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Abstract—Data security is paramount for modern businesses, and data 

loss can be catastrophic. Mirroring offers a solution by automatically 

creating a redundant copy of data, while also distributing read loads. 

While NVMe drives boast low individual failure rates, the probability of 

simultaneous failure in mirrored configurations becomes significantly 

lower, enhancing data re-silience. This project presents a novel approach 

for implementing RAID 1 in SPDK modules using LIBAIO. RAID 1 also 

known as mirroring, offers data redundancy by replicating data across 

multiple NVMe Devices, thereby enhancing fault tolerance and data 

availability. SPDK provides a framework for building high-performance, 

user-space storage applications while LIBAIO of-fers asynchronous I/O 

handling capabilities enabling this process to be nonblocking. In our 

proposed solution, we leverage SPDK’s BDev modules which are 

workers for performing IO operations, and build our virtual-Bdev 

module. By integrating these technolo-gies, we achieve a RAID 1 

implementation that optimizes data mirroring across multiple drives 

while minimizing overhead. We discuss the implementation details and 

performance evaluation of our RAID 1 solution in terms of scalability. 

Overall, our work showcases the synergy between SPDK and LIBAIO in 

building high-performance RAID 1 systems, offering insights for future 

developments in storage technologies and data protection mechanisms. 
 

Index Terms—IO URING, LIBIO, IO-Engines, Storage Per-
formance Development Kit.  
 

I. INTRODUCTION 
 

The advancement of Non-Volatile Memory(NVM) a Solid State 

Drive(SSD) technology has significantly enhanced the storage 

effectiveness and data storage capabilities [4,5]. De-spite the 

remarkable performance gains offered by Solid-State Drives (SSDs), 

fault tolerance is still a challenge [5,7], limiting their full potential. 

This paper investigates three key solutions to address storage 

performance limitations: RAID 1 for data redundancy, libaio for 

asynchronous I/O, and SPDK for high-performance storage access.  
Data storage demands are continuously evolving, necessitat-ing 

solutions that optimize performance, power efficiency, and 

 
 
 
reliability. Redundant Arrays of Independent Disks (RAID) 

technology has emerged as a powerful approach, offering 

significant advantages over traditional single-disk storage. 

RAID configurations can concurrently achieve increased per-

formance, reduced power consumption, and enhanced fault 

tolerance [3].  
Redundant Array of Independent Disks (RAID) 1, also known 

as mirroring, utilizes a data storage configuration that prioritizes 

data security. This approach achieves fault tolerance by 

duplicating data entirely across multiple physical disks. In the 

event of a single disk failure, the remaining mirrored disk(s) 

maintain an identical copy of the data, guaranteeing uninterrupted 

system operation [4].  
While write operations in RAID 1 may incur a slight 

performance penalty due to the simultaneous write process 

across all mirrored disks, read performance demonstrably 

improves. This enhancement stems from the ability to access 

data concurrently from multiple mirrored drives within the 

array [4].  
The primary advantages of RAID 1 lie in its inherent 

simplicity and exceptional fault tolerance capabilities. The loss of 

a single mirrored disk does not cause system disruption, provided 

at least one functional disk remains operational. However, a 

notable drawback of RAID 1 is the reduction in usable storage 

capacity for applications [4].  
The calculation of usable storage space within a RAID 1 

configuration is uncomplicated: The total available storage 

capacity is determined by multiplying the number of mirrored 

arrays by the individual disk capacity.  
One notable project that aims to transform how we interact with 

Non-Volatile Memory Express (NVMe) devices is the Storage 

Performance Development Kit (SPDK). It provides a high-

performance, user-space driver designed exclusively for solid-state 

drives (SSDs) based on NVMe technology, enabling notable 

performance improvements and resolving is- 
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   TABLE I 
 

 BENCHMARK ENVIRONMENT SETUP 
 

    
 

CPU 
Intel(R) Core(TM) i7-9750H CPU @2.60GHz, Hyper- 

 

threading disabled  

 
 

    
 

Memory 16GB, DDR4 
 

    
 

Storage 
256GB NVMe SSD, 

 

SKHynix HFS256GD9TNG-L3A0B  

 
 

      
 

OS 

 
 
Arch Linux, x86 64, 6.7.0-arch3-1  
 

SPDK 
 
v24.01  
 

 

sues frequently found in kernel-based solutions. Asynchronous 

operations, lockless NVMe driver, and zero-copy are supported 

by the user-space driver [6, 9]. It has been shown in nu-merous 

studies that user-space drivers based on the Storage Performance 

Development Kit (SPDK) outperform kernel-based alternatives 

such as libaio and io-uring, especially when dealing with a 

variety of system workloads [1,2]. Additionally, SPDK provides 

a flexible block device layer that abstracts underlying storage 

devices so that programs can effectively communicate with them 

and take advantage of their full capabilities.  
Asynchronous I/O is supported by various mechanisms offered 

by the Linux kernel and its libraries. Libaio is one of the first and 

most renowned libraries. It provided one of the first storage 

device-specific asynchronous APIs when it was first introduced 

in kernel version 2.6 [8]. Two essential system calls provided by 

libaio are io submit and io getevents. By avoiding the system’s 

I/O cache, these calls allow non-blocking, unbuffered I/O (O 

DIRECT flag), potentially yield-ing large performance gains [1]. 
 

II. PROBLEM STATEMENT 
 

While software-defined storage solutions like SPDK with libaio 

offer enhanced storage performance and flexibility, they often lack 

inherent data redundancy mechanisms. This reliance on single disk 

storage creates a vulnerability: a hardware failure can lead to 

complete data loss, causing significant downtime and potential data 

recovery efforts. This is par-ticularly problematic for performance-

sensitive applications where data integrity and continuous operation 

are paramount. Traditional RAID solutions, while offering data 

redundancy, may introduce additional overhead that can negate the 

per-formance. Therefore, there exists a need for a data mirroring 

solution within the SPDK framework that leverages libaio’s 

capabilities to deliver both exceptional performance and robust fault 

tolerance for mission-critical storage deployments. 
 

III. PERFORMANCE EVALUATION 
 

The experiment tests how fast the RAID1 virtual block 

device can perform random reads and writes under different 

workload conditions (number of simultaneous requests). The 

chosen tool (bdevperf) [10] and fixed block size (4096) ensure 

consistent testing environment. 

 
 

 
Fig. 1.  Queue depth vs IOPS (randread) 

 

 
Our investigation into the performance of a RAID1 vir-tual block 

device under a random read workload revealed a significant positive 

correlation between queue depth and IOPS (Input/Output Operations 

Per Second). Notably, a queue depth of 2 resulted in a remarkable 

94% increase in IOPS, followed by a further 71% improvement at a 

queue depth of  
4. Interestingly, IOPS gains became progressively smaller 

with further increases in queue depth.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2.  Queue depth vs average latency (randread) 

 
Figure 2 presents a bar graph illustrating the relationship 

between latency and queue depth. Lower latency values signify 

better performance. The graph reveals a critical threshold for 

queue depth’s impact on latency.  
While queue depths of 1, 2, and 4 exhibit minimal latency 

variations, averaging around 29 microseconds, a significant 

increase is observed at higher depths. Notably, a queue depth of 

64 results in a latency increase of approximately 294% compared 

to the baseline. 
Figure 3 depicts the IOPS performance for the randwrite I/O pattern, 

exhibiting a distinct contrast to the randread workload observed in Figure 

1. Unlike randread, where increasing queue depth resulted in a notable 

IOPS increase, the randwrite workload displays a plateau effect. Notably, 

IOPS values 
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Fig. 3.  Queue depth vs IOPS (randwrite) 
 

 

remain relatively constant at approximately 40,000 across all queue 

depths. Conversely, deeper queues negatively impact performance in 

the randwrite scenario. The most significant degradation occurs at a 

queue depth of 64, with a 31% decrease in IOPS compared to the 

baseline. A further decrease of 24% is observed at a queue depth of 

128. This phenomenon may be attributed to resource contention 

arising from the management of multiple queues. Additionally, the 

range of IOPS values for the randwrite workload is demonstrably 

narrower compared to the randread counterpart. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.  Queue depth vs average latency (randwrite) 

 

Figure 4 depicts the impact of queue depth on latency for 

random-write I/O operations. The data demonstrates a 

substantial increase in block device latency with increasing 

queue depth. At a queue depth of 1 latency is minimal, aver-

aging approximately 25 microseconds. However, a significant 

rise is observed for deeper queues, with latency reaching 5611 

microseconds at a queue depth of 128. This represents a 

notable increase of approximately 623% compared to the 

baseline value. Interestingly, queue depths of 1, 2, and 4 

exhibit minimal variation in latency, averaging around 45 

microseconds. 
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V. CONCLUSION 
 

In conclusion, while traditional storage systems offer sim-plicity 

and affordability, they lack data redundancy. Our imple-mentation of 

RAID1 in SPDK using libaio offers a compelling solution for 

enhancing data reliability and performance in storage systems. 

Throughout this paper, we have explored the intricacies of 

integrating SPDK’s efficient asynchronous I/O framework with 

libaio’s kernel-level asynchronous I/O capa-bilities to achieve robust 

RAID1 setup. By leveraging SPDK’s user-space design and libaio’s 

efficient I/O handling, our implementation demonstrates significant 

improvements in data throughput and latency, essential for modern 

data-intensive applications. RAID1 configuration using AIO bdevs 

provides redundancy and fault tolerance, mitigating the risk of data 

loss due to hardware failures. Moreover, our study has highlighted 

the versatility and scalability of RAID1 implementation in SPDK 

using libaio, offering flexibility for deployment in vari-ous storage 

architectures and environments. Whether deployed in enterprise-

grade storage systems or cloud infrastructures, our solution ensures 

data integrity while optimizing resource utilization. In essence, this 

paper underscore the significance of RAID1 implementation in 

SPDK using libaio as a crucial step towards achieving reliable and 

high-performance storage solutions, poised to address the challenges 

of modern data management effectively. Through our exploration 

and imple-mentation. 
 

VI. FUTURE SCOPE 
 

The current focus on real-time mirroring can be comple-mented 

by snapshot functionality. This would allow capturing data states at 

specific points in time, enabling data rollback and version control. 

This additional layer of data protection would facilitate easier 

disaster recovery and cater to use cases requiring specific data 

versions. While RAID 1 offers excellent fault tolerance, its storage 

utilization is limited. Future research could investigate the feasibility 

of integrating RAID 10 within the SPDK framework. RAID 10 

combines mirroring (RAID 1) with striping (RAID 0) across multiple 

disk sets. This configuration offers a balance between redun-dancy 

and improved storage efficiency compared to RAID 1  
[11]. Evaluating the performance implications and potential 

benefits of incorporating RAID 10 would be a valuable area 

for future exploration. 

These advancements would extend the applicability of the 

proposed solution to a wider range of storage scenarios de-

manding both high performance and robust data protection 

with improved storage efficiency. 
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