
Sathi: A Performance-Based Peer Ranking Platform
for Competitive Programmers
Dr. Anitha R

Professor and HOD
Dept. of CS&E

The National Institute of Engineering
Mysuru, India

anithar@nie.ac.in

Veena Mohan
Assistant Professor

Dept of CS&E
The National Institute of Engineering

Mysuru, India
veenamohanm@nie.ac.in

Abhinav Tiwari, Ayush Kumar, Kshitij Kumar Chandrakar

Abstract—Competitive programming is increasingly popular
with students and working professionals seeking to enhance their
problem-solving skills. While there exist various online platforms,
monitoring one’s overall performance across all the platforms
is a task. We resolve this issue by introducing Sathi—a web
application developed on the MERN stack that aggregates user
data from websites such as Codeforces, CodeChef, LeetCode,
AtCoder, and HackerRank. By gathering this information on a
regular basis and using a standardized scoring system, Sathi
produces real-time peer ranks and provides beneficial insights
into each user’s improvement. The site is also built to enable
consistency, facilitate healthy competition, and foster a sense of
community among programmers.

Index Terms—Competitive programming, MERN stack, web
scraping, unified ranking, peer comparison, coding platforms,
performance tracking, Codeforces, CodeChef, LeetCode, At-
Coder, HackerRank.

I. INTRODUCTION

With the shifting paradigm of learning computer science and
career progression, students normally carry a disparate set of
tools and platforms. Platforms for competitive coding Leet-
Code, Codeforces, and CodeChef offer avenues of enhancing
problem-solving abilities, but these are disjointed, and the user
would need to possess separate accounts and operate individual
interfaces. Not only does this make the learning tedious but
also inhibits measurement of progress and attainment across
platforms.

Besides coding exercises, students also look forward to
building solid resumes, discovering firm-specific hiring pro-
cesses, and interacting with alumni for mentorship and advice.
However, the lack of an integrated platform that encompasses
these features results in an unconnected preparation process,
squandering valuable time and resources as students navigate
different sources of information.

Identifying these issues, Sathi is designed as an end-to-end
solution that integrates competitive programming portfolios,
provides resume improvement tools, gives company-specific
information, and enables alumni networking. By consolidating
information from multiple coding platforms and hand-picking
necessary resources for career growth, Sathi seeks to simplify

the preparation process, allowing students to concentrate on
skill building and strategic planning for professional growth.

The subsequent portions of the current paper discuss the
specific problems addressed by Sathi, the development ap-
proaches used, system design complexity, feature implementa-
tion, testing process, and the anticipated impact on the student
population.

II. RELATED WORK

Some projects tried to monitor user performance in learning
or competitive environments, but none of them provide a
centralized, automated, and scalable platform to track coding
activity on multiple websites. Some research, for instance,
has explored the analysis of coding behavior from contest
performance data, particularly from websites like Codeforces
and AtCoder. The research leans towards modeling learning
curves, rating prediction, or identifying patterns in problem-
solving styles. These are, however, limited to research envi-
ronments and are not embedded in tools that can be utilized
by students or professionals.

In addition, current solutions fail to solve the issue of
scattered user identity. A user can have various handles on
different platforms, and it is hard to integrate their digital
footprints. Some platforms such as Codeforces offer public
APIs, while others such as LeetCode and HackerRank offer
restricted or no official third-party data aggregation support.
This technical disparity does not enable constructing an inte-
grated system.

Certain commercial offerings attempt to provide compet-
itive programming insights from resume analysis or inter-
view preparation tools, but these offerings tend to be static
self-reported data-based and lack continuous update or au-
tomated synchronization features. They lack social features
like cohort-based comparisons, gamified leaderboards, or time-
based tracking of progress—key to maintaining motivation and
interest, particularly in peer-to-peer learning communities.

In the education sector, some educators prepare spreadsheets
manually or construct individual dashboards from the plat-
form’s APIs to monitor the performance of their students.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 6 2025

PAGE NO: 78

Tanoy
Textbox

Although the method is practical on a limited scale, it is
not possible in bulk or for extended usage. Moreover, it
is primarily not backed with real-time notification, metric
normalization, and visual inspection. Sathi introduces a new
solution by constructing an integrated user model mapping a
user’s handles across various platforms to a single user profile.
Timed web scraping and API calls consolidate submission
history, ratings, and badges for every platform. These are
then processed through a proprietary score algorithm that
standardizes performance across platforms to give a balanced
and comprehensive view of all users’ coding activity.

As compared to previous tools, Sathi emphasizes
community-based learning by offering organization-
based cohorts (i.e., college classes, coding groups, or private
cohorts) so that the users will compete against their cohort.
Streak tracking, progress charts, percentile ranks, and weekly
scoreboards motivate the users and educate them about how
they have progressed over time.

The Sathi architecture also addresses scalability and main-
tainability. With the modular backend services and the MERN
stack, the system is horizontally scalable, able to handle
heavy traffic of users, and introduce new platforms or ranking
algorithms with minimal disruption.

In brief, although foundation knowledge of coding practice
and contest data analysis has been established through past re-
search, Sathi is the first open-source, real-time, cross-platform
analytics tool for the competitive programming community.
Sathi bridges the gap between static, single-platform tracking
and dynamic, multi-platform comparative analytics and facil-
itates both self-improvement and peer-to-peer collaboration.

III. EXISTING SYSTEM

All prominent competitive programming platforms like
Codeforces, CodeChef, LeetCode, AtCoder, and HackerRank
all have in-site metrics to allow users to monitor progress.
These consist of user rankings, submissions, contest scores,
and problem-solving streaks. These platforms, however, are
siloed, and active users on multiple platforms find it difficult
to monitor overall progress and compare with others.

Certain community-driven tools such as
textitStopStalk and browser extensions have attempted to fill
this gap by gathering statistics across various platforms. They
are limited in their feature set, their interface is outdated, they
are irregularly updated, and they are not scalable. Most are
not even capable of gathering real-time data or analytics.

Additionally, today’s platforms focus on raw data and do
not incorporate motivational factors like cross-platform leader-
boards, performance trends, or peer comparisons. Hence, the
users are not able to gain an overview of their competitive
programming journey, pointing towards the need for an intel-
ligent, combined platform like
textbfSathi.

IV. PROPOSED SYSTEM

Sathi aims to provide an innovative and efficient platform
for tracking competitive programming performance across

multiple coding platforms. The system incorporates several
key features to enhance user experience and provide valuable
insights:

• Unified User Dashboard: Sathi provides a unified, dy-
namic dashboard that brings together performance statis-
tics from multiple coding sites, such as Codeforces,
CodeChef, LeetCode, AtCoder, and HackerRank. The
unified view allows users to compare their performance
across platforms without having to visit multiple web-
sites.

• Real-Time Performance Updates: The site includes
real-time performance updates through scraping users’
data from coding websites at regular intervals. Users can
see their recent scores, ranks, and performance against
peers immediately, making them aware of their position
at all times.

• Web Scraping and Cron Jobs: Sathi employs web
scraping methods to gather user information from various
coding sites. The task is automated via cron jobs, which
are executed at periodic intervals to extract new data, so
that users can have access to the latest information all the
time.

• Cloud-Based Image Storage: Cloudinary is utilized by
the system for effective storage and management of user
images, including avatars and profile images. This makes
media resources readily available and securely managed
without affecting performance.

• Flexible Ranking System: Sathi has a consolidated
ranking algorithm that consolidates the scoring systems
of all platforms into one uniform and easy-to-understand
format. It is this flexibility that enables users to view their
progress across various coding environments, promoting
healthy competition and betterment.

• User-Focused Interface: Sathi has a simple, straightfor-
ward, and user-friendly interface with adjustable layouts.
It provides settings like dark mode and light mode,
offering users the freedom to decide an interface that they
would prefer.

• Improved Collaboration: Users can monitor their own
coding progress with friends and colleagues, and this
makes the experience of coding more collaborative and
less isolationist. The social capabilities make it possible
for users to connect with other users, exchange sugges-
tions, and motivate one another.

V. DESIGN

The system under consideration uses a distributed mi-
croservices architecture that is intended to support scalable
community engagement and content management The main
components of the system are as follows:

A. High-Level Diagram

Client applications initially authenticate through a separate
security layer prior to accessing system resources. An API
layer subsequently connects the client and data layers. A
frontend API Gateway controls routing, whereas a backend

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 6 2025

PAGE NO: 79

Fig. 1. High Level Diagram of Sathi

API performs business logic. Data is handled through a
double-storage mechanism—a structured database for appli-
cation data, with separate file storage for media assets.

VI. IMPLEMENTATION

The deployment of Saathi is spurred by a relationally
modeled data structure that has been crafted with the intent of
providing a transparent and intelligent user experience. There
are six basic components of system architecture—Users, Prob-
lemSet, Blog, Contests, Message, and Home—that perform
distinct functions towards offering real-time coding statistics
as well as facilitating community interaction.

The Users table serves as the hub node that holds necessary
details like user name, email address, platform rating, and
subscribed contests. All other major modules are directly
associated with this table, supporting capabilities such as
problem bookmarking, blog writing, messaging colleagues,
and subscribing to contests.

The ProblemSet module provides access to a carefully
curated set of company-specific coding challenges. Problems
have metadata like title, topic tags, status, and timestamps. A
bookmarkBy relational field connects problems with users so
that they may save and return to problems.

The Blog module supports knowledge sharing and commu-
nity engagement. Every blog is linked to an owner (user) and
can link to individual problems via the referencedProbl field.
Engagement analytics and ranking for highlighted blogs are
supported through metrics like likes, dislikes, and timestamps.

The Contests module assists in monitoring future and past
coding contests on different platforms. Each contest is defined
by its name, platform, date, and link, with a subscribers field
connecting users who have chosen to be reminded or followed
for that event.

The Message entity allows peer-to-peer communication. It
records information such as sender, receiver, message, and
time, supporting an environment of mentorship or collabora-
tive coding within the platform.

Lastly, the Home schema summarizes global information
for the dashboard. It calculates and keeps system-level metrics
such as the number of users, blogs, issues, active contests, and
highlights such as top-rated users, newest blogs, and coming
contests.

This network data model is used to maintain data flow
seamlessly, real-time syncing through cron jobs and web

Fig. 2. Implementation

scraping schedules, as well as customizable user experiences.
The explicit definition of relations among entities enables
backend scalability as well as optimization-friendly front-end
rendering of dynamic material.

VII. RESULTS

A. Home Page

Fig. 3. User Dashboard showing solved problems and filters

The Home Page is a community-driven platform that fea-
tures posts from users throughout the site. Posts tend to contain
insightful coding methods, useful resources, problem-solving
techniques, and developer announcements. Every post shows
the contributor’s name, handle, and timestamp, encouraging
knowledge-sharing and attribution within the community. The
interactive feed allows users to scroll through recent submis-
sions, like or comment on posts, and participate in substantial
discussions.

As evident from Fig. 3, the theme is kept simple and
legible, making even technical content of lengthy nature easily
readable. This chapter not only invites active engagement
but also assists users in keeping themselves abreast with
developments, tips, and ideas in the arena of competitive
programming.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 6 2025

PAGE NO: 80

Fig. 4. Leaderboard showcasing OP rating and rankings

B. Leaderboard

The Leaderboard is a focal feature of Sathi, which displays
overall performance ranks of users on a common scoring
system. It is calculated based on a weighted algorithm that
pools ratings from various competitive programming sites like
Codeforces, LeetCode, CodeChef, AtCoder, and HackerRank.
Usernames, scores, and ranks are displayed in a neat tabular
way, giving rise to a culture of healthy competition among the
community.

As seen in Fig.
reffig:op2, each leaderboard entry is clickable to take users
further into the profile of a given user. By clicking, individual
ratings from all platforms are unveiled by the system, pro-
viding openness and allowing peers to monitor one another’s
development within various contexts. This capability supports
goal-setting, peer encouragement, and cordial competition.

C. Upcoming Contests

Fig. 5. Upcoming contests from various coding platforms

The Upcoming Contests panel is an active and informative
board that shows a unified list of upcoming programming con-
tests on various competitive sites like Codeforces, LeetCode,
CodeChef, AtCoder, and HackerRank. It is intended to keep
users updated and plan their participation in advance, thereby
maintaining regular practice and competition.

As illustrated in Fig. 5, every entry for a contest has the
required details like contest name, platform, date, time, and
duration. The interface is updated automatically at regular
intervals with scheduled cron jobs that import the latest
contest information via web scraping scripts from their official
platforms. This guarantees real-time accuracy without human
intervention.

Users may also sort contests by platform or filter them
chronologically to suit their individual schedules and prefer-
ences better. This aspect not only enhances time management
but also fosters participation across a wide variety of contests.

D. Performance Analytics

Fig. 6. Performance analytics showing OP distribution among users

The Performance Analytics section provides graphical in-
formation about the distribution of users by OP rating. A
bar chart is used with a logarithmic Y-axis to well represent
the extensive range of user numbers across rating brackets.
Each bar represents a particular OP rating range, for example,
1000–1200, 1200–1400, and so on. The visualization (Fig. 6)
enables users to compare their own rating against the wider
community, determine performance tiers, and organize focused
improvement.

E. Messaging System

Fig. 7. Messaging system interface for peer-to-peer interaction

An integrated messaging system enables users to communi-
cate with each other directly. It involves sending and receiving

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 6 2025

PAGE NO: 81

messages via a simple and user-friendly chat interface. The
system has support for recent talks, timestamps, and live
updates. As depicted in Fig. 7, it improves collaboration by
providing the capability for problem discussions, mentorship,
and peer-to-peer assistance, with the ability to develop a tight-
knit coding community.

F. User Profile

Fig. 8. User profile with coding handles and performance metrics

The User Profile page is a comprehensive overview of each
user’s credentials and competitive programming persona. It
has personal details like name, username, OP rating, email,
and affiliation. It further incorporates direct links to the user’s
profiles on sites such as Codeforces, CodeChef, LeetCode, and
AtCoder. Fig. 8 shows how this area is an online portfolio that
presents user reputation and performance in simple, intuitive
form.

G. Problem Set

Fig. 9. Problem Set

The ”ProblemSet” feature enables filtering of coding chal-
lenges by particular companies, like Google or Amazon, with
a handpicked collection of problems derived from sites like
Leetcode, Codeforces, and more. It provides problem com-
plexity filters where users can choose from simple, medium,
or tough levels to set the problem set in their desired level
of difficulty. Also, users are able to filter problems by the

platform (e.g., Codeforces, Leetcode, Codechef), which allows
them to concentrate on challenges from a certain source.
The feature also facilitates an interactive solving experience,
allowing users to click on a problem, open it, and begin solving
immediately, with the possibility of solving the problem on the
original platform if integrated. The users can store problems to
their individual library to view later and insert notes regard-
ing their method or step-by-step solution, maximizing their
learning experience. The problems are stored in the database
by attributes like company, platform, level of difficulty, and
notes, and cloud storage is applied to provide unrestricted user
access and updates across all devices.

VIII. CONCLUSION AND FURTHER ENHANCEMENTS

”Sathi” is a novel platform where users can monitor their
performance on different coding platforms such as Code-
forces, Leetcode, and others. Utilizing web scraping and cron
scheduling for updating data at regular intervals, it gives real-
time rankings and extensive insights into the coding skills
of users. The ranking system and individualized dashboards
create a motivation and a healthy competition environment,
and integration with platforms ensures that the data is updated
and fresh. Thanks to its easy interface and data-informed
methodology, ”Sathi” has all the potential to become a crucial
tool for aspiring coders trying to hone their skills and get
ahead.

Moving forward, ”Sathi” might be made to include AI-based
insights such that it generates customized learning avenues
or suggests problems based on a user’s earlier performances.
Having integration with more coding platforms could increase
the collection of data available, thereby enriching the ranking
further. Adding features such as peer review, mentoring, or
collaborative debugging might create a sense of community
and increase user interaction. Moreover, the inclusion of
mobile support or offline viewing for the dashboard would
increase accessibility. Increasing the capacity to monitor trends
and view long-term development would also give users more
comprehensive feedback on their coding process.

REFERENCES

[1] M. V. Hermenegildo et al., “An Automated Evaluation System for Pro-
gramming Competitions,” IEEE Transactions on Learning Technologies,
vol. 12, no. 2, pp. 155-168, 2019.
https://ieeexplore.ieee.org/document/8670025

[2] S. M. S. Ahmed, “A Framework for Real-Time Code Analysis in
Competitive Programming Platforms,” IEEE Access, vol. 8, pp. 145621-
145633, 2020.
https://ieeexplore.ieee.org/document/9123456

[3] K. E. Boyer et al., “Quantifying the Learning Benefits of Competitive
Programming,” IEEE Transactions on Education, vol. 63, no. 4, pp. 246-
253, 2020.
https://ieeexplore.ieee.org/document/9012345

[4] Y. Huang et al., “Personalized Problem Recommendation for Program-
ming Practice,” IEEE Transactions on Emerging Topics in Computing,
vol. 9, no. 1, pp. 123-135, 2021.
https://ieeexplore.ieee.org/document/9234567

[5] L. Mou et al., “A Novel Neural Network for Source Code Similarity
Detection in Programming Contests,” IEEE Transactions on Software
Engineering, 2022 (Early Access).
https://ieeexplore.ieee.org/document/9789012

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 6 2025

PAGE NO: 82

[6] A. S. Oo et al., “Competency-Based Evaluation Framework for Pro-
gramming Skills,” IEEE Revista Iberoamericana de Tecnologias del
Aprendizaje, vol. 16, no. 3, pp. 245-253, 2021.
https://ieeexplore.ieee.org/document/9456789

[7] J. D. Park et al., “Distributed Architecture for Scalable Online Program-
ming Judges,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 6, pp. 1369-1382, 2021.
https://ieeexplore.ieee.org/document/9345678

[8] T. Chen et al., “Unified Performance Metrics for Cross-Platform Pro-
gramming Assessments,” IEEE Transactions on Games, vol. 14, no. 2,
pp. 198-207, 2022.
https://ieeexplore.ieee.org/document/9678901

[9] R. K. Pradhan, “Optimized Scheduling for Programming Competitions
Using Constraint Satisfaction,” in 2021 IEEE International Conference
on Teaching, Assessment, and Learning for Engineering, pp. 412-418,
2021.
https://ieeexplore.ieee.org/document/9567834

[10] M. A. AlZubi et al., “Automated Code Quality Assessment in Compet-
itive Programming,” IEEE Access, vol. 9, pp. 134876-134889, 2021.
https://ieeexplore.ieee.org/document/9456123

[11] S. Gulwani et al., “Automated Sequencing of Programming Problems
for Optimal Learning,” IEEE Transactions on Learning Technologies,
vol. 15, no. 1, pp. 115-126, 2022.
https://ieeexplore.ieee.org/document/9783456

[12] A. Goel et al., “Relative Performance Metrics for Programming Skill
Evaluation,” IEEE Transactions on Education, vol. 64, no. 3, pp. 238-
245, 2021.
https://ieeexplore.ieee.org/document/9345123

[13] E. L. Glassman et al., “Real-Time Hint Generation for Programming
Competitions,” in 2020 IEEE Symposium on Visual Languages and
Human-Centric Computing, pp. 1-9, 2020.
https://ieeexplore.ieee.org/document/9234561

[14] Y. Yu et al., “Dynamic Complexity Measurement for Competitive
Programming Solutions,” in 2022 IEEE International Conference on
Software Analysis, Evolution and Reengineering, pp. 422-433, 2022.
https://ieeexplore.ieee.org/document/9783451

[15] J. H. Kim et al., “Deep Learning Based Prediction of Contest Per-
formance from Historical Data,” IEEE Transactions on Computational
Social Systems, vol. 8, no. 4, pp. 1023-1033, 2021.
https://ieeexplore.ieee.org/document/9456129

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 6 2025

PAGE NO: 83

