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Abstract

With the recent technological advancements, the availability and abundance of
educational courses are innumerable. The surplus number of recommender systems
though efficient may not produce recommendations in optimal time or use optimal
number of resources. Our paper focuses on the application of transfer learning on time
series data in order to produce accurate recommendations in optimal time and ensure
optimal utilization of resources. Four different multivariate machine learning models,
all used for unique applications on time series data are evaluated based on prediction
and time complexity. The pre-trained models are trained on the desired educational
dataset and outputs after applying transfer learning are compared with each other
based on metrics like precision,time and space complexity,resource utilization, RMSE
and MAE values. The goal is to identify the merits of transfer learning for time series
forecasting using pre-trained models to conclude that application of transfer learning
aids in reducing time complexity and resource utilization.

Multivariate.Recommender.Timeseries.Pretrained.Forecasting

1 Introduction

Recommender systems for education have in the past few years surfaced as fundamental fa-
cilitators of customized learning, placing content custom-designed to address the needs and
preferences of each learner before learners and educators. Based on analysis of users’ actions,
course records, and usage trends, educational recommender systems seek to maximize learn-
ing as well as overall performance. But since there are numerous resources to go through, so
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too can confuse a student, and it becomes difficult in terms of selecting the most pertinent
content. Tailored suggestions overcome this challenge by leading students to material that
is appropriate to their individual learning paths.

While traditional recommender systems are used with benefits, they are confronted with
strong challenges, namely sparsity of data and fluctuations in learning settings. The vast
majority of students only use a limited number of resources, and thus the data is lacking
to make meaningful recommendations—a so-called cold-start issue. Moreover, static rec-
ommendation models will become worse as the learning content and student needs change
over time. These problems point toward more adaptive and data-sparse recommendation
techniques.

Transfer learning has been found to be an effective solution to mitigate these drawbacks
by leveraging knowledge from related tasks or domains to enhance performance in low-data
environments. Transfer learning for education recommender systems helps models draw
on patterns learned under big datasets, even across different domains, and use them in
specific education contexts. This approach enables the system to produce more accurate
recommendations with less input from the user. Besides, transfer learning can improve
computational efficiency by reducing training time and resource usage because models would
be fine-tuned for new tasks without needing to be trained anew. By applying transfer
learning, education recommender systems can both resolve the issue of data sparsity, and
offer more personalized recommendations to satisfy learners’ and instructors’ diverse and
dynamic needs.

2 Related Works

Recent development in recommender systems has widely utilized methods like transfer learn-
ing, clustering, time series analysis, and dynamic graph neural networks to enhance recom-
mendation accuracy, handle data sparsity, and accommodate changing user preference.

Fang [4] investigates the use of transfer learning in recommendation systems, proposing
an architecture that transfers knowledge from pre-trained neural networks to new domains.
By transferring learned representation and fine-tuning on target recommendation tasks, the
approach significantly reduces training time while enhancing the performance of prediction.
The study demonstrates that transfer learning is particularly valuable where labeled data
are scarce or expensive to obtain.

Khalid et al. [5] introduce NoR-MOOCs, a new recommendation algorithm particularly
tailored for Massive Open Online Courses (MOOCs). The approach applies hypersphere
clustering to model users and courses as points in high-dimensional space so that similarity
grouping can be done effectively. For similarity estimation, the study estimates metrics
such as PCC, PCCDV, and VCCDV, considering VCCDV as being the most successful at
reducing prediction errors. The approach proves highly resistant to sparsity and cold-start
problems, which are often encountered in online learning platforms.

Weber et al. [8] provide an overview of transfer learning approaches in time series across
domains such as finance and healthcare. They classify methods as model-based (pre-training,
fine-tuning) and feature-based (domain adversarial training), indicating model-based ap-
proaches function better with large domain shifts, whereas feature-based are appropriate for
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aligned feature spaces. These observations inform the development of recommender systems
that manage varied temporal data.

Zhang et al. [11] resolve the shortcomings of static user-item interaction modeling
by proposing a Dynamic Graph Neural Network for Sequential Recommendation (DGSR).
DGSR builds time-varying graphs based on the users’ interactions and their preferences. By
dynamically sampling the subgraphs and extracting both of their short-term and long-term
relations, DGSR enhances the forecasting of future interactions. Experimental evaluations
on multiple datasets confirm its dominance over common sequential models and emphasize
the necessity of unifying temporal and structural dynamics within recommendation systems.

Yuan et al. [10] introduced PeterRec, a parameter-effective architecture based on trans-
fer learning from sequential user behavior data for downstream recommendation tasks. The
model eschews full fine-tuning by adding a modular structure enabling knowledge reuse,
which greatly enhances computational efficiency and recommendation precision. This paper
underscores the necessity of effective transfer learning strategies in large-scale recommenda-
tion scenarios.

Quadrana et al. [6] introduced a Hierarchical Recurrent Neural Network (HRNN) model
that is able to capture both short- and long-term user interests in session-based recommen-
dation settings. By transferring latent user states across sessions, the model is capable of
producing personalized predictions with maintained temporal coherence. The work empha-
sizes the ability of hierarchical RNNs to encode dynamic user behavior for recommendation
tasks.

Biadsy et al. [1] introduce a tree matching approach to cross-domain recommenda-
tion, modeling user preferences as hierarchical trees to discover similarity in behavior. This
method effectively transfers knowledge between data-rich and data-poor domains, particu-
larly beneficial in situations where user interaction is low, and performs better than many
standard cross-domain approaches for content-based recommenders.

Fang and Zhan [3] conduct sentiment analysis of product reviews to enhance recommen-
dation systems through the integration of user opinion. They use text mining and supervised
learning methods to identify sentiment patterns that can be used to enhance user preference
modeling. This is especially applicable when explicit user feedback is limited, enabling more
personalized and relevant recommendations through sentiment-driven signals.

Xia et al. [9] introduced TransAct, a Transformer-powered real-time user action model
specifically designed for recommendation systems at scale. The architecture encodes fine-
grained sequences of user behavior e.g., clicks, views, and others down to both short and
long term dependencies in user interactions. Differently from standard RNN or CNN-based
models, TransAct provides a joint and temporally-aware architecture that enhances accu-
racy and personalization. In addition, it is also optimized for low-latency inference to suit
platforms of large scale such as Pinterest where real-time recommendations play a vital role.

Fang and Yuan [2] explore methods for enhancing deep learning models for time series
forecasting. They emphasize architectural enhancements, preprocessing techniques, and reg-
ularization techniques such as dropout and batch normalization. Their method provides
higher forecasting accuracy and provides insights beneficial for temporal recommendation
systems.

In another avenue of related work, Soĺıs and Calvo-Valverde [7] evaluated the use of deep
learning models such as LSTM and Temporal Convolutional Networks (TCN) for multi-
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step-ahead prediction with monthly time series. Their study shows how transfer learning
enhances forecasting performance significantly, particularly when employed in models with
complex temporal dependencies. These findings validate the use of transfer learning to
improve temporal predictive quality, which is also crucial in the sequential recommendation
system domain.

3 Proposed System

3.1 Overview

Recommender systems are very essential in personalized learning, as they facilitate learners
to identify relevant courses of interest based on their interests and past interactions. Most
conventional recommendation models suffer from limited domain adaptation, which requires
intensive training per dataset. In a bid to address this limitation, we propose a strong
education recommendation system based on transfer learning to improve recommendation
performance. Through using pre-trained models and fine-tuning them on a wide range of
datasets, our model achieves even better generalization as well as cross-domain flexibility
and adaptability.

3.2 System Architecture

The system proposed herein has the following main components:

3.2.1 Dataset Processing

We use five datasets, Netflix, Goodreads, ML1M, COCO and Beauty, each of which has the
following fields:

• Learner ID: A distinctive learner ID for individual learners (as with user ID in recom-
mendation systems).

• Course ID: A distinct course ID (as with item ID in traditional recommender systems).

• Learner rating: A numeric value for the learner rating of a course.

Since the above-mentioned datasets originate from different domains, pre-processing steps
are performed in order to standardize the data, including:

• Normalization of the rating values for consistency.

• Handling missing values using interpolation or imputation techniques.

• Encoding categorical variables, and ensuring compatibility across different datasets.
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3.2.2 Pre-trained Model Selection and Transfer Learning

Input Data

• The system uses multiple datasets, including:

1. Beauty

2. Goodreads

3. Coco

4. Netflix

5. Ml1M

• Each dataset contains approximately 2500 rows.

• The datasets are split into:

– 80% for training

– 20% for testing

Model Selection and Preprocessing

• Four pre-trained models are used:

– LSTM: For time-series predictions [employee salary and house price predictions].

– Fully Connected Neural Network (FNN): For air quality index prediction.

– MLP: For house price prediction.

• Preprocessing steps include:

– Standardizing the datasets.

– Scaling the datasets to ensure compatibility with the models.

Transfer Learning Application

• Transfer learning is applied by:

– Freezing all but the last layer of the pre-trained models.

– Fine-tuning the models on the target dataset to adapt them to new educational
recommendation data.

• This significantly reduces:

– The time/step required for training and testing.
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3.2.3 Model Training and Evaluation

The fine-tuned models are trained using collaborative filtering and deep learning techniques.
To assess their efficiency, we use the following performance metrics:

• Root Mean Squared Error (RMSE): Measures the average prediction error.

• Mean Absolute Error (MAE): Evaluates the absolute difference between predicted and
actual ratings.

• Time/step (Computation Efficiency): average time taken to process each training step
during model execution

1. Baseline Evaluation:

(a) The models are first run on the target datasets without transfer learning.

(b) RMSE, MAE, and time/step values are recorded for comparison.

2. Transfer Learning Application:

(a) The pre-trained models are fine-tuned using transfer learning.

(b) The performance is re-evaluated using the same metrics.

3. Comparison and Analysis:

(a) The system compares the RMSE, MAE, and time/step values before and after
transfer learning.

(b) Graphical visualizations are used to demonstrate performance improvements.

3.2.4 Course Recommendation Generation

After the fine-tuning process, the system generates personalized recommendations for users
based on their previous interactions, ensuring a more effective and adaptive learning experi-
ence.

3.3 Advantages of the Proposed System

The proposed system offers several advantages:

• Improved Accuracy: Transfer learning improves model performance across various
datasets.

• Reduced Training Time: By leveraging pre-trained models, the system minimizes
the overall computational overhead.

• Cross-Domain Adaptability: The system generalizes well across different datasets.

• Scalability: The framework can be extended to accommodate additional datasets and
domains in the future.
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Algorithm 1 Transfer Learning Evaluation on acquired multiple Datasets

1: procedure Dataset Preparation
2: Collect datasets: Netflix, Goodreads, ML1M, COCO, Beauty
3: For each dataset:
4: Normalize rating values
5: Handle missing data (e.g., interpolation or mean imputation)
6: Encode categorical features (Learner ID, Course ID)
7: end procedure
8: procedure Model Selection
9: Select pre-trained models: LSTM-1, LSTM-2, FNN, MLP
10: end procedure
11: procedure Train-Test Split
12: For each dataset:
13: Split data into 80% training and 20% testing
14: end procedure
15: procedure Baseline Evaluation
16: for each model Mi in {LSTM-1, LSTM-2, FNN, MLP} do
17: Train Mi from scratch on the training data
18: Evaluate and record RMSE, MAE, and Time/Step
19: end for
20: end procedure
21: procedure Transfer Learning Fine-Tuning
22: for each model Mi in {LSTM-1, LSTM-2, FNN, MLP} do
23: Load pre-trained weights for Mi

24: Freeze all layers except the last
25: Replace the last layer to match target task
26: Train only the last layer on the training data
27: Evaluate and record RMSE, MAE, and Time/Step
28: end for
29: end procedure
30: procedure Performance Comparison
31: Compare RMSE, MAE, and Time/Step for each model:
32: Before and After Transfer Learning
33: Generate tables and graphs
34: Highlight improvements or degradations
35: end procedure

7

COMPUTER RESEARCH AND DEVELOPMENT  (ISSN NO:1000-1239)  VOLUME 25 ISSUE 6 2025

PAGE NO: 97



Educational Recommendation with Transfer Learning

Figure 1: LSTM

Figure 2: FNN
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Figure 3: MLP

4 RESULTS

The experimental results demonstrate the power of transfer learning in improving model per-
formance for educational recommender systems. There were four models—LSTM-1, LSTM-
2, FNN, and MLP—to be tested on five datasets with MAE, RMSE, and Time per Step as
metrics.

4.1 Performance Metrics

We tested three pre-trained models on each dataset both before and after transfer learning.
The metrics used for evaluation were:

1. Root Mean Squared Error (RMSE): Estimates the precision of estimated ratings by
penalizing big errors.

2. Mean Absolute Error (MAE): Quantifies the mean absolute difference between pre-
dicted and actual ratings.

3. Time per Step: Indicates the computational cost per step of training and inference of
each model.

4.2 Model Performance on Different Datasets

Transfer learning always decreased error rates and increased computational efficiency. The
table below summarizes the performance of different models in each dataset before and after
transfer learning. The figures shown in table demonstrate the effect of transfer learning on
various model architectures and datasets. On all models—LSTM-1, LSTM-2, FNN, and
MLP—transfer learning evidently boosted predictive accuracy and also cut down the infer-
ence time. For instance, on Dataset 1, the LSTM-1 model experienced a decrease in RMSE
from 0.8851 to 0.7301 and MAE from 0.884 to 0.7754 upon implementing transfer learning.
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Simultaneously, the time per step improved from 11ms to 2ms, indicating a significant en-
hancement in both efficiency and precision. A similar trend can be observed in Dataset 3,
where LSTM-1’s RMSE decreased from 1.721 to 1.2208, with a corresponding drop in MAE
from 1.2426 to 1.1910. These gains, although differing in scale between datasets, demon-
strate a clear benefit of taking advantage of pre-trained knowledge to speed up and optimize
learning in new tasks.

LSTM-2 also took a parallel trend, demonstrating consistent gains on all performance
metrics. On Dataset 4, RMSE declined from 1.15 to 1.00 and MAE decreased from 0.93
to 0.82, while the time per step decreased from 10ms to 5ms. Even in Dataset 5, where
originally it had a lower error, transfer learning was able to bring RMSE from 0.82 to 0.72
and MAE from 0.66 to 0.59, proving transfer learning’s efficiency even in both high-error and
low-error cases. FNN, being usually with higher inference times because of its feedforward
nature, also improved with transfer learning. In Dataset 5, FNN’s RMSE went from 0.78
to 0.64, and MAE went from 0.62 to 0.56. The computational time per step went from
737ms down to 659ms, which, while not nearly so extreme as that in the LSTM models, still
indicates a significant increase in model efficiency.

The MLP model also showed good results. For Dataset 1, the model’s RMSE was 0.96
and MAE was 0.79, which shifted to 0.96 and 0.78 respectively after transfer learning. Fur-
thermore, the time per step reduced from 847 ms to 491 ms. These improvements, though
proportionally smaller, accentuate the contribution of transfer learning to make even non-
sequential, less complex models better. Interestingly, in the case of high-error datasets such
as Dataset 3, MLP saw a dramatic RMSE reduction from 1.68 to 0.54 and MAE from 1.48
to 0.39, reaffirming that transfer learning has the greatest effect when early performance is
subpar.

Figures 6 to 9 also support these findings with graphical plots of RMSE, MAE, and time
per step prior to and following transfer learning. In Figure 6, the LSTM-1 model demon-
strates decreasing RMSE and MAE for all datasets, whereas the time per step decreases
sharply from about 10ms down to as little as 2ms in several instances. This graphically
highlights both accuracy and speed gains made with transfer learning. Figure 7 illustrates
the FNN model’s performance, whereby both the error measures and inference time exhibit
steady decreases. Although the FNN model had greater computational times compared to
the LSTMs, the post-transfer learning efficiency is clearly improved.

In Figure 8, the performance of the MLP model is shown, and although the reductions
in RMSE and MAE are moderate compared to LSTM models, the computational savings
are considerable. What this indicates is that transfer learning can be important even for
simple feedforward networks to optimize runtime. Figure 9 presents the LSTM-2 model’s
performance, with error metric improvements seen in all datasets, and time per step decreases
being amongst the deepest seen, particularly on Datasets 1 and 3.
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Table 1: Performance Metrics for LSTM-1, LSTM-2, FNN, and MLPModels Across Datasets

Dataset Before Transfer Learning After Transfer Learning

Dataset 1 LSTM-1: RMSE: 0.8851, MAE: 0.7301,
TIME/STEP: 11ms
LSTM-2: RMSE: 0.84, MAE: 0.65,
TIME/STEP: 10ms
FNN: RMSE: 0.97, MAE: 0.77, TIME/STEP:
656us
MLP: RMSE: 0.96, MAE: 0.79, TIME/STEP:
847us

LSTM-1: RMSE: 0.9876, MAE: 0.7754,
TIME/STEP: 3ms
LSTM-2: RMSE: 0.93, MAE: 0.74,
TIME/STEP: 2ms
FNN: RMSE: 0.97, MAE: 0.77, TIME/STEP:
509us
MLP: RMSE: 0.96, MAE: 0.78, TIME/STEP:
491us

Dataset 2 LSTM-1: RMSE: 0.3491, MAE: 0.2456,
TIME/STEP: 10ms
LSTM-2: RMSE: 0.63, MAE: 0.35,
TIME/STEP: 5ms
FNN: RMSE: 0.68, MAE: 0.34, TIME/STEP:
658us
MLP: RMSE: 0.37, MAE: 0.17, TIME/STEP:
526us

LSTM-1: RMSE: 0.5373, MAE: 0.4293,
TIME/STEP: 3ms
LSTM-2: RMSE: 0.73, MAE: 0.57,
TIME/STEP: 2ms
FNN: RMSE: 0.96, MAE: 0.70, TIME/STEP:
437us
MLP: RMSE: 0.41, MAE: 0.25, TIME/STEP:
536us

Dataset 3 LSTM-1: RMSE: 1.721, MAE: 1.42966,
TIME/STEP: 10ms
LSTM-2: RMSE: 0.97, MAE: 0.86,
TIME/STEP: 7ms
FNN: RMSE: 0.89, MAE: 0.76, TIME/STEP:
742us
MLP: RMSE: 1.68, MAE: 1.48, TIME/STEP:
860us

LSTM-1: RMSE: 2.0208, MAE: 1.9150,
TIME/STEP: 3ms
LSTM-2: RMSE: 0.98, MAE: 0.92,
TIME/STEP: 2ms
FNN: RMSE: 0.93, MAE: 0.83, TIME/STEP:
669us
MLP: RMSE: 0.54, MAE: 0.39, TIME/STEP:
417us

Dataset 4 LSTM-1: RMSE: 1.228, MAE: 1.021,
TIME/STEP: 11ms
LSTM-2: RMSE: 1.15, MAE: 0.93,
TIME/STEP: 6ms
FNN: RMSE: 0.97, MAE: 0.79, TIME/STEP:
617us
MLP: RMSE: 1.13, MAE: 0.95, TIME/STEP:
692us

LSTM-1: RMSE: 1.0461, MAE: 0.8397,
TIME/STEP: 3ms
LSTM-2: RMSE: 1.00, MAE: 0.83,
TIME/STEP: 2ms
FNN: RMSE: 1.02, MAE: 0.85, TIME/STEP:
556us
MLP: RMSE: 1.14, MAE: 0.95, TIME/STEP:
506us

Dataset 5 LSTM-1: RMSE: 1.0269, MAE: 0.822,
TIME/STEP: 10ms
LSTM-2: RMSE: 0.82, MAE: 0.66,
TIME/STEP: 7ms
FNN: RMSE: 0.78, MAE: 0.62, TIME/STEP:
737us
MLP: RMSE: 0.94, MAE: 0.71, TIME/STEP:
802us

LSTM-1: RMSE: 1.0865, MAE: 0.8981,
TIME/STEP: 3ms
LSTM-2: RMSE: 1.2, MAE: 1.06, TIME/STEP:
2ms
FNN: RMSE: 0.78, MAE: 0.62, TIME/STEP:
659us
MLP: RMSE: 1.28, MAE: 1.02, TIME/STEP:
564us

Figure 5: LSTM-1
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Figure 6: FNN

Figure 7: MLP

Figure 8: LSTM-2
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5 Conclusion

In our work, we introduced an Efficient Ed-
ucational Recommender System with Trans-
fer Learning to make improved personalized
course recommendations from varied datasets.
We considered pre-trained models and fine-
tuning them across several datasets (Netflix,
Goodreads, ML1M, COCO, Beauty) to make
recommendations with high accuracy while
keeping it computationally efficient.

We compared several pre-trained models[LSTM,
MLP AND FNN] and evaluated their per-
formance based on RMSE, MAE, and Time
per Step both before and after transfer learn-
ing. The results proved that transfer learn-
ing drastically minimized RMSE and MAE,
proving that knowledge from one dataset can
be efficiently transferred to another. Inter-
estingly, datasets like Netflix and Goodreads
showed the maximum performance gains, im-
plying that transfer learning is exceptionally
powerful for structured user-item interaction
data.

Moreover, the system generalized well across
various domains such as movies, books, ed-
ucational content, and beauty products, in-
dicating its versatility and adaptability. Of
the three, FNN provided the best balance be-
tween accuracy and speed, making it suit-
able for real-time recommendation applica-
tions. LSTM had better accuracy in certain
datasets at the expense of higher computa-
tional resources, whereas MLP performed well
only on certain datasets, restricting its over-
all performance. The system also exhibited
good generalization across multiple domains,
thereby showing its flexibility in practical sce-
narios. Overall, our recommendation system
performed better than baseline models and
emerged as a scalable and efficient personal-
ized learning environment solution. The pro-
posed system not only outperforms baseline
systems but also features a computationally
efficient recommendation process in terms of

time and resources needed. This makes it an
effective solution for large-scale learning sys-
tems and personalized learning systems.
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