
Implementation of mirroring (RAID1) in SPDK

with LIBAIO io-engine

Gaurav Chawda, Gauri Vijaykar, Yash Kalavadiya, Siddhesh Kotkar

Student
Dept. of Computer Technology

PICT, Pune

Dr. Girish Potdar

Associate Professor
Dept. of Computer Technology

PICT, Pune

Abstract—Data security is paramount for modern businesses, and data

loss can be catastrophic. Mirroring offers a solution by automatically

creating a redundant copy of data, while also distributing read loads.

While NVMe drives boast low individual failure rates, the probability of

simultaneous failure in mirrored configurations becomes significantly

lower, enhancing data re-silience. This project presents a novel approach

for implementing RAID 1 in SPDK modules using LIBAIO. RAID 1 also

known as mirroring, offers data redundancy by replicating data across

multiple NVMe Devices, thereby enhancing fault tolerance and data

availability. SPDK provides a framework for building high-performance,

user-space storage applications while LIBAIO of-fers asynchronous I/O

handling capabilities enabling this process to be nonblocking. In our

proposed solution, we leverage SPDK’s BDev modules which are

workers for performing IO operations, and build our virtual-Bdev

module. By integrating these technolo-gies, we achieve a RAID 1

implementation that optimizes data mirroring across multiple drives

while minimizing overhead. We discuss the implementation details and

performance evaluation of our RAID 1 solution in terms of scalability.

Overall, our work showcases the synergy between SPDK and LIBAIO in

building high-performance RAID 1 systems, offering insights for future

developments in storage technologies and data protection mechanisms.

Index Terms—IO URING, LIBIO, IO-Engines, Storage Per-
formance Development Kit.

I. INTRODUCTION

The advancement of Non-Volatile Memory(NVM) a Solid State

Drive(SSD) technology has significantly enhanced the storage

effectiveness and data storage capabilities [4,5]. De-spite the

remarkable performance gains offered by Solid-State Drives (SSDs),

fault tolerance is still a challenge [5,7], limiting their full potential.

This paper investigates three key solutions to address storage

performance limitations: RAID 1 for data redundancy, libaio for

asynchronous I/O, and SPDK for high-performance storage access.
Data storage demands are continuously evolving, necessitat-ing

solutions that optimize performance, power efficiency, and

reliability. Redundant Arrays of Independent Disks (RAID)

technology has emerged as a powerful approach, offering

significant advantages over traditional single-disk storage.

RAID configurations can concurrently achieve increased per-

formance, reduced power consumption, and enhanced fault

tolerance [3].
Redundant Array of Independent Disks (RAID) 1, also known

as mirroring, utilizes a data storage configuration that prioritizes

data security. This approach achieves fault tolerance by

duplicating data entirely across multiple physical disks. In the

event of a single disk failure, the remaining mirrored disk(s)

maintain an identical copy of the data, guaranteeing uninterrupted

system operation [4].
While write operations in RAID 1 may incur a slight

performance penalty due to the simultaneous write process

across all mirrored disks, read performance demonstrably

improves. This enhancement stems from the ability to access

data concurrently from multiple mirrored drives within the

array [4].
The primary advantages of RAID 1 lie in its inherent

simplicity and exceptional fault tolerance capabilities. The loss of

a single mirrored disk does not cause system disruption, provided

at least one functional disk remains operational. However, a

notable drawback of RAID 1 is the reduction in usable storage

capacity for applications [4].
The calculation of usable storage space within a RAID 1

configuration is uncomplicated: The total available storage

capacity is determined by multiplying the number of mirrored

arrays by the individual disk capacity.
One notable project that aims to transform how we interact with

Non-Volatile Memory Express (NVMe) devices is the Storage

Performance Development Kit (SPDK). It provides a high-

performance, user-space driver designed exclusively for solid-state

drives (SSDs) based on NVMe technology, enabling notable

performance improvements and resolving is-

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 24 ISSUE 6 2024

Page No: 128

 TABLE I

 BENCHMARK ENVIRONMENT SETUP

CPU
Intel(R) Core(TM) i7-9750H CPU @2.60GHz, Hyper-

threading disabled

Memory 16GB, DDR4

Storage
256GB NVMe SSD,

SKHynix HFS256GD9TNG-L3A0B

OS

Arch Linux, x86 64, 6.7.0-arch3-1

SPDK

v24.01

sues frequently found in kernel-based solutions. Asynchronous

operations, lockless NVMe driver, and zero-copy are supported

by the user-space driver [6, 9]. It has been shown in nu-merous

studies that user-space drivers based on the Storage Performance

Development Kit (SPDK) outperform kernel-based alternatives

such as libaio and io-uring, especially when dealing with a

variety of system workloads [1,2]. Additionally, SPDK provides

a flexible block device layer that abstracts underlying storage

devices so that programs can effectively communicate with them

and take advantage of their full capabilities.
Asynchronous I/O is supported by various mechanisms offered

by the Linux kernel and its libraries. Libaio is one of the first and

most renowned libraries. It provided one of the first storage

device-specific asynchronous APIs when it was first introduced

in kernel version 2.6 [8]. Two essential system calls provided by

libaio are io submit and io getevents. By avoiding the system’s

I/O cache, these calls allow non-blocking, unbuffered I/O (O

DIRECT flag), potentially yield-ing large performance gains [1].

II. PROBLEM STATEMENT

While software-defined storage solutions like SPDK with libaio

offer enhanced storage performance and flexibility, they often lack

inherent data redundancy mechanisms. This reliance on single disk

storage creates a vulnerability: a hardware failure can lead to

complete data loss, causing significant downtime and potential data

recovery efforts. This is par-ticularly problematic for performance-

sensitive applications where data integrity and continuous operation

are paramount. Traditional RAID solutions, while offering data

redundancy, may introduce additional overhead that can negate the

per-formance. Therefore, there exists a need for a data mirroring

solution within the SPDK framework that leverages libaio’s

capabilities to deliver both exceptional performance and robust fault

tolerance for mission-critical storage deployments.

III. PERFORMANCE EVALUATION

The experiment tests how fast the RAID1 virtual block

device can perform random reads and writes under different

workload conditions (number of simultaneous requests). The

chosen tool (bdevperf) [10] and fixed block size (4096) ensure

consistent testing environment.

Fig. 1. Queue depth vs IOPS (randread)

Our investigation into the performance of a RAID1 vir-tual block

device under a random read workload revealed a significant positive

correlation between queue depth and IOPS (Input/Output Operations

Per Second). Notably, a queue depth of 2 resulted in a remarkable

94% increase in IOPS, followed by a further 71% improvement at a

queue depth of
4. Interestingly, IOPS gains became progressively smaller

with further increases in queue depth.

Fig. 2. Queue depth vs average latency (randread)

Figure 2 presents a bar graph illustrating the relationship

between latency and queue depth. Lower latency values signify

better performance. The graph reveals a critical threshold for

queue depth’s impact on latency.
While queue depths of 1, 2, and 4 exhibit minimal latency

variations, averaging around 29 microseconds, a significant

increase is observed at higher depths. Notably, a queue depth of

64 results in a latency increase of approximately 294% compared

to the baseline.
Figure 3 depicts the IOPS performance for the randwrite I/O pattern,

exhibiting a distinct contrast to the randread workload observed in Figure

1. Unlike randread, where increasing queue depth resulted in a notable

IOPS increase, the randwrite workload displays a plateau effect. Notably,

IOPS values

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 24 ISSUE 6 2024

Page No: 129

Fig. 3. Queue depth vs IOPS (randwrite)

remain relatively constant at approximately 40,000 across all queue

depths. Conversely, deeper queues negatively impact performance in

the randwrite scenario. The most significant degradation occurs at a

queue depth of 64, with a 31% decrease in IOPS compared to the

baseline. A further decrease of 24% is observed at a queue depth of

128. This phenomenon may be attributed to resource contention

arising from the management of multiple queues. Additionally, the

range of IOPS values for the randwrite workload is demonstrably

narrower compared to the randread counterpart.

Fig. 4. Queue depth vs average latency (randwrite)

Figure 4 depicts the impact of queue depth on latency for

random-write I/O operations. The data demonstrates a

substantial increase in block device latency with increasing

queue depth. At a queue depth of 1 latency is minimal, aver-

aging approximately 25 microseconds. However, a significant

rise is observed for deeper queues, with latency reaching 5611

microseconds at a queue depth of 128. This represents a

notable increase of approximately 623% compared to the

baseline value. Interestingly, queue depths of 1, 2, and 4

exhibit minimal variation in latency, averaging around 45

microseconds.

IV. ACKNOWLEDGEMENTS

We would like to extend my sincere gratitude to Dr. Girish P.

Potdar, our esteemed project guide, for his invaluable mentorship,

guidance, and unwavering support throughout the development of

this project. His expertise and encouragement played a pivotal

role in shaping our approach and achieving successful outcomes.

V. CONCLUSION

In conclusion, while traditional storage systems offer sim-plicity

and affordability, they lack data redundancy. Our imple-mentation of

RAID1 in SPDK using libaio offers a compelling solution for

enhancing data reliability and performance in storage systems.

Throughout this paper, we have explored the intricacies of

integrating SPDK’s efficient asynchronous I/O framework with

libaio’s kernel-level asynchronous I/O capa-bilities to achieve robust

RAID1 setup. By leveraging SPDK’s user-space design and libaio’s

efficient I/O handling, our implementation demonstrates significant

improvements in data throughput and latency, essential for modern

data-intensive applications. RAID1 configuration using AIO bdevs

provides redundancy and fault tolerance, mitigating the risk of data

loss due to hardware failures. Moreover, our study has highlighted

the versatility and scalability of RAID1 implementation in SPDK

using libaio, offering flexibility for deployment in vari-ous storage

architectures and environments. Whether deployed in enterprise-

grade storage systems or cloud infrastructures, our solution ensures

data integrity while optimizing resource utilization. In essence, this

paper underscore the significance of RAID1 implementation in

SPDK using libaio as a crucial step towards achieving reliable and

high-performance storage solutions, poised to address the challenges

of modern data management effectively. Through our exploration

and imple-mentation.

VI. FUTURE SCOPE

The current focus on real-time mirroring can be comple-mented

by snapshot functionality. This would allow capturing data states at

specific points in time, enabling data rollback and version control.

This additional layer of data protection would facilitate easier

disaster recovery and cater to use cases requiring specific data

versions. While RAID 1 offers excellent fault tolerance, its storage

utilization is limited. Future research could investigate the feasibility

of integrating RAID 10 within the SPDK framework. RAID 10

combines mirroring (RAID 1) with striping (RAID 0) across multiple

disk sets. This configuration offers a balance between redun-dancy

and improved storage efficiency compared to RAID 1
[11]. Evaluating the performance implications and potential

benefits of incorporating RAID 10 would be a valuable area

for future exploration.

These advancements would extend the applicability of the

proposed solution to a wider range of storage scenarios de-

manding both high performance and robust data protection

with improved storage efficiency.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 24 ISSUE 6 2024

Page No: 130

REFERENCES

[1] Diego Didona, Jonas Pfefferle, Nikolas Ioannou, Bernard Metzler, and

Animesh Trivedi. 2022. Understanding modern storage APIs: a system-atic

study of LIBAIO, SPDK, and IO-Uring. In Proceedings of the 15th ACM

International Conference on Systems and Storage (SYSTOR ’22).

Association for Computing Machinery, New York, NY, USA, 120–127. doi:

10.1145/3534056.3534945

[2] Zebin Ren and Animesh Trivedi. 2023. Performance Characterization of
Modern Storage Stacks: POSIX I/O, libaio, SPDK, and io uring. In
Proceedings of the 3rd Workshop on Challenges and Opportunities of
Efficient and Performant Storage Systems (CHEOPS ’23). Association
for Computing Machinery, New York, NY, USA, 35–45. doi:
10.1145/3578353.3589545

[3] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and

David A. Patterson. 1994. RAID: high-performance, reliable secondary

storage. ACM Comput. Surv. 26, 2 (June 1994), 145–185.
https://doi.org/10.1145/176979.176981

[4] Chen, S. and Towsley, D., 1996. A performance evaluation of RAID architectures.

IEEE Transactions on computers, 45(10), pp.1116-1130

[5] Gabriel Haas and Viktor Leis. 2023. What Modern NVMe Storage Can
Do, and How to Exploit it: High-Performance I/O for High-Performance

Storage Engines. Proc. VLDB Endow. 16, 9 (May 2023), 2090–2102.

doi: 10.14778/3598581.3598584

[6] Z. Yang et al., ”SPDK: A Development Kit to Build High Performance

Storage Applications,” 2017 IEEE International Conference on Cloud

Computing Technology and Science (CloudCom), Hong Kong, China, 2017,

pp. 154-161, doi: 10.1109/CloudCom.2017.14.

[7] Youngjin Yu, Dongin Shin, Woong Shin, Nae Young Song, Jae-Woo

Choi, Hyeong Seog Kim, Hyeonsang Eom, and Heon Young Yeom.
2014. Optimizing the Block I/O Subsystem for Fast Storage Devices.
ACM Trans. Comput. Syst. 32, 2 (2014), 6:1–6:48. doi: 10.

1145/2619092

[8] Benjamin Block. “An Introduction to the Linux Kernel Block I/O Stack”

https://chemnitzer.linux-tage.de/2021/media/programm/folien/165.pdf

(accessed Feb 15, 2024).

[9] SPDK. ”Block Device User Guide” https://spdk.io/doc/bdev.html

(accessed Feb 15, 2024).

[10] Karol Latecki. ”SPDK NVMe BDEV Performance Report

Release 21.01” https://ci.spdk.io/download/performance-
reports/SPDK nvme bdev perf report 2101.pdf (accessed Feb 15,

2024)

[11] Jin, H. and Hwang, K., 2000. Stripped mirroring RAID architecture.

Journal of systems architecture, 46(6), pp.543-550.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 24 ISSUE 6 2024

Page No: 131

