

Accelerating Radix-4 Multiplication Using FPGA

Radu R Prasad and Dr. Simi Zerine Sleeba

Department of Electronics and communication Engineering, Rajagiri
School of Engineering Technology (RSET) - Autonomous, Kochi,

682039, Kerala, India.

Abstract

Multiplication is a critical operation in CNN acceleration, and it directly affects
the speed and power efficiency of computation. This paper describes an opti-
mized pipelined multiplier that combines Radix-4 Booth encoding with a Wallace
tree reduction and Carry-Lookahead Adder (CLA). Comparing with traditional
Booth multipliers, this approach uses pipelined Carry-Save Adders (CSAs) to
minimize critical path delay. This proposed hybrid architecture is modeled using
Verilog Hardware Description Language and synthesized on ZYNQ XC7Z020
SoC. Synthesis result show that pipelined booth-Wallace multiplier achieves
42.2% delay reduction when compared with a conventional booth radix-4 mul-
tiplier. The proposed design contributes performance improvement at the cost
of 5.8% increase in area

Keywords: Pipelined architecture, Hardware accelerator, Booth multiplier, Wallace
tree reduction technique

1 Introduction
Convolutional Neural Networks (CNNs) play major role in applications like facial recog-
nition, medical imaging, or autonomous vehicles. This process needs a vast number
of multiplication operations. For example, a single image processed through ResNet-
50 requires 3.8 billion multiply-accumulate (MAC) operations [1]. Each convolutional
layer in a CNN performs cross-correlations between input feature and kernels and
multiplication operations account for majority of these computations. As AI models

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 5 2025

PAGE N0: 46

become more complex, the demand for fast and energy-efficient multipliers is greater
. Traditional processors have been unable to need this computational demand. Cur-
rent Booth multiplier designs are compact. But it imposes some limitations on CNN
computations due to the sequential nature of arithmetic operation .This results in
considerable delays from the propagation of signals through the carry chains, thereby
increasing critical path delay. They also lack the ability to take advantage of paral-
lelism to operate on various parts of the network simultaneously. Recent studies show
that multiplier units can consume up to 40% of the power for CNN accelerators . While
recent designs have shown improved speed using Wallace tree structures, these have
introduced new trade-offs between depth of pipelined stages and area .Through many
existing designs, we can force designers into a binary choice of maximizing speed or
having a feasible design chip. The proposed hybrid multiplier design is an opti- mized
pipelined multiplier architecture that combining Booth encoding, Wallace tree
reduction, and carry-lookahead addition.

The rest of the paper is organized as follows. Section 2 discusses previous works
related to the hardware implementation of the Radix 4 algorithm and integrating
into CNN. Section 3 background theory of the theory of the Radix 4 Booth multi- plier.
Section 4 introduces the proposed Radix 4 - Wallace tree hybrid structure followed by
the result and discussion in Section 5.Section 6 concludes this paper.

2 Related Works
The advancement in digital circuit design presents Modified Booth Multiplier (MBM)
as an efficient method to perform fast multiplication. Researchers have optimized
MBM to improve its performance by including Wallace Tree structure. This method
can significantly reduce the number of partial products for higher order multiplication
bits . The FPGA implementation with improved adder can reduce the partial product
effectively [2]. Delay and power consumption decreases using partial products using
Booth encoding [3]. Seunghyun Park and Daejin Park created a bit-separable radix-4
Booth multiplier that reduces computations on-the-fly with 68% lower power and 47%
faster performance [4 . Muhammad Hamis Haider and Seok-Bum Ko combined Booth
encoding with Power-of-Two (PO2) quantization and achieved a 30.77% reduction in
CNN .The paper obtaining a 93.2% reduction in energy and ideal for edge devices.
These studies confirm that Modified Booth Multiplier design is a good choice for
low-power and high speed computing [5].

Beura et al. created an inexact 4:2 compressor for Baugh-Wooley multipliers.
This design reduces area by 22% and power by 32.2%, while still having acceptable
levels of accuracy [6]. Guem and Kim developed a variable precision Booth multiplier
that can operate in either 8-bit or 16-bit mode. This design reports a 25% increase in
throughput for 16-bit operations. The trade-off between precision and power or area
efficiency can be particularly useful in real-time systems [7].

FPGA implementations enhance the MBM’s with parallel processing and reconfig-
urability. Wang et al. used Booth-optimized quantization to implement a YOLOv4 as
a bitstream accelerator in their FPGA system. This implementation 72.5x faster than

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 5 2025

PAGE N0: 47

CPUs [8]. Additionally, Kim and Choi implemented clock gating and hardware mod-
ule processing in FPGA for mobile applications .This work reports a reduction in
power by 16%, and an increasing in throughput by 15%. This work highlights the
importance of an FPGA in deploying Booth multipliers in high-speed and energy-
aware computing. To address hardware reliability, the recent work focuses on
counteracting transistor aging and timing violations [9]. Suvarna et al. used
Adaptive Hold Logic (AHL) to restore performance in radix-4 Booth multipliers. The
design suffered timing violations due to negative bias temperature instability (NBTI)
[10]. In the architecture, Sonbul et al. designed a flexible 4096-bit Booth multiplier
for polynomial operations. This design achieving speeds of 523 MHz while providing
an effective energy efficiency of
1.34× over prior design. This ensures reliable performance when using this hardware
in long applications [11].

A comparative study reveals the priority of the MBM over traditional multipli-
ers. Adiono and Herdian showed that radix-8 Booth multipliers have a delay of
4.145 ns versus 5.203 ns for radix-4. Also with power dissipation reduced by 21 %
[12]. Ragini and Neerajakshi showed that Dadda multipliers based on Booth principles
have 27.67% lower delay and 35.34% better power delay products than array
multipliers. This works suggesting that the MBM has an important place in today’s
VLSI systems
[13].

Cheng et al. introduce an energy-efficient sparse CNN accelerator that employs
a pre-encoding radix-4 Booth multiplier to enhance energy efficiency by minimizing
redundant partial products. Given the slight increase in computation, this energyeffi-
cient accelerator delivers significant power reductions achieving 7.0325 TOPS/W with
50% sparsity and 14.3720 TOPS/W with 87.5% sparsity, respectively [14].

Similarly, several papers suggested the use of approximate multipliers for CNNs
with different bit-widths in order to provide a trade-off between area, delay, and accu-
racy. When approximating the multipliers by truncating least significant bits, power
efficiency was noticeably improved, with reported accuracy being 97% or better, which
showed feasibility for energy-efficient CNN accelerators [15]. Liu et al. also proposed
a CNN hardware accelerator to reduce power consumption and memory accesses by
reordering on-chip data, which reduced off-chip memory accesses by 82.9%. Their
architecture’s data path provided an improved power-reduction approach with the
integration of PE arrays, multi-level memory, and a data reuse module that realized
78.75% total power savings [16]. Collectively the papers show that various approaches
in optimizing CNN hardware through structural-sparsity, approximate computing, and
memory efficient architectures can provide energy-efficient inference for deep learning.

2.1 Motivation
Though highly efficient, a traditional Booth multiplier utilizes significant critical
path delay and power. This negatively impacts its usefulness in CNN for high-speed
computing. Most current designs target either power, area reduction or speed opti-
mization. Previous studies indicate that Booth encoding and Wallace tree reduction of
the partial products result in better performance [2] . For example, a 16×16 multipli-
cation using Radix-2 Booth encoding generates 16 partial products, whereas Radix-4
Booth encoding reduces this to only 8 partial products. However, the inherence of

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 5 2025

PAGE N0: 48

pipelining within multi-bit CSAs and pipelined Wallace trees has been largely unex-
plored.This work attempts to address these gaps with a pipelined Booth-Wallace
multiplier that utilizes CLA. The redesigned pipelined Booth-Wallace multiplier
takes advantage of pipelined CSAs to reduce critical path delays. It enhances clock
throughput and energy efficiency. The proposed design is implemented on FPGA.

3 Background

3.1 Radix-4 Booth Algorithm
The Booth algorithm was first introduced by Andrew Donald Booth in 1950 [17]. It is
an efficient hardware method for multiplying two binary numbers in two’s complement
format. This technique reduces the number of partial product by half. The Radix-4
Booth encoding, the multiplier into overlapping (Q[2i 1:2i-1]) windows of bits . The
radix-4 booth encoding is shown in table 1 . The groupings of three-bits, determines
one of the possible operations (either: 0, ±M, or ±2M). (Where 2M represents a
combinational multiplier being executed along with a one-bit left-shift operation to M).
For example a three-bit window of 100 would denote 2M, while 011 would select 2M.
This scheme is effective because it reduces the number of partial products from N for
an N-bit multiplier, to N/2 a partial products. This will effectively speeds up Multiply-
Accumulate (MAC) operations in CNN. Once the partial product generated, Wallace
tree compression (Section 3.2) generates the total number of bits from the partial
product stage and the adds them using carry-lookahead (Section 3.3). In addition, this
algorithm inherently handles signed numbers without preprocessing.

Table 1 Radix-4 Booth Encoding Table

Multiplier Bits
(Q2i+1Q2iQ2i−1)

Operation Partial Product Action

000 0 0 No operation
001 +M M Add multiplicand (M)
010 +M M Add multiplicand (M)
011 +2M M ≪ 1 Add 2× multiplicand
100 −2M −(M ≪ 1) Subtract 2× multiplicand
101 −M −M Subtract multiplicand (M)
110 −M −M Subtract multiplicand (M)
111 0 0 No operation

3.2 Wallace Tree Reduction Principles
The Wallace tree is an efficient hardware structure for partial product reduction.
It achieves reduced complexity by making use of carry-save adders (CSAs). It also
compresses N partial products into only two terms (sum, carry) in log3/2 N stages [18]
[20]. This logarithmic reduction in time delay can be beneficial to a CNN accelerator
application. Pipelined registers can also be utilized to route data strategically between

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 5 2025

PAGE N0: 49

the number of compression stages . To achieve the goals of throughput and clock speed
(up to 1 operation per cycle), which are necessary for real-time image processing.

3.3 Carry-Save Adders (CSA)
CSA enhance the speed of multiplication by minimizing the carry propagation delay
while performing the accumulation of the partial products. Instead of allowing car-
ries to propagate immediately. CSA keep them separate in a parallel form [19] .That
reduces the total addition time in a multi-operand addition. A CSA consists of mul-
tiple full adders that operate in parallel. Each of the full adders has three input bits
and produces two output bits:

Si = Ai ⊕ Bi ⊕ Ci (Sum Output) (1)

Ci+1 = (AiBi) + (BiCi) + (CiAi) (Carry Output) (2)
The sum is saved, and the carry is sent on to the next stage without losing speed.

This helps to reduce many partial products quickly. CSAs are often used in Wallace
Tree multipliers to add many numbers efficiently.

3.4 Carry-Lookahead Adder (CLA)
CLA accelerate the final addition in the multiplier by performing the calculation of
carry signals in parallel. This reduces the total delay from O(N) to O(1) using hier-
archical propagate-generate logic [19] . Each bit position produces two important
signals:

Gi = Ai · Bi (Carry Generation) (3)

Pi = Ai ⊕ Bi (Carry Propagation) (4)
Both signals go into a multiple-level lookahead unit which computes all carries.

4 Proposed Architecture

4.1 Overall Structure
The proposed multiplier architecture combines Booth Radix-4 encoding, Wallace tree
reduction, and CLA. The figure 1 shows the conceptual block diagram of the Booth-
Wallace multiplier. The process begins with two inputs, as multiplicand and multiplier
respectively. The multiplicand is converted to two’s complement form if it is negative
to perform signed multiplication. Then, the Booth Radix-4 encoders convert the mul-
tiplier in overlapping 3-bit windows and produces the partial products. The partial
products are then efficiently compressed in parallel by a Wallace tree adder that con-
sists of CSAs . Finally, a CLA is used to combine the last two terms into a result,
eliminating the delayed propagation of the carry.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 5 2025

PAGE N0: 50

Fig. 1 Conceptual block diagram of the Booth-Wallace multiplier

4.2 Proposed Design
This figure 2 shows a stage-wise pipeline structure of a 16-bit Booth multiplier, where
the Booth encoder, partial product generator, multiple CSA stages, and final carry-
lookahead addition all take place sequentially. Registers are present between stages to
allow for deep pipelining and high throughput.

Figure illustrates 3 how data flows entirely through the proposed multiplier that
uses Radix-4 Booth encoding along with eight partial products, Wallace tree reduction
using CSAs, and pipelined stages for efficient processing in hardware. The final sum
is calculated using a 32-bit CLA, and the result is stored immediately after.

The first stage (A) loads the 16-bit multiplicand (M) and multiplier (Q) into
input registers (M REG and Q REG). The second stage employs a Radix-4 Booth
encoder that processes the multiplier and generates eight partial products (PP1–PP8)
by inspecting overlapping 3-bit windows. These partial products are then passed to
the Wallace tree reduction stage (stages 3–6) for progressive compression using Car-
rySave Adders (CSAs). The Carry-Save Adder stages CSA1 and CSA2 sum groups of
three partial products (PP1–PP3 and PP4–PP6, respectively), generating partial sums
(PS) and carry outputs (PC), which are left-shifted to align weights. The CSA3 stage
combines one of the intermediate results from the previous CSA with the remaining

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 5 2025

PAGE N0: 51

Fig. 2 Pipelined Booth Multiplier Architecture

The figure 3 shows a 16-bit × 16-bit pipelined multiplier designed using Booth encod-
ing and Wallace tree reduction techniques. The multiplier consists of pipeline stages,
maximizing throughput. The first stage loads the 16-bit multiplicand and multiplier
into input registers (M REG and Q REG). The second stage employs a Radix-4 Booth
encoder that processes the multiplier and generates eight partial products (PP1–PP8)
by inspecting overlapping 3-bit windows. These partial products are then passed to
the Wallace tree reduction stage (stages 3–6) for progressive compression using Car-
rySave Adders (CSAs). The Carry-Save Adder stages CSA1 and CSA2 sum groups of
three partial products (PP1–PP3 and PP4–PP6, respectively), generating partial sums
(PS) and carry outputs (PC), which are left-shifted to align weights. The CSA3 stage
combines one of the intermediate results from the previous CSA with the remaining
partial products (PP7 and PP8), while the CSA5 stage further combines the results
to produce two final terms: a partial sum (S3 PS) and a carry (S3 PC). The final
addition is then completed using a 32-bit Carry-Lookahead Adder (CLA), and the
resulting 32-bit product is stored in the output register (RESULT REG) during the
seventh pipeline stage, completing the multiplication operation. This design is efficient
in both speed and area, leveraging the parallelism provided by the Wallace tree and
the pipelining structure to minimize delays on critical paths.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 5 2025

PAGE N0: 52

Fig. 3 Block Diagram of proposed hybrid multiplier

5 Results and Discussion

5.1 Simulation Result
The implemented pipelined Booth multiplier was synthesized and routed on a ZYNQ
XC7Z020 SoC using Vivado 2023.1. The worst-case timing path was analyzed to deter-
mine the maximum achievable clock frequency. The functional correctness of the design
was verified using timing simulations. Figure 4 shows the simulation output for the
Wallace Tree Reduction which shows the optimal and systematic approach to reduce
the partial products. Figure 5 shows the simulation outputs from the Radix 4 Booth
Multiplier and the process of running the partial products and final output. The sim-
ulation confirms that the design correctly performs multiplication within the expected
number of clock cycles.

Figure 6 shows the schematic of the designed Radix-4 + Wallace Tree. It shows the
dataflow and critical blocks. The input operands M [15 : 0] and Q[15 : 0] pass through

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 5 2025

PAGE N0: 53

Fig. 4 Simulation result of Wallace Tree Reduction stages (Pipline Stage 2- 5)

Fig. 5 Simulation result of proposed hybrid multiplier

Asynchronous registers (Q reg reg[15 : 0]) for synchronization purposes during the
operation of the core.

The Booth encoder generates partial products PP 2[31: 0], PP 3[31: 0], and
PM [31 : 0], which the core collects and sums to produce the final product product[31 :
0].

In addition, clear signals (CLR) and reset signals (rst) support robust initialization.
The modular features in the design improve scalability for higher-speed arithmetic
applications.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 5 2025

PAGE N0: 54

Fig. 6 Schematic Diagram of Radix 4 Booth- Wallace multiplier

5.2 Timing Analysis
The critical path delay, defined as the longest combinational delay between two
sequential elements, was computed as:

Tcritical = Tclk − Slack = 10 ns − 2.865 ns = 7.135 ns
This suggests that the maximum achievable operating frequency of the design is:

fmax =
T

1
critical

1
= ≈ 140 MHz

7.135 ns
The analysis confirms that the proposed pipelined Booth multiplier operates within

the expected timing constraints, achieving an operating frequency of approximately
140 MHz on the selected FPGA. Further optimization of logic and routing resources
may enhance this performance.

5.3 Performance Comparison of Multipliers
To evaluate the efficiency of the proposed pipelined Booth-Wallace multiplier, a com-
parative analysis was performed with a conventional Modified Booth Multiplier. The
results are summarized in Table 2 . From the table, it is evident that the Modified
Booth-Wallace multiplier achieves a significant speed improvement, reducing the delay
from 12.34 ns to 7.135 ns, thereby increasing the maximum operating frequency to
140 MHz. This improvement comes at the cost of additional flip-flops (316 FFs) and
LUTs (419 LUTs), indicating a trade-off between speed and resource utilization.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 5 2025

PAGE N0: 55

Table 2 Comparison between Radix-4 Booth Multiplier and Radix-4 Booth + Wallace Tree
Multiplier

Parameters Radix 4 Booth Multiplier Radix 4 Booth + Wallace Tree Multiplier
Delay (ns) 12.34 7.135
No of LUT 338 419
No of FF 64 316
Power (W) 0.138 0.143

6 Conclusion
This work successfully created an improved pipelined Booth-Wallace multiplier that
significantly improves Radix 4 design .With a substantial reduction of 42.2 % delay
decrease and 2.5 × increased operating frequency with a 5.8% increase in total power
and 24% area overhead. The new architecture’s key contribution is its 7-stage pipeline
structure that encompasses the Booth encoding, Wallace tree reduction and CLA
addition. It can be effectively used for FPGA-based CNN accelerators and any real time
signal applications that require high speed and low power. Future work will focus
on using dynamic voltage scaling for thermal-aware optimization, precision-scalable
operation to automate management of mixed-precision neural networks, and an ASIC
implementation for energy efficiency. The scalability of the design beyond 16-bits also
affords options for high-performance computing systems.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 5 2025

PAGE N0: 56

References
[1] M. Shafiq and Z. Gu, “Deep residual learning for image recognition: A survey,”

Applied Sciences, vol. 12, no. 18, p. 8972, 2022.
[2] N. Sharma and R. Sindal, “Modified Booth multiplier using Wallace

structure and efficient carry select adder,” International Journal of
Computer Applications, vol. 68, no. 13, 2013.

[3] A. S. Mokhtar, N. Zahari, C. S. Ping, M. Mustapha, N. Ismail, and A. S. Ismail,
“Implementation of modified Booth-Wallace tree multiplier in FPGA,”
Journal of Computer Science & Computational Mathematics, vol. 11, pp. 49–
52, 2021.

[4] S. Park and D. Park, “Bit-separable radix-4 Booth multiplier for power-
efficient CNN accelerator,” in Proceedings of the 2024 IEEE Symposium in
Low-Power and High-Speed Chips (COOL CHIPS), IEEE, 2024, pp. 1–6.

[5] M. H. Haider and S.-B. Ko, “Booth encoding-based energy efficient
multipliers for deep learning systems,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 70, no. 6, pp. 2241– 2245, 2023.

[6] S. K. Beura, B. P. Devi, P. K. Saha, and P. K. Meher, “Design of a novel inexact
4:2 compressor and its placement in the partial product array for area, delay,
and power-efficient approximate multipliers,” Circuits, Systems, and Signal
Processing, vol. 43, no. 6, pp. 3748–3774, 2024.

[7] D.-H. Guem and S. Kim, “Variable precision multiplier for CNN accelerators
based on Booth algo- rithm,” International Journal on Advanced Science,
Engineering & Information Technology, vol. 13, no. 3, 2023.

[8] Z. Wang, H. Li, X. Yue, and L. Meng, “Briefly analysis about CNN accelerator based
on FPGA,”
Procedia Computer Science, vol. 202, pp. 277–282, 2022.

[9] V. H. Kim and K. K. Choi, “A reconfigurable CNN-based accelerator design for
fast and energy- efficient object detection system on mobile FPGA,” IEEE
Access, vol. 11, pp. 59438–59445, 2023.

[10] S. Suvarna and K. Rajesh, “A modified architecture for radix-4 Booth
multiplier with adaptive hold logic,” International Journal of Students’
Research in Technology Management, vol. 4, pp. 01–05, 2016.

[11] O. S. Sonbul, “A flexible hardware accelerator for Booth polynomial
multiplier,” Applied Sciences, vol. 14, no. 8, p. 3323, 2024.

[12] T. Adiono, H. Herdian, S. Harimurti, and T. A. M. Putra, “Design of compact
modified radix-4 8-bit Booth multiplier,” International Journal on Electrical
Engineering and Informatics, vol. 12, no. 2,

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 5 2025

PAGE N0: 57

pp. 228–241, 2020.
[13] K. Ragini, “Design and implementation of 4x4 bit multiplier using Dadda

algorithm,” JETIR, vol. 6, no. 6, 2019.
[14] Q. Cheng, L. Dai, M. Huang, A. Shen, W. Mao, M. Hashimoto, and H. Yu, “A

low-power sparse convo- lutional neural network accelerator with pre-
encoding radix-4 Booth multiplier,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 70, no. 6, pp. 2246–2250, 2022.

[15] K. Shirane, T. Yamamoto, and H. Tomiyama, “A design methodology for
approximate multipliers in convolutional neural networks: A case of
MNIST,” International Journal of Reconfigurable and Embedded Systems,
vol. 10, no. 1, p. 1, 2021.

[16] Y. Liu, Y. Zhang, X. Hao, L. Chen, M. Ni, M. Chen, and R. Chen, “Design of a
convolutional neural network accelerator based on on-chip data
reordering,” Electronics, vol. 13, no. 5, p. 975, 2024.

[17] A. K. Dhumal and S. Shirgan, “Comparison between radix-2 and radix-4 based
on Booth algorithm,” International Journal of Advanced Research in
Computer and Communication Engineering, vol. 5, no. 12, 2016.

[18] A. M. Ghorpade and A. M. Muchandi, “Multiplier design using carry save
adder,” International Journal of Advanced Research in Electrical, Electronics
and Instrumentation Engineering, vol. 5, 2016.

[19] R. A. Javali, R. J. Nayak, A. M. Mhetar, and M. C. Lakkannavar, “Design of
high speed carry save adder using carry lookahead adder,” in Proceedings of
the International Conference on Circuits, Communication, Control and
Computing, pp. 33–36, 2014, IEEE.

[20] S. Vaidya and D. Dandekar, “Delay-power performance comparison of
multipliers in VLSI circuit design,” International Journal of Computer
Networks & Communications (IJCNC), vol. 2, no. 4,
pp. 47–56, 2010.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 5 2025

PAGE N0: 58

