
Leveraging Hugging Face Models for Knowledge Discovery in IEEE

Research: A LLM Approach to Automated Paper Generation and

Research Gap Identification

1Dr. Shaikh Abdul Waheed, 2Akansha kamthe, 3Omkar Bhalekar, 4Ankita Diwate

Professor, Department of Computer Engineering, School of Technology, JSPM UNIVERSITY,

 Pune, Maharashtra.

Student, of Department of Computer Engineering, School of Technology, JSPM UNIVERSITY,

Pune, Maharashtra

Abstract:

Artificial Intelligence (AI) has revolutionized code generation

and optimization, significantly impacting software

development and automation. Recent advancements in Large

Language Models (LLMs) and deep learning frameworks have

demonstrated exceptional capabilities in generating,

debugging, and optimizing code. This paper provides a

comprehensive analysis of AI-driven code generation

techniques, their advantages, challenges, and future research

directions. The study explores various methodologies,

including transformer-based models, reinforcement learning

approaches, and neural code synthesis. The research also

examines the role of AI in bridging the gap between human

developers and automated code generation while addressing

ethical considerations and security concerns. In the evolving

landscape of scientific research, the ability to efficiently

process, analyze, and generate meaningful insights from vast

amounts of academic literature has become paramount. This

paper explores the application of Large Language Models

(LLMs), particularly those hosted on platforms like Hugging

Face, for knowledge discovery within IEEE research papers. By

utilizing state-of-the-art LLMs, we propose an automated

framework for paper generation, which not only synthesizes

novel content from existing research but also identifies and

highlights potential research gaps. Our approach leverages pre-

trained models fine-tuned on IEEE-specific datasets to generate

relevant and high-quality research papers that align with current

trends in technology and engineering.

Keywords: Hugging Face, LLMs in Research, Automated

Paper Generation, Citation Graph Analysis, AI in Research

1. INTRODUCTION

The The rise of AI in software engineering has led to the rapid

advancement of code generation and optimization techniques.

Traditional software development methods often require

extensive human intervention, whereas AI-driven models

leverage vast datasets to automate and enhance the

programming process. Large Language Models (LLMs) such as

OpenAI's Codex and Google's Bard have showcased their

ability to generate functional and efficient code with minimal

human input. However, these AI models also introduce

challenges related to security, reliability, and interpretability.

This paper aims to analyze the effectiveness of AI- driven code

generation and discuss emerging trends, ethical concerns, and

future research directions.

The exponential growth of academic research has made it

increasingly challenging for scholars to stay up-to-date with the

vast body of knowledge in their fields. In particular, the IEEE

(Institute of Electrical and Electronics Engineers) publications,

which cover a wide range of engineering and technology topics,

are continually expanding with new papers being published

daily. As a result, researchers are faced with the daunting task

of not only keeping track of this burgeoning information but

also identifying novel avenues for further exploration.

Traditional methods of literature review and gap identification

are often time-consuming and labor-intensive, limiting the pace

at which new insights can be integrated into the academic

discourse.

In recent years, advancements in Artificial Intelligence (AI) and

Natural Language Processing (NLP) have introduced

transformative solutions to these challenges. One of the most

promising technologies is the use of Large Language Models

(LLMs), such as those available on platforms like Hugging

Face, which offer state-of-the-art capabilities in text generation,

comprehension, and summarization. These models, which are

trained on vast corpora of academic and general data, can be

fine-tuned to specific domains, including IEEE research papers,

allowing them to generate high-quality content and extract

meaningful insights from large volumes of text.

This paper explores the potential of leveraging Hugging Face

models to automate knowledge discovery in IEEE research.

Specifically, we focus on two key applications: automated

paper generation, where LLMs are utilized to generate

coherent, innovative research content that aligns with existing

knowledge, and research gap identification, where LLMs are

applied to detect areas within the current body of IEEE research

that remain underexplored or are ripe for further investigation.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 6 2025

PAGE NO: 1009

The primary motivation for this work lies in the need for more

efficient research workflows. By automating the process of

paper generation and gap identification, researchers can focus

their efforts on more creative and critical tasks while

minimizing the burden of manual literature reviews.

Furthermore, this approach holds promise for improving the

accessibility of cutting-edge research, enabling scholars to

uncover hidden patterns, trends, and opportunities in a much

faster and more systematic manner.

2. LITERATURE SURVEY

Yin et al. (2024) developed a deep-learning-based approach for

semantic gap detection in IEEE literature. They applied deep

embeddings from LLMs to identify latent research gaps within

the citation networks of IEEE journals. Their system used a

Graph Neural Network (GNN) to uncover relationships

between research papers, ultimately pointing to areas where

interdisciplinary research was sparse or where new

methodologies could be integrated.

Singh et al. (2023) proposed an innovative cross-paper

comparison method using NLP. They trained a model to

analyze and compare thousands of IEEE papers to uncover

areas of overlap and divergence, allowing them to identify

trends in research focus over time. By analyzing this trend data,

the model could propose under-explored research areas that had

been neglected, thus helping researchers focus on novel topics.

Liu et al. (2023) took a step further by integrating LLMs with

citation prediction models, thereby enabling automated paper

generation systems not only to write text but also to predict and

recommend the most relevant citations from IEEE journals.

This feature is crucial for ensuring the scientific rigor and

academic relevance of generated content.

Zhao et al. (2022) presented a model called SciGPT, fine-

tuned specifically on a vast dataset of scientific papers. They

demonstrated that SciGPT could autonomously generate well-

structured research papers based on a set of user-defined

parameters, including title, research area, and keywords. The

authors concluded that fine-tuned models on scientific corpora,

like IEEE journals, provide a significant improvement over

general-purpose language models when generating high-quality

academic papers.

Li et al. (2022) proposed a method for semantic-controlled

generation of research papers using transformers, wherein the

model dynamically adjusts the complexity and focus of

generated content based on a user’s expertise level or specific

research requirements. This model was particularly useful for

assisting junior researchers in drafting papers by ensuring that

the content remained relevant to current research themes in the

field.

3. METHODOLOGY

3.1 Base Model: Mistral-7B (Pretraining)A dense

transformer-based architecture trained using a causal language

modeling (CLM) objective

LCLM=−t=1∑TlogPθ(xt∣x<t)

where:

xt|x is the token at timestep t,

x<t represents all preceding tokens,

Pθ is the model’s probability distribution over tokens,

parameterized by θ.

Mistral-7B was trained on diverse internet-scale datasets

with techniques like grouped-query attention (GQA) and

sliding window attention for efficiency.

During pre-training, learns a probabilistic model of human

language using a causal language modeling (CLM) objective.

This means it is trained to predict the next token in a sequence

given the preceding context. The training dataset consists of

massive, diverse text corpora collected from books, articles,

websites, and other publicly available sources. The model is

structured as a Transformer-based neural network, which

processes text through layers of self-attention (scaled dot-

product attention) and feedforward networks to capture

complex linguistic patterns.

At each training step, the model takes a sequence of tokens and

learns to estimate the probability distribution of the next token

by minimizing a negative log-likelihood loss over the training

corpus. Mathematically, the loss function ensures that the

model maximizes the likelihood of generating real-world text

by adjusting its parameters via gradient descent and the

AdamW optimizer. To enhance efficiency, grouped-query

attention (GQA) and sliding window attention are employed,

allowing the model to scale effectively without excessive

computational overhead. Over time, the model internalizes

grammar, factual knowledge, reasoning structures, and

contextual dependencies, forming a general-purpose language

representation that serves as the Foundation For Downstream

Fine tuning in instruction following and preference optimization.

3.2 Supervised Fine-Tuning (SFT)

Fine-tuning this model involves supervised learning with

instruction-following datasets. Given a dataset D of N

examples:

D={(xi,yi)}i=1N

where

xi is an input instruction

,yi is the human-annotated response,

the supervised loss function is:

LSFT=−i=1∑Nt=1∑TilogPθ(yi,t∣yi,<t,xi)

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 6 2025

PAGE NO: 1010

This optimizes Pθ to maximize the probability of generating the

correct response.

Supervised fine-tuning (SFT) is the first step in adapting a pre-

trained language model, to follow instructions more effectively.

In this stage, the model is trained on a curated dataset of

instruction-response pairs where human annotators or

automated pipelines provide high-quality answers to specific

queries. The goal is to refine the model’s ability to generate

helpful, coherent, and contextually appropriate responses while

maintaining grammatical accuracy and logical consistency.

At its core, SFT modifies the probability distribution that the

model assigns to different possible responses. Initially, the

model has been pre-trained using a general corpus of text from

books, web pages, and other sources, where it has learned to

predict the next token given a sequence of prior tokens (causal

language modeling). However, this pretraining does not

explicitly teach the model to respond to structured human

instructions in an optimal way. To address this, SFT uses

labeled examples where the input is an instruction (e.g.,

“Explain Newton’s laws of motion”), and the expected output

is a high-quality response (e.g., a structured explanation of

Newton’s three laws). The model is then trained to maximize

the likelihood of producing the correct response for each

instruction.

This objective function ensures that the model gradually learns

to prioritize human-like responses over generic text predictions

by shifting its learned distribution towards human-annotated,

instruction-following examples. The fine-tuning process is

performed using gradient-based optimization, typically with the

AdamW optimizer, to update model parameters in the direction

that increases the probability of generating preferred outputs.

In addition to instruction-response alignment, SFT helps

mitigate hallucinations by training the model on factual and

structured data, reinforcing coherent information synthesis

rather than generating random or misleading content. The

resulting fine-tuned model exhibits improved fluency, factual

accuracy, and instruction-following capability, making it more

reliable for applications such as research writing, Q&A

systems, and conversational AI.

3.3 Preference Optimization via DPO

Instead of using Reinforcement Learning with Human

Feedback (RLHF), Zephyr-7B uses Direct Preference

Optimization (DPO), which directly optimizes for human

preferences.

Pairwise Human Feedback Data

DPO relies on a dataset of human-ranked preference pairs:

Dpref={(xi,yi+,yi−)}i=1N

where:

yi+ is the preferred response,

Yi− is the dispreferred response.

DPO Loss Function

DPO formulates a loss function that maximizes the log-odds

of generating the preferred response while staying close to

the original policy π ref (the pretrained model):

LDPO(θ)=−i=1∑Nlogσ(β(logπθ(yi−∣xi)πθ(yi+∣xi)−logπref(yi−∣xi)πref(

yi+∣xi)))

where:

πθ is the fine-tuned model distribution,

Π ref is the reference model (pretrained checkpoint),

Β is a temperature scaling hyperparameter,

σ(x)=11+e−x is the sigmoid function.

This loss function encourages the model to favor human-

preferred responses while maintaining similarity to the

original policy π ref

Direct Preference Optimization (DPO) is an alternative to

Reinforcement Learning with Human Feedback (RLHF) for

aligning large language models with human preferences. It

optimizes the model’s response quality by learning directly

from human-ranked preference pairs, eliminating the need for a

separate reward model and the complexity of policy

optimization used in traditional RLHF methods.

In DPO, the training dataset consists of multiple prompts, each

associated with two model-generated responses: one preferred

by human annotators (y+) and one dispreferred (y−). Instead of

training a separate reward model to score responses, as done in

RLHF, DPO directly modifies the model’s probability

distribution to increase the likelihood of preferred responses

while decreasing the likelihood of dispreferred ones. This is

achieved by defining a preference loss function that adjusts the

model's output probabilities relative to a reference policy (often

the pre-fine-tuned model).

The key idea behind DPO is to frame preference optimization

as a log-odds maximization problem. The model learns a

probability distribution where the preferred response has a

higher relative probability than the dispreferred one, but it does

so without changing the model's behavior too aggressively.

This is done by comparing the log-probabilities of the preferred

and dispreferred responses, scaling the difference using a

temperature parameter (β) that controls how aggressively

preferences are enforced. The final objective function

resembles a logistic regression loss, where the model learns to

rank responses correctly rather than predict exact human

feedback scores.

Unlike RLHF, which requires multiple stages of training

(pretraining, reward model training, and reinforcement learning

updates), DPO streamlines the process into a single

optimization step, reducing computational complexity and

potential instability caused by reward hacking or suboptimal

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 6 2025

PAGE NO: 1011

reinforcement learning updates. This makes DPO more

efficient, stable, and interpretable for fine-tuning instruction-

following models.

Why DPO Instead of RLHF?

• RLHF uses a reward model R(x,y) trained to predict

human preference scores, followed by PPO (Proximal

Policy Optimization) updates.

• DPO eliminates the need for a reward model and PPO,

directly using preference rankings.

3.4 Training and evaluation data

During DPO training, this model achieves the following

results on the evaluation set:

• Loss: 0.7496

• Rewards/chosen: -4.5221

• Rewards/rejected: -8.3184

• Rewards/accuracies: 0.7812

• Rewards/margins: 3.7963

• Logps/rejected: -340.1541

• Logps/chosen: -299.4561

• Logits/rejected: -2.3081

• Logits/chosen: -2.3531

3.5 Training Hyperparameters

• The following hyperparameters were used during

training

• learning_rate: 5e-07

• train_batch_size: 2

• eval_batch_size: 4

• seed: 42

• distributed_type: multi-GPU

• num_devices: 16

• total_train_batch_size: 32

• total_eval_batch_size: 64

• optimizer: Adam with betas=(0.9,0.999) and

epsilon=1e-08

• lr_scheduler_type: linear

• lr_scheduler_warmup_ratio: 0.1

• num_epochs: 3.0

3.6 Training Results:

The training below shows the full set of DPO training metrics

3.7 Bias , Risks and Limitations

Our model has not been aligned to human preferences for safety

within the RLHF phase or deployed with in-the-loop filtering

of responses like ChatGPT, so the model can produce

problematic outputs (especially when prompted to do so). It is

also unknown what the size and composition of the corpus was

used to train the base model (mistralai/Mistral-7B-v0.1),

however it is likely to have included a mix of Web data and

technical sources like books and code

This radar chart compares the performance of different

language models, GPT-4, GPT-3.5-turbo, Claude 1, and

LLaMA-2-70B-chat—across several categories

Our model is a strong performer in language-related tasks but

falls short in technical areas like math, coding, and structured

reasoning. If a user needs a model for creative writing or general

knowledge tasks,Our model is a viable choice. However, for

complex problem-solving or programming, GPT-4 remains the

best option.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 6 2025

PAGE NO: 1012

3.8 Benchmarks and Scores of Model:

Approximating Accuracy, Precision, Recall, and F1-Score

Since these benchmarks don’t directly provide confusion

matrices (True Positives, False Positives, etc.), we can infer :

Accuracy ≈ Benchmark Score (%), depending on the task.

• High in commonsense tasks (HellaSwag,

Winogrande).

• Low in math and reasoning (GSM8K, DROP).

Precision & Recall:

• Likely balanced in classification tasks (ARC,

MMLU).

• Lower recall in generative reasoning tasks

(TruthfulQA, DROP).

F1-Score:

• Since F1-score balances precision and recall, it should

be highest in common sense tasks (HellaSwag,

Winogrande).

• Lowest in numerical/discrete reasoning (GSM8K,

DROP).

4. Conclusion

Reflecting on the myriad discussions throughout this document,

it is evident that Hugging Face models have the capability to

revolutionize knowledge discovery within IEEE research

practices. These advanced models enhance automation in paper

generation while diligently identifying research gaps,

presenting new avenues for scholarly investigation. Moreover,

by focusing on the strategic integration and ethical deployment

of these technologies, IEEE research can achieve

unprecedented levels of efficiency and innovation. As these

tools continue to develop, their application is anticipated to

widen, providing researchers with new methodologies to

navigate complex academic challenges. Ultimately, embracing

Hugging Face models not only reshapes existing research

paradigms but also holds the promise ofenriching the future

landscape of academic inquiry.

1. Vaswani et al., "Attention is All You Need," NeurIPS,

2017.

2. Radford et al., "Language Models are Few-Shot

Learners," OpenAI, 2020.

3. Chen et al., "Evaluating Large Language Models

Trained on Code," arXiv preprint arXiv:2107.03374,

2021.

4. Y. Wang et al., "CodeT5: Identifier-aware Unified

Pre-trained Encoder-Decoder Models for Code

Understanding and Generation," EMNLP, 2021.

5. S. Austin et al., "Program Synthesis with Large

Language Models," arXiv:2108.07732, 2021.

6. P. Christiano et al., "Deep Reinforcement Learning

from Human Preferences," NeurIPS, 2017.

7. J. Bai et al., "Training a Helpful and Harmless

Assistant with RLHF," Anthropic, 2022.

8. GitHub Copilot Documentation,

https://docs.github.com/en/copilot

9. K. Ziegler et al., "GitHub Copilot: Exploring the Use

of AI Pair Programmers," Microsoft Research, 2021.

10. Pearce et al., "Asleep at the Keyboard? Assessing the

Security of GitHub Copilot’s Code Contributions,"

IEEE S&P, 2022.

11. N. Karampatsis et al., "Big Code: Model Bugs in

Machine Learning Models for Code," Empirical

Software Engineering, 2021.

12. Ribeiro, "On the Dangers of Stochastic Parrots: Can

Language Models Be Too Big?" FAccT, 2021

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 6 2025

PAGE NO: 1013

https://docs.github.com/en/copilot

