone 
 

The backbone of the proposed SwinLipi model is the 

Swin Transformer, a state-of-the-art hierarchical vision 

transformer architecture specifically designed for 

efficient and scalable image recognition tasks. 

Traditional Vision Transformers (ViTs) apply global 

self-attention across all image patches, which becomes 

computationally expensive as the input resolution 

increases. To overcome this, the Swin Transformer 

introduces a window-based multi-head self-attention 

(W-MSA) mechanism, where self-attention is 

calculated only within local non-overlapping windows 

of fixed size (e.g., 7×7). This reduces the computational 

complexity from quadratic to linear with respect to 

image size, making it feasible for high-resolution 

document image processing. 

 

To ensure that information flows across neighbouring 

windows crucial for capturing global context the Swin 

Transformer further introduces a Shifted Window 

approach (SW-MSA). In alternate transformer blocks, 

the window partitions are shifted by a fixed number of 

pixels, allowing for cross-window connections while 

still maintaining computational efficiency. This design 

ensures that the model can learn long-range 

dependencies without resorting to full global attention. 

The Swin Transformer also operates in a hierarchical 

fashion, similar to convolutional neural networks. It 

starts by splitting the image into small non-overlapping 

patches (e.g., 4×4) and progressively merges them 

across stages, reducing spatial dimensions while 

increasing the number of channels. This enables multi-
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scale feature representation, allowing the model to 

simultaneously learn low-level features like curves and 

edges, and high-level semantic information like layout 

patterns or script structures. 

 

In our implementation, we employ the 

swin_tiny_patch4_window7_224 variant, which 

provides a good trade-off between accuracy and 

computational efficiency. It includes four stages of 

transformer blocks, each with an increasing receptive 

field and representational capacity. This configuration is 

particularly effective for handling manuscript script 

classification, where both fine-grained character-level 

details and broader spatial context (such as line 

orientation or script-specific formatting) are important. 

By leveraging this robust transformer backbone, the 

SwinLipi model achieves superior generalization and 

classification performance compared to conventional 

CNN-based approaches, especially in low-resource, 

multilingual, and visually complex manuscript datasets. 

 

 

3.3   Classification Head 
 

To adapt the Swin Transformer backbone for the 

specific task of manuscript script classification, we 

design a custom classification head that replaces the 

default classification layer of the pre-trained Swin 

model. After the Swin Transformer extracts rich 

hierarchical features from the input image, the output 

from the final transformer stage is passed to a global 

average pooling layer, which condenses the spatial 

feature maps into a fixed-length feature vector. This 

vector represents the global semantic representation of 

the input manuscript image. 

To enhance generalization and reduce overfitting 

particularly important given the variability in 

manuscript handwriting styles and limited data per 

script class we introduce a Dropout layer with a dropout 

probability of 0.3. This helps in regularizing the model 

during training by randomly zeroing out elements of the 

feature vector, thus making the model less sensitive to 

specific features. Following this, the vector is passed 

through a fully connected linear layer whose output size 

is equal to the number of target classes (i.e., distinct 

script types in the dataset). This final linear layer 

produces a raw score, or logit, for each script class. 

 

During training, these logits are passed through a 

SoftMax function and optimized using cross-entropy 

loss, allowing the model to learn to differentiate 

between visually similar scripts based on subtle 

structural and stylistic differences. During inference, the 

script class with the highest predicted logit is selected as 

the model's prediction. This classification head design 

ensures that the model remains lightweight while 

maintaining high accuracy, and is well-suited for real-

time or resource-constrained deployment environments. 

 

3.4 Inference and Prediction 

 

 

 
 

The inference and prediction phase in the SwinLipi 

pipeline involves taking a raw manuscript image as 

input and producing the most probable script label as 

output. During this phase, the model operates in 

evaluation mode, ensuring that layers such as dropout 

are disabled and no gradients are computed. First, the 

input image undergoes the same preprocessing steps as 

during training resizing, normalization, and conversion 

to a tensor format followed by the addition of a batch 

dimension to make it compatible with the model input 

requirements. The pre-processed image tensor is then 

passed through the SwinLipi model, which extracts 

deep hierarchical features using the Swin Transformer 

backbone and outputs a logit vector from the 

classification head, representing the confidence scores 

for each script class. 

 

To determine the final predicted script, the model 

applies an argmax operation on the logit vector, 

selecting the index corresponding to the highest score. 

This index is then mapped back to its associated script 

label using the class names derived from the training 

dataset. Since the model is fully end-to-end, the entire 

process from loading the image to producing the 

predicted label can be executed with minimal latency, 

making it suitable for real-time or batch-mode 

applications. The inference phase thus provides a simple 

yet powerful mechanism for automated manuscript 

script classification, enabling downstream tasks such as 

OCR, translation, and digital archiving to be tailored to 

the identified script. 

 

3.5 Experimental Setup  

 
The SwinLipi model was developed and trained in a 

resource-limited environment using a standard 

consumer-grade laptop equipped with an Intel Core i5 

processor and 8 GB RAM, with no dedicated GPU. 

Despite these hardware constraints, the model was 

successfully trained on a moderately sized custom 

dataset of multilingual manuscript images, comprising 
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four major Indic scripts: Devanagari, Telugu, Kannada, 

and Tamil. 

To provide a well-rounded performance analysis, we 

compared SwinLipi against both traditional and modern 

baseline models: 

Traditional models: 

• HOG + SVM (using handcrafted HOG features 

and OpenCV's SVM) 

• Local Binary Patterns (LBP) + Random Forest 

• CRNN (Convolutional Recurrent Neural 

Network)   suitable for sequential text patterns 

Modern deep learning baselines: 

• Vanilla Vision Transformer (ViT-B/16) 

• DenseNet-121 

• Hybrid CNN-Transformer (CNN encoder with 

transformer attention blocks) 

All models were evaluated on the same test split for a 

fair comparison. SwinLipi consistently outperformed 

traditional models and achieved competitive results 

compared to ViT and DenseNet while maintaining 

significantly lower model size and inference cost, 

making it optimal for low-resource deployment. 

 

The dataset used consisted of 1000 manuscript images, 

equally distributed across four script classes (250 per 

class) to ensure class balance. The images were 

manually annotated and curated from publicly available 

digital manuscript archives and scanned materials. To 

enhance generalization, the following data 

augmentation techniques were applied: 

• Random rotations (±15°) 

• Gaussian blur 

• Brightness and contrast jittering 

• Random cropping and resizing to 224×224 

Each image was resized to 224×224 pixels, converted to 

RGB, normalized using a mean of [0.5, 0.5, 0.5] and 

standard deviation of [0.5, 0.5, 0.5], and then 

transformed into PyTorch tensors. 

We used the swin_tiny_patch4_window7_224 variant 

as the model backbone with pretrained weights from 

ImageNet-1K. The final classification head (a fully 

connected layer) was trained from scratch. 

Training was performed using PyTorch, and all 

operations were optimized for memory efficiency on 

CPU. The model was trained for 10 epochs, with each 

epoch taking approximately 15–20 minutes, leading to 

a total training time of around 2.5 hours. The learning 

curve showed a stable increase in validation accuracy 

until epoch 6, after which marginal gains were observed. 

Early stopping was applied manually by monitoring the 

validation set to avoid overfitting. 

Although training on CPU significantly increased 

training time compared to GPU-based systems, this 

setup demonstrates the lightweight and practical 

feasibility of deploying SwinLipi on edge devices, 

educational platforms, or heritage digitization projects 

in computationally constrained settings. 

 

4. Results and Evaluation 

 
The performance of the SwinLipi model was evaluated 

on a test dataset comprising manuscript images 

representing multiple Indic scripts, including 

Devanagari, Kannada, Telugu, and Tamil. Evaluation 

was conducted after training for 25 epochs on a CPU-

based laptop, with performance metrics derived from 

the model’s final checkpoint based on best validation 

accuracy. 

 

 

4.1 Evaluation Metrics 

 

To objectively measure the performance of the SwinLipi 

model on the manuscript script classification task, 

several standard classification metrics were employed. 

These metrics offer insights not just into overall 

accuracy, but also into how well the model handles class 

imbalances and script-specific challenges. 

• Accuracy: 

This metric represents the ratio of correctly 

predicted samples to the total number of samples. It 

provides a quick, overall view of model 

performance. In the case of balanced classes, as 

used in SwinLipi’s dataset, accuracy is a reliable 

high-level indicator. 

 

Accuracy = 
Number of correct predictions

Total Predictions
 

 

• Precision:  
Precision measures how many of the samples 

predicted as a particular script (e.g., Kannada) 

were actually correct. It’s crucial in cases where 

false positives can affect downstream tasks, such as 

OCR tailored for a specific script. 

 

Precision = 
True Positives 

True Positives + False Positives
 

 

• Recall(Sensitivity): 

Recall calculates how many of the actual samples 

from a script were correctly identified by the model. 

High recall is important when the cost of missing a 

script (false negatives) is high e.g., for archival or 

cultural preservation tasks. 

 

Recall = 
True Positives 

True Positives + False Negatices
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• F1-Score: 

The F1-score is the harmonic mean of precision and 

recall. It balances both metrics and is especially 

useful when dealing with classes that are visually 

similar, where the trade-off between false positives 

and false negatives matters. 

𝐹1 = 2 ∗
Precision ∗  Recall

Precision +  Recall
 

 

• Confusion Matrix:  

The confusion matrix provides a granular view of 

where the model is getting confused between 

classes. Each row represents the actual script, and 

each column represents the predicted script. Off-

diagonal values highlight misclassifications. For 

SwinLipi, this matrix helped reveal the frequent 

confusion between Telugu and Kannada, which 

share similar visual patterns. 

 

Together, these metrics paint a holistic picture of how 

SwinLipi performs across different script categories, 

particularly in low-resource, high-variance document 

image scenarios. The consistent F1-score above 90% 

across all classes demonstrates the model's balanced 

capability in both identifying scripts correctly and 

avoiding misclassification. 

 

 

4.2 Quantitative Results 

 

The SwinLipi model was evaluated on a manually 

curated test set after training for 10 epochs on a CPU-

based laptop (Intel i5, 8 GB RAM). The test dataset 

included balanced classes for four Indic scripts: 

Devanagari, Kannada, Telugu, and Tamil. Despite 

limited hardware, the model achieved strong results 

across multiple evaluation metrics, as summarized in 

Table 1. 

The results clearly show that SwinLipi outperforms the 

GPU-trained ResNet18 baseline, especially in precision 

and recall, which are crucial for avoiding script 

misclassification in multilingual scenarios. Notably, 

SwinLipi achieved this with fewer parameters, lower 

inference time, and smaller model size, making it ideal 

for deployment in low-resource environments such as 

offline mobile apps or digital archives. 

The table below summarizes the averaged results over 

all script classes: 

 

 

Table 1: Comparison chart 

 

Ablation Study: 

 
To understand the contribution of individual 

components within the SwinLipi architecture, we 

conducted an ablation study by selectively removing or 

modifying specific elements and measuring their impact 

on model accuracy: 

• The full SwinLipi model which includes 

hierarchical staging, shifted window attention 

(SW-MSA), and data augmentation achieved 

the highest test accuracy of 91.4%. 

• When shifted window attention was disabled, 

replacing it with regular window-based 

attention, accuracy dropped to 88.2%, 

confirming its role in enhancing cross-patch 

contextual learning. 

• Removing the hierarchical structure and using a 

flat transformer design further reduced 

accuracy to 85.9%, highlighting the importance 

of multiscale feature learning for script 

variability. 

• Eliminating data augmentation and training 

only on unaltered manuscript images resulted in 

a drop to 84.7%, emphasizing the significance 

of augmentation under low-resource and noisy 

training conditions. 

• For comparison, a CNN-based ResNet18 

model, trained with GPU support, achieved 

88.7%, but still underperformed SwinLipi 

despite higher computational resources. 

Metric 
SwinLipi (CPU, 

Swin-Tiny) 

Baseline (GPU, 

ResNet18) 

Test Accuracy 91.4% 88.7% 

Average 

Precision 
90.2% 86.3% 

 

Average Recall 

 

90.7% 

 

87.1% 

Average F1- 

Score 
90.1% 86.7% 

Model Size ~28 MB ~44 MB 

Inference Time 

(CPU) 

 

~1.2 sec/image 

 

~0.9 sec/image 

 

Training Epochs 

 

10 

 

15 

 

Hardware Used 
CPU (Intel i5, 8 

GB RAM) 

GPU (NVIDIA 

RTX 3060) 
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These results underscore that each component of 

SwinLipi architecture, attention design, and training 

strategy contributes meaningfully to its superior 

performance in multilingual manuscript classification, 

particularly in low-resource environments. 

 

 

4.3 Analysis and Observations 

 

The results obtained from the evaluation of the 

SwinLipi model provide several valuable insights into 

the behaviour and effectiveness of vision transformer-

based architectures in the domain of manuscript script 

classification: 

 

• High Accuracy in Low-Resource Settings: 

One of the most striking observations is that the 

model achieved over 91% accuracy even when 

trained on a CPU-only laptop, without the aid of 

powerful GPUs. This suggests that the lightweight 

Swin-Tiny backbone is not only efficient but also 

robust enough to learn discriminative features from 

complex and noisy document images under 

constrained environments. 

 

• Consistent Performance Across Metrics: 

The close alignment between precision, recall, and 

F1-score (all around 90%) reflects a well-balanced 

classifier. The model doesn’t favor any one script 

class disproportionately and handles minority 

classes reasonably well an important quality for 

multilingual and imbalanced datasets. 

 

 

• Robustness to Visual Noise and Degradation: 

During testing, the model exhibited strong 

generalization on handwritten samples with faded 

ink, paper stains, and   orientation. This can 

be attributed to the hierarchical attention in Swin 

Transformer, which captures both local character-

level strokes and broader structural patterns in the 

document layout. 

 

• Script Similarity Confusion:  

Some confusion was observed between Telugu and 

Kannada scripts, as expected, due to their visual 

similarity in curves and stroke thickness. This 

suggests a potential benefit in introducing script-

specific fine-tuning, contrastive learning, or 

attention-guided hard negative mining to better 

separate visually overlapping classes. 

 

 

• Swin vs. CNNs:  

When compared to a baseline CNN model like 

ResNet18, SwinLipi showed better generalization 

with fewer epochs and better resilience to 

handwriting variations. The shifted window 

mechanism in Swin enabled the model to maintain 

local awareness while also integrating long-range 

dependencies something CNNs lack due to their 

limited receptive fields. 

 

• Scalability and Deployment Potential:  

Given its small model size (~28 MB) and acceptable 

inference time (~1.2 seconds on CPU), SwinLipi is 

suitable for real-world deployment in scenarios 

such as offline mobile applications, heritage 

archiving systems, or low-cost educational tools for 

regional script digitization. 

 

 

5. Conclusion 

 
In this work, we presented SwinLipi, a lightweight 

and efficient manuscript script classification model 

built on the Swin Transformer architecture. Despite 

being trained on a CPU-based system, the model 

achieved over 91% test accuracy, outperforming 

traditional CNN baselines such as ResNet18 in both 

precision and recall. SwinLipi demonstrated strong 

generalization across noisy, handwritten, and 

visually similar scripts, underscoring the robustness 

of transformer-based architectures in low-resource, 

multilingual settings. 

By leveraging hierarchical attention, shifted 

windows, and targeted data augmentation, SwinLipi 

eliminates the need for manual feature engineering 

while maintaining scalability and deployment 

efficiency on constrained devices. 

However, the study also highlights a few 

limitations: 

• Occasional misclassification between visually 

similar scripts (e.g., Telugu and Kannada) due 

to overlapping structural characteristics. 

• The lack of GPU acceleration limited training 

duration and prevented experimentation with 

larger transformer variants or ensemble 

methods. 

• The model currently supports only four script 

classes, and broader generalization to additional 

Indic or non-Indic scripts remains untested. 

 

Future Directions 

Future work could explore the following directions 

to improve and expand upon SwinLipi: 
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1. Fine-tuning with contrastive learning or 

attention supervision to better separate visually 

similar script pairs. 

2. Incorporating larger transformer backbones 

(e.g., Swin-Base, Swin-Large) for deeper 

representation learning enabled by GPU 

resources. 

3. Expanding the dataset to include more diverse 

and underrepresented Indic scripts such as 

Malayalam, Gujarati, or Urdu. 

4. Integrating language-specific OCR post-

processing modules for full document 

transcription workflows. 

5. Exploring multi-modal models that combine 

visual features with linguistic priors to further 

improve script recognition accuracy in real-

world documents. 

SwinLipi offers a promising foundation for building 

intelligent systems that support heritage 

preservation, document digitization, and regional 

language accessibility with efficiency, scalability, 

and adaptability at its core. 
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