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Abstract 

Multiplication is a critical operation in CNN acceleration, and it directly affects 
the speed and power efficiency of computation. This paper describes an opti- 
mized pipelined multiplier that combines Radix-4 Booth encoding with a Wallace 
tree reduction and Carry-Lookahead Adder (CLA). Comparing with traditional 
Booth multipliers, this approach uses pipelined Carry-Save Adders (CSAs) to 
minimize critical path delay. This proposed hybrid architecture is modeled using 
Verilog Hardware Description Language and synthesized on ZYNQ XC7Z020 
SoC. Synthesis result show that pipelined booth-Wallace multiplier achieves 
42.2% delay reduction when compared with a conventional booth radix-4 mul- 
tiplier. The proposed design contributes performance improvement at the cost 
of 5.8% increase in area 

Keywords: Pipelined architecture, Hardware accelerator, Booth multiplier, Wallace 
tree reduction technique 

 
 

 

1 Introduction 
Convolutional Neural Networks (CNNs) play major role in applications like facial recog- 
nition, medical imaging, or autonomous vehicles. This process needs a vast number 
of multiplication operations. For example, a single image processed through ResNet- 
50 requires 3.8 billion multiply-accumulate (MAC) operations [1]. Each convolutional 
layer in a CNN performs cross-correlations between input feature and kernels and 
multiplication operations account for majority of these computations. As AI models 
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become more complex, the demand for fast and energy-efficient multipliers is greater 
. Traditional processors have been unable to need this computational demand. Cur- 
rent Booth multiplier designs are compact. But it imposes some limitations on CNN 
computations due to the sequential nature of arithmetic operation .This results in 
considerable delays from the propagation of signals through the carry chains, thereby 
increasing critical path delay. They also lack the ability to take advantage of paral- 
lelism to operate on various parts of the network simultaneously. Recent studies show 
that multiplier units can consume up to 40% of the power for CNN accelerators . While 
recent designs have shown improved speed using Wallace tree structures, these have 
introduced new trade-offs between depth of pipelined stages and area .Through many 
existing designs, we can force designers into a binary choice of maximizing speed or 
having a feasible design chip. The proposed hybrid multiplier design is an opti- mized 
pipelined multiplier architecture that combining Booth encoding, Wallace tree 
reduction, and carry-lookahead addition. 

The rest of the paper is organized as follows. Section 2 discusses previous works 
related to the hardware implementation of the Radix 4 algorithm and integrating 
into CNN. Section 3 background theory of the theory of the Radix 4 Booth multi- plier. 
Section 4 introduces the proposed Radix 4 - Wallace tree hybrid structure followed by 
the result and discussion in Section 5.Section 6 concludes this paper. 

2 Related Works 
The advancement in digital circuit design presents Modified Booth Multiplier (MBM) 
as an efficient method to perform fast multiplication. Researchers have optimized 
MBM to improve its performance by including Wallace Tree structure. This method 
can significantly reduce the number of partial products for higher order multiplication 
bits . The FPGA implementation with improved adder can reduce the partial product 
effectively [2]. Delay and power consumption decreases using partial products using 
Booth encoding [3]. Seunghyun Park and Daejin Park created a bit-separable radix-4 
Booth multiplier that reduces computations on-the-fly with 68% lower power and 47% 
faster performance [4 . Muhammad Hamis Haider and Seok-Bum Ko combined Booth 
encoding with Power-of-Two (PO2) quantization and achieved a 30.77% reduction in 
CNN .The paper obtaining a 93.2% reduction in energy and ideal for edge devices. 
These studies confirm that Modified Booth Multiplier design is a good choice for 
low-power and high speed computing [5]. 

Beura et al. created an inexact 4:2 compressor for Baugh-Wooley multipliers.  
This design reduces area by 22% and power by 32.2%, while still having acceptable 
levels of accuracy [6]. Guem and Kim developed a variable precision Booth multiplier 
that can operate in either 8-bit or 16-bit mode. This design reports a 25% increase in 
throughput for 16-bit operations. The trade-off between precision and power or area 
efficiency can be particularly useful in real-time systems [7]. 

FPGA implementations enhance the MBM’s with parallel processing and reconfig- 
urability. Wang et al. used Booth-optimized quantization to implement a YOLOv4 as 
a bitstream accelerator in their FPGA system. This implementation 72.5x faster than 
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CPUs [8]. Additionally, Kim and Choi implemented clock gating and hardware mod- 
ule processing in FPGA for mobile applications .This work reports a reduction in 
power by 16%, and an increasing in throughput by 15%. This work highlights the 
importance of an FPGA in deploying Booth multipliers in high-speed and energy-
aware computing. To address hardware reliability, the recent work focuses on 
counteracting transistor aging and timing violations [9]. Suvarna et al. used 
Adaptive Hold Logic (AHL) to restore performance in radix-4 Booth multipliers. The 
design suffered timing violations due to negative bias temperature instability (NBTI) 
[10]. In the architecture, Sonbul et al. designed a flexible 4096-bit Booth multiplier 
for polynomial operations. This design achieving speeds of 523 MHz while providing 
an effective energy efficiency of 
1.34× over prior design. This ensures reliable performance when using this hardware 
in long applications [11]. 

A comparative study reveals the priority of the MBM over traditional multipli- 
ers. Adiono and Herdian showed that radix-8 Booth multipliers have a delay of 
4.145 ns versus 5.203 ns for radix-4. Also with power dissipation reduced by 21 % 
[12]. Ragini and Neerajakshi showed that Dadda multipliers based on Booth principles 
have 27.67% lower delay and 35.34% better power delay products than array 
multipliers. This works suggesting that the MBM has an important place in today’s 
VLSI systems 
[13]. 

Cheng et al. introduce an energy-efficient sparse CNN accelerator that employs 
a pre-encoding radix-4 Booth multiplier to enhance energy efficiency by minimizing 
redundant partial products. Given the slight increase in computation, this energyeffi- 
cient accelerator delivers significant power reductions achieving 7.0325 TOPS/W with 
50% sparsity and 14.3720 TOPS/W with 87.5% sparsity, respectively [14]. 

Similarly, several papers suggested the use of approximate multipliers for CNNs 
with different bit-widths in order to provide a trade-off between area, delay, and accu- 
racy. When approximating the multipliers by truncating least significant bits, power 
efficiency was noticeably improved, with reported accuracy being 97% or better, which 
showed feasibility for energy-efficient CNN accelerators [15]. Liu et al. also proposed 
a CNN hardware accelerator to reduce power consumption and memory accesses by 
reordering on-chip data, which reduced off-chip memory accesses by 82.9%. Their 
architecture’s data path provided an improved power-reduction approach with the 
integration of PE arrays, multi-level memory, and a data reuse module that realized 
78.75% total power savings [16]. Collectively the papers show that various approaches 
in optimizing CNN hardware through structural-sparsity, approximate computing, and 
memory efficient architectures can provide energy-efficient inference for deep learning. 

 
2.1 Motivation 
Though highly efficient, a traditional Booth multiplier utilizes significant critical 
path delay and power. This negatively impacts its usefulness in CNN for high-speed 
computing. Most current designs target either power, area reduction or speed opti- 
mization. Previous studies indicate that Booth encoding and Wallace tree reduction of 
the partial products result in better performance [2] . For example, a 16×16 multipli- 
cation using Radix-2 Booth encoding generates 16 partial products, whereas Radix-4 
Booth encoding reduces this to only 8 partial products. However, the inherence of 
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pipelining within multi-bit CSAs and pipelined Wallace trees has been largely unex- 
plored.This work attempts to address these gaps with a pipelined Booth-Wallace 
multiplier that utilizes CLA. The redesigned pipelined Booth-Wallace multiplier 
takes advantage of pipelined CSAs to reduce critical path delays. It enhances clock 
throughput and energy efficiency. The proposed design is implemented on FPGA. 

3 Background 

3.1 Radix-4 Booth Algorithm 
The Booth algorithm was first introduced by Andrew Donald Booth in 1950 [17]. It is 
an efficient hardware method for multiplying two binary numbers in two’s complement 
format. This technique reduces the number of partial product by half. The Radix-4 
Booth encoding, the multiplier into overlapping (Q[2i 1:2i-1]) windows of bits . The 
radix-4 booth encoding is shown in table 1 . The groupings of three-bits, determines 
one of the possible operations (either: 0, ±M, or ±2M). (Where 2M represents a 
combinational multiplier being executed along with a one-bit left-shift operation to M). 
For example a three-bit window of 100 would denote 2M, while 011 would select 2M. 
This scheme is effective because it reduces the number of partial products from N for 
an N-bit multiplier, to N/2 a partial products. This will effectively speeds up Multiply- 
Accumulate (MAC) operations in CNN. Once the partial product generated, Wallace 
tree compression (Section 3.2) generates the total number of bits from the partial 
product stage and the adds them using carry-lookahead (Section 3.3). In addition, this 
algorithm inherently handles signed numbers without preprocessing. 

 
Table 1  Radix-4 Booth Encoding Table 

 
Multiplier Bits 
(Q2i+1Q2iQ2i−1) 

Operation Partial Product Action 

000 0 0 No operation 
001 +M M Add multiplicand (M) 
010 +M M Add multiplicand (M) 
011 +2M M ≪ 1 Add 2× multiplicand 
100 −2M −(M ≪ 1) Subtract 2× multiplicand 
101 −M −M Subtract multiplicand (M) 
110 −M −M Subtract multiplicand (M) 
111 0 0 No operation 

 
 
 

 

3.2 Wallace Tree Reduction Principles 
The Wallace tree is an efficient hardware structure for partial product reduction. 
It achieves reduced complexity by making use of carry-save adders (CSAs). It also 
compresses N partial products into only two terms (sum, carry) in log3/2 N stages [18] 
[20]. This logarithmic reduction in time delay can be beneficial to a CNN accelerator 
application. Pipelined registers can also be utilized to route data strategically between 
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the number of compression stages . To achieve the goals of throughput and clock speed 
(up to 1 operation per cycle), which are necessary for real-time image processing. 

3.3 Carry-Save Adders (CSA) 
CSA enhance the speed of multiplication by minimizing the carry propagation delay 
while performing the accumulation of the partial products. Instead of allowing car- 
ries to propagate immediately. CSA keep them separate in a parallel form [19] .That 
reduces the total addition time in a multi-operand addition. A CSA consists of mul- 
tiple full adders that operate in parallel. Each of the full adders has three input bits 
and produces two output bits: 

Si = Ai ⊕ Bi ⊕ Ci (Sum Output) (1) 
 

Ci+1 = (AiBi) + (BiCi) + (CiAi) (Carry Output) (2) 
The sum is saved, and the carry is sent on to the next stage without losing speed. 

This helps to reduce many partial products quickly. CSAs are often used in Wallace 
Tree multipliers to add many numbers efficiently. 

3.4 Carry-Lookahead Adder (CLA) 
CLA accelerate the final addition in the multiplier by performing the calculation of 
carry signals in parallel. This reduces the total delay from O(N ) to O(1) using hier- 
archical propagate-generate logic [19] . Each bit position produces two important 
signals: 

Gi = Ai · Bi (Carry Generation) (3) 

Pi = Ai ⊕ Bi (Carry Propagation) (4) 
Both signals go into a multiple-level lookahead unit which computes all carries. 

4 Proposed Architecture 

4.1 Overall Structure 
The proposed multiplier architecture combines Booth Radix-4 encoding, Wallace tree 
reduction, and CLA. The figure 1 shows the conceptual block diagram of the Booth- 
Wallace multiplier. The process begins with two inputs, as multiplicand and multiplier 
respectively. The multiplicand is converted to two’s complement form if it is negative 
to perform signed multiplication. Then, the Booth Radix-4 encoders convert the mul- 
tiplier in overlapping 3-bit windows and produces the partial products. The partial 
products are then efficiently compressed in parallel by a Wallace tree adder that con- 
sists of CSAs . Finally, a CLA is used to combine the last two terms into a result, 
eliminating the delayed propagation of the carry. 
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Fig. 1 Conceptual block diagram of the Booth-Wallace multiplier 

 

4.2 Proposed Design 
This figure 2 shows a stage-wise pipeline structure of a 16-bit Booth multiplier, where 
the Booth encoder, partial product generator, multiple CSA stages, and final carry- 
lookahead addition all take place sequentially. Registers are present between stages to 
allow for deep pipelining and high throughput. 

Figure illustrates 3 how data flows entirely through the proposed multiplier that 
uses Radix-4 Booth encoding along with eight partial products, Wallace tree reduction 
using CSAs, and pipelined stages for efficient processing in hardware. The final sum 
is calculated using a 32-bit CLA, and the result is stored immediately after. 

The first stage (A) loads the 16-bit multiplicand (M) and multiplier (Q) into 
input registers (M REG and Q REG). The second stage employs a Radix-4 Booth 
encoder that processes the multiplier and generates eight partial products (PP1–PP8) 
by inspecting overlapping 3-bit windows. These partial products are then passed to 
the Wallace tree reduction stage (stages 3–6) for progressive compression using Car- 
rySave Adders (CSAs). The Carry-Save Adder stages CSA1 and CSA2 sum groups of 
three partial products (PP1–PP3 and PP4–PP6, respectively), generating partial sums 
(PS) and carry outputs (PC), which are left-shifted to align weights. The CSA3 stage 
combines one of the intermediate results from the previous CSA with the remaining 
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Fig. 2 Pipelined Booth Multiplier Architecture 

 

The figure 3 shows a 16-bit × 16-bit pipelined multiplier designed using Booth encod- 
ing and Wallace tree reduction techniques. The multiplier consists of pipeline stages, 
maximizing throughput. The first stage loads the 16-bit multiplicand and multiplier 
into input registers (M REG and Q REG). The second stage employs a Radix-4 Booth 
encoder that processes the multiplier and generates eight partial products (PP1–PP8) 
by inspecting overlapping 3-bit windows. These partial products are then passed to 
the Wallace tree reduction stage (stages 3–6) for progressive compression using Car- 
rySave Adders (CSAs). The Carry-Save Adder stages CSA1 and CSA2 sum groups of 
three partial products (PP1–PP3 and PP4–PP6, respectively), generating partial sums 
(PS) and carry outputs (PC), which are left-shifted to align weights. The CSA3 stage 
combines one of the intermediate results from the previous CSA with the remaining 
partial products (PP7 and PP8), while the CSA5 stage further combines the results 
to produce two final terms: a partial sum (S3 PS) and a carry (S3 PC). The final 
addition is then completed using a 32-bit Carry-Lookahead Adder (CLA), and the 
resulting 32-bit product is stored in the output register (RESULT REG) during the 
seventh pipeline stage, completing the multiplication operation. This design is efficient 
in both speed and area, leveraging the parallelism provided by the Wallace tree and 
the pipelining structure to minimize delays on critical paths. 
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Fig. 3 Block Diagram of proposed hybrid multiplier 

 

5 Results and Discussion 

5.1 Simulation Result 
The implemented pipelined Booth multiplier was synthesized and routed on a ZYNQ 
XC7Z020 SoC using Vivado 2023.1. The worst-case timing path was analyzed to deter- 
mine the maximum achievable clock frequency. The functional correctness of the design 
was verified using timing simulations. Figure 4 shows the simulation output for the 
Wallace Tree Reduction which shows the optimal and systematic approach to reduce 
the partial products. Figure 5 shows the simulation outputs from the Radix 4 Booth 
Multiplier and the process of running the partial products and final output. The sim- 
ulation confirms that the design correctly performs multiplication within the expected 
number of clock cycles. 

Figure 6 shows the schematic of the designed Radix-4 + Wallace Tree. It shows the 
dataflow and critical blocks. The input operands M [15 : 0] and Q[15 : 0] pass through 
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Fig. 4 Simulation result of Wallace Tree Reduction stages (Pipline Stage 2- 5) 

 

 
Fig. 5 Simulation result of proposed hybrid multiplier 

 
Asynchronous registers (Q reg reg[15 : 0]) for synchronization purposes during the 
operation of the core. 

The Booth encoder generates partial products PP 2[31: 0], PP 3[31: 0], and 
PM [31 : 0], which the core collects and sums to produce the final product product[31 : 
0]. 

In addition, clear signals (CLR) and reset signals (rst) support robust initialization. 
The modular features in the design improve scalability for higher-speed arithmetic 
applications. 
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Fig. 6 Schematic Diagram of Radix 4 Booth- Wallace multiplier 

 

5.2 Timing Analysis 
The critical path delay, defined as the longest combinational delay between two 
sequential elements, was computed as: 

Tcritical = Tclk − Slack = 10 ns − 2.865 ns = 7.135 ns 
This suggests that the maximum achievable operating frequency of the design is: 

 

fmax = 
T 

1 
critical 

1 
= ≈ 140 MHz 

7.135 ns 
The analysis confirms that the proposed pipelined Booth multiplier operates within 

the expected timing constraints, achieving an operating frequency of approximately 
140 MHz on the selected FPGA. Further optimization of logic and routing resources 
may enhance this performance. 

5.3 Performance Comparison of Multipliers 
To evaluate the efficiency of the proposed pipelined Booth-Wallace multiplier, a com- 
parative analysis was performed with a conventional Modified Booth Multiplier. The 
results are summarized in Table 2 . From the table, it is evident that the Modified 
Booth-Wallace multiplier achieves a significant speed improvement, reducing the delay 
from 12.34 ns to 7.135 ns, thereby increasing the maximum operating frequency to 
140 MHz. This improvement comes at the cost of additional flip-flops (316 FFs) and 
LUTs (419 LUTs), indicating a trade-off between speed and resource utilization. 
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Table 2 Comparison between Radix-4 Booth Multiplier and Radix-4 Booth + Wallace Tree 
Multiplier 

 
Parameters Radix 4 Booth Multiplier Radix 4 Booth + Wallace Tree Multiplier 
Delay (ns) 12.34 7.135 
No of LUT 338 419 
No of FF 64 316 
Power (W) 0.138 0.143 

 

 

6 Conclusion 
This work successfully created an improved pipelined Booth-Wallace multiplier that 
significantly improves Radix 4 design .With a substantial reduction of 42.2 % delay 
decrease and 2.5 × increased operating frequency with a 5.8% increase in total power 
and 24% area overhead. The new architecture’s key contribution is its 7-stage pipeline 
structure that encompasses the Booth encoding, Wallace tree reduction and CLA 
addition. It can be effectively used for FPGA-based CNN accelerators and any real time 
signal applications that require high speed and low power. Future work will focus 
on using dynamic voltage scaling for thermal-aware optimization, precision-scalable 
operation to automate management of mixed-precision neural networks, and an ASIC 
implementation for energy efficiency. The scalability of the design beyond 16-bits also 
affords options for high-performance computing systems. 
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