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Abstract

Epilepsy affects over 50 million people worldwide and
is marked by recurrent, unpredictable seizures. Early
detection and accurate forecasting are vital for
improving patient safety and clinical outcomes. This
study introduces DIVYA(Detection and Interpretation
of Vulnerabilities in Youthful Awareness), a deep
learning-based framework for both real-time seizure
detection and future seizure risk prediction using EEG
signals. It employs two specialized models trained on
CHB-MIT Scalp EEG data: a 3D CNN for seizure
detection and a 1D CNN-LSTM hybrid for forecasting
pre-ictal states with time estimation. EEG recordings
from raw .edf files are preprocessed into 3D
spatiotemporal segments before classification. For
interpretability, Grad-CAM visualizations highlight
key EEG channels contributing to predictions.
Preliminary results show promising accuracy,
demonstrating DIVYA’s potential for real-time,
patient-centric seizure monitoring.
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1. Introduction

Epilepsy is one of the most prevalent
neurological conditions worldwide, marked by
recurring, often sudden seizures resulting from
abnormal electrical neural activity in the brain
[1]. Despite the availability of anti-epileptic
drugs, nearly one-third of patients continue to
experience uncontrolled seizure [4], posing
severe risks to health, mobility, and daily life. In
recent years, research has shifted toward towards
Al based predictive systems capable of
providing advance warning before seizure occur.
Such systems offer immense potential for
reducing injury risk for sudden fall, improving
autonomy, and even enabling adaptive, drug
delivery or neuro-stimulation therapies [5].
Electroencephalogram (EEG) signals remain the
gold standard for non-invasive seizure
monitoring due to their high temporal resolution
and direct representation of brain -electrical

activity [6]. However, interpreting EEG
manually is time-consuming and requires expert
neurologists. Advances in machine learning
particularly deep learning have made it feasible
to automate seizure detection and even forecast
seizure onset with increasing accuracy [7], [8].
yet, most existing models focus either on seizure
detection or risk prediction, Rarely integrating
both into a single framework capable of real-
time operation and interpret-ability.

In this study we introduce DIVYA, a unified
deep learning pipeline for seizure management
using EEG signals. The system integrating two
independently trained CNN models: One 3D
CNN model for detecting ongoing seizures, and
another 1D CNN-LSTM hybrid model for
predicting seizure risk along with an
approximate time estimate. By  employing
volumetric analysis of EEG segments and
incorporating explainability through gradient-
based class activation mapping [3]. DIVYA aims
to not only provide accurate predictions but also
foster clinical trust through transparent decision-
making.

The proposed method is evaluated on the
publicly available CHB-MIT Scalp EEG dataset
[2], and its performance is benchmarked against
conventional and state-of-the-art methods [7],
[9]. Our results suggest that this dual-stage
pipeline can serve as a foundation for intelligent,
continuous EEG monitoring systems capable of
enhancing both clinical workflows and patient
outcomes.

2. Related Work

The intersection of machine learning and EEG-
based seizure prediction has been extensively
studied over the past two decades. Early
contribution, such as Shoeb and Guttag’s
pioneering work [2], applied classical machine
learning methods to seizure detection from EEG
signals. Although effective at identifying
seizures near or at onset, such methods lacked
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mechanisms for long-term risk forecasting,
which is crucial for proactive intervention.

More recent approaches have explored the use of
deep learning, particularly convolutional neural
networks(CNNs), to extract complex
spatiotemporal patterns from EEG data. Ziyu
Wang at el. Proposed a novel multi-scale dilated
3D CNN architecture to enhance seizure
prediction performance through improved
temporal and spatial feature extraction [10].

Despite its high predictive accuracy, the model
lacked interpretability and did not account for
long-term forecasting.

Efforts to address interpretability have gained
momentum in recent years. Roy et al.
emphasized the importance of integrating
explainable mechanisms in seizure forecasting
models, especially for pediatic populations [11].
Similarly, Khan et al. Conducted a
comprehensive review od explainable Al in
pediatric epilepsy and underscored the consistent

lack of transparent models in current research [2].

Acharya et al. Introduced probabilistic risk
modeling for EEG-based epilepsy analysis,
focusing on forecasting likelihood [13]. While

insightful, their work called out a significant gap:

the lack of integration between seizure risk
scores and practical user-facing tools for patients
or clinicians.

Zhou et al. Proposed a CNN-LSTM framework
that first extracts spatial features through
convolutional layers and then models temporal
dependencies using LSTM layers for seizure
prediction [15]. Their results demonstrated
improved temporal modeling compared to
standalone CNNs, highlighting the importance
of sequential dependencies in EEG.

Talathi et al. applied a ConvlD + LSTM model
specifically  for time-series bio  signal
classification, showing that the hybrid approach
outperforms pure CNN or LSTM models in
capturing both  signal morphology and
progression over time. This study supported the
feasibility of such lightweight models in real-
time seizure prediction.

A broader view is offered by Saadoon et al. In
their scoping review of ML and DL methods for
seizure prediction [14]. Their analysis revealed
that most models struggle to combine spectral
and temporal EEG features effectively and often
fall short in applying them towards future risk
prediction. Also they highlighted that while
many studies focus on either CNNs or RNNs
independently, hybrid models remain

underutilized despite their proven capabilities to
model spatiotemporal correlations a gap that
justifies further investigation into these
architectures.

3. Methodology
3.1 Datasets

The proposed model was developed and
evaluated using CHB-MIT Scalp EEG Database,
a publicly available dataset by Massachusetts
Institute of Technology (MIT). This dataset
comprises scalp EEG recording from 23
pediatric patients with intractable seizures,
recorded at 256 Hz sampling rate with 23-24
EEG channels per subject. Each .edf file
represents one hour of continuous recording and
includes annotations of seizure onset and offset.

we selected a subset of patients based on the
following criteria:

I.  File containing at least one clinically
confirmed seizure were the highest priority.

II.  Selected files only have 23 EEG channels.

III. Seizure duration of at least 30 minutes to
ensure long enough preictal periods.

IV. Clear annotation of seizure onset time is
necessary to allow for accurate labeling.

The selected EEG files were manually mapped
into preictal (30 minutes before seizure) and
interictal (normal, non-seizure) categories using
the summary.txt seizure metadata provided in
the dataset.

3.2 Segmentation and Preprocessing

To train the seizure risk forecasting model
(Figure 1), we used preictal segments extracted
from multi-channel EEG signals stored in .edf
format. Each EEG recording was resampled to
256 Hz and filtered using a bandpass filter from
0.5 to 70 Hz and a filter centered at 60 Hz to
remove line noise. We utilized the MNE-Python
library for EEG signal handling and filtering.

Each EEG recording was segmented into 30-
second non-overlapping windows, yielding 7680
samples per segments (30s x 256 Hz). We
retained only those EEG files where seizures
lasted long enough to ensure a sufficient preictal
duration (More than 30 minutes) , with preictal
intervals automatically annotated based on the
known seizure onset times retrieved from the
summary.txt file.

Each segment was labeled as 1 (preictal) is it
occurred within the annotated preictal window
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prior to seizure onset, and as O (interictal) if it
fell outside this range. To mitigate class
imbalance, interictal segments were under-
sampled to match the number of preictal
segments, thus maintaning a balanced dataset.

Before input to the model, each segment was
standardized  channel-wise using  z-score
normalization:

The final input shape for each segment was
(7680, 23), representing 7680 time steps across
23 EEG channels.

The Seizure detection model (figure 2), we
extracted labeled EEG segments from multi-
channel recordings stored in .edf format. Each
EEG files was processed using the MNE-Python
library, resampled to 256 Hz, and filtered using a
bandpass filter from 0.5-70 Hz along with a
notch filter at 60 Hz to eliminate line noise.

Each EEG signal was segmented into 30-seconf
non-overlapping windows, yeilding 7680
samples per segments (30 s x 256 Hz), across 23
EEG channels. Segments were retained only if
the corresponding EEG file was annotated with
seizure events in the summary.txt files.
Segments overlapping with a seizure event were
labeled as 1 (seizure), and all others as 0 (non-
seizure).

To address class imbalance, the number of non-
seizure (majority) segments was under-sampled
to match the number of seizure segments,
producing a balanced dataset.
Each segment was standardized channel-wise
using z-score normalization:

x—p'

a

ZI

Where # and © are the mean and standard
deviation of each EEG channel respectively.

Finally, all preprocessed segments and their
labels were saved in NumPy .npy format
(X_dlLnpy) for EEG data, y_seizure dl.npy for

labels), which served as input to a 3D
convolutional neural network for seizure
classification.

The final input shape per segment was (1, 23,
7680, 1), to match the expected 3D-CNN input
dimensions.

Raw edf EEG file Raw edf EEG file

N

<€ Resampled 0 256 HZ >

S

<__Resampled to 256 HZ 3

Bandpass Filter (0.5-70Hz)
+ Notch Filter (60Hz)

Bandpass Filter (0.5-70Hz)

+ Notch Filter (60Hz)

Channel-wise z-score
Normalization
(across each 30s window)

Channel-wise z-score
Normalization

Segment into 30s
windows (7680 x 23)

Segment into 30s
windows (7680 x 23)

Transpose -> (7680, 23)
(for LSTM + Conv1D input)

Label:
Non-
Seizure
Label: Label: =0
Preictal interictal

i 20 J, }

Save as X_dl.npy and
i l y_seizure_dl.npy
Pass into Conv1D + LSTM Model l
l Input Shape > (1, 23, 7680, 1) for
CN

[ Predict Risk (0 to 1 probability) J

Figure 1 Figure 2

3.3 Model Architecture

This study presents a dual-model system
designed to support both real-time seizure
detection and proactive seizure risk forecasting
using electroencephalography (EEG) data. Two
deep learning models have been developed and
optimized independently for their respective
objectives :

I. A 3D convolutional Neural Network (3D
CNN) for seizure detection, trained to
identify preictal and ictal patterns in EEG
segments.

II. A hybrid 1D Convolutional Neural
Network (ConvlD) followed by Long
Short-Term Memory (LSTM) layers for
forecasting seizure risk, trained to capture
early predictive patterns from continuous
EEG recordings.

These models operate on segmented EEG
windows preprocessed from .edf files and are
integrated into a full-stack user interface that
accepts uploads and delivers patient-specific
analysis and explainability outputs.
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3.3.1 Seizure Detection Model (3D CNN)

The seizure detection module employs a deep
3D CNN to capture both spatial and temporal
dynamics inherent in multichannel EEG signals.
Input EEG data is segmented into non-
overlapping 30-second windows, corresponding
to 7680 time samples across 23 channels at 256
Hz sampling frequency. Each segment is
reshaped to a 5D input tensor of shape (1, 23,
7680, 1) to match the 3D convolutional input
format. The complete architecture can be
understand with the Figure 3.
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Figure 3

The network architecture, as illustrated in Table
1 as well with more details, begins with two
successive Conv3D layers, interleaved with
BatchNormalization and MaxPooling3D
operations. This is followed by a Flatten layer
and two fully connected (Dense) layers,
including a final sigmoid output node for binary
classification.

Table 1: Architecture of the Seizure Detection
CNN model

3.3.2 Seizure Risk Forecasting Model (ConviD
+ LSTM)

To complement the detection pipeline with
predictive capability, a hybrid deep learning
model combining 1D convolutions and LSTM
units is designed for seizure risk estimation. This
model takes 30-second interictal EEG windows
(also of shape 7680 x 23) and forecasts the
probability of a seizure occurring imminently
(preictal condition). Which can be observe with

the Figure 4.
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Input Shape ConviD ConviD
(7680, 23) (32 filters, BatchNormalization (64 filters, kernel_size=5,
kernel_size=5, Rel .U)
ReLU) I

Dense LST™
(32 units, (units=64,
activation=RelU) return_seg=False)

Dense (1 unit,

sigmoid) Dropout (0.3)

Figure 4

Initially, the input is passed through a Conv1D
layer to extract frequency-based features across
channels. A MaxPoolinglD layer reduces the
temporal dimension to enhance computational
efficiency. Subsequently, an LSTM layer models
temporal dependencies and sequential variations.
The network concludes with dense layers and a
sigmoid output neuron.

Table 2: Architecture of the ConviD + LSTM Risk
Prediction Model

Layer Output Parameters Layer Output Parameters
Shape Shape
Conv3D(32 filters, | (1,21, 7678, 3220 Conv1D(32 filters) (5118, 32) 2240
kernel=3x3x1) 32) BatchNormalization (5118, 32) 128
BatchNormalization | (1,21, 7678, 128 MaxPooling1 D (2559, 32) 0
32) LSTM(64 units) (64,) 24832
MaxPooling3D (1,10, 3839, 0 Dropout (0.5) (64,) 0
32) Dense (64 units) (64, 4160
Conv3D(64 filters, (1,8, 3837, 18,496 Dropout (0.5) (64, 0
kernel=3x3x1) 64) Dense ( 1 unit, (1, 65
BatchNormalization (1, 8, 3837, 256 sigmoid)
64)
MaxPooling3D (1.4,1918,64) 0 The primary output is a Ttisk score
Flatten _ (491008,) 0 € [0,1], which can be interpreted as the
Dense(128 units) (128,) 62,849,152 o . . .
likelihood of an oncoming seizure. A higher
Dropout (0.5) (128, 0 . . o .
- value signals increased probability and is
Dense(1 unit, (1,) 129 . . .
sigmoid) visualized through a temporal risk profile.

The model outputs a probability score indicating
the likelihood of seizure activity. A decision
threshold of 0.5 is used during inference to
classify a segment as seizure or non-seizure.

3.3.3 Design Considerations

Both models utilize BatchNormalization to
accelerate convergence and Dropout layers for
regularization. The models are trained using the
Adam optimizer with binary cross-entropy loss.
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The decision to split seizure detection and
forecasting into separate models offers better
specialization and interpretability.

To facilitate practical depolyment, both models
were integrated into a Flask-based GUI system
allowing clinicians to upload .edf EEG files,
generate risk and detection reports, and view
Grad-CAM based explainability overlays.

3.4 Explainability

Explainability in deep learning models is a vital
requirement in biomedical domains, especially
when deployed in clinical environments where
trust, transparency, and traceability of decisions
are crucial. To facilitate this, we implemented
Grad-CAM (Gradient-weighted Class Activation
Mapping)-based visual explanation strategies for
both seizure detection and seizure risk
forecasting  models. These  visualization
technique highlight the spatiotemporal regions
within the EEG signals that contribute most
significantly to the model’s predictions, thereby
enhancing interpretability for clinicians and
domain experts.
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Figure 5: Flow of Explainability
3.4.1 Grad-CAM for Seizure Detection (3D CNN)

The seizure detection model employs a three-
dimensional convolutional neural network (3D
CNN) that processes 30-second EEG segments
in a spatiotemporal fashion. To interpret the
model’s decisions, we adapted Grad-CAM by
computing the gradient of the seizure class
prediction with respect to the output of the final
Conv3D layer [15]. These gradients are globally
averaged to obtain neuron importance weights,
which are then projected back onto the output
feature maps to generate a class-specific
localization map.

The resulting heatmaps are two-dimensional
(channel x time) saliency maps extracted from
the 3D feature volume. These maps highlight
which EEG channels (spatial dimension) and
which time frames (temporal dimension) most
significantly  contributed to the seizure
classification. In our experiments, the heatmaps
consistently illuminated activation in clinically
relevant channels during seizure events, often
correlating with know seizure onset zones (e.g.,
temporal and frontal lobes). The generated
visualization is overlaid on the EEG segment,
with the annotated seizure onset marked for
validation purposes(Figure 6).

o] 500 1000 1500 2000 2500 3000 3500

Figure 6

3.4.2 Grad-CAM for Risk Forecasting (ConviD
+ LSTM)

The seizure risk forecasting model is based on a
hybrid  architecture  consisting of one-
dimensional convolutional layers (ConvlD)
followed by long short-term memory (LSTM)
layers. While LSTMs are generally more
difficult to interpret due to their sequential state-
data, making them amenable to gradient-based
analysis [16].

We applied Grad-CAM at the Conv1D stage to
identify temporal intervals that are predictive of
future seizures. By computing the gradients of
the seizure risk score with respect to the Conv1D
activation, we derived attention maps that
localize risk-relevant segments within each 30-
second EEG window. These risk saliency maps
provide a temporal risk profile, visually
illustrating the likelihood of seizure development
in the near future. The enhances clinical
applicability, as early warning cues can be
aligned with intervention strategies.

A summary of the explainability framework of
risk forecasting model is shown in Figure 7,
where the flow of data from raw EEG to
visualization is represented. The final Grad-
CAM visualizations not only confirm the
internal consistency of the model predictions but
also provide neurophysiology insights into
patient-specific seizure patterns.
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Figure 7

Table 3: Conparison of Explainability Methods

Model Target Grad- Clinical
Layer CAM Relevance
Output
3D CNN Final Channel x Seizure onset
Conv3D Time localization and
Heatmap spatial focus
ConvlD+LSTM First Time- Risk
ConvlD based progression
Attentiom visualization in
preictal stages.
3.5 GUI Integration

To enhance accessibility and streamline clinical
usuability, a Flask-based graphical user interface
(GUI) was developed to support real-time EEG
analysis (Figure 8). The interface allows users to
upload raw EEG recordings in .edf format
directly through the browser and also we can
give the file a name as we want(Figure 9). Upon
upload, the backend system performs automatic
preprocessing, risk forecasting using the
ConvlD + LSTM model, and seizure detection
via the 3D CNN model.

4 EEG Rnalyzer

NG e chosen

Figure 8

Figure 9

Following analysis, the system generates two
interpretable reports: a seizure detection report

highlighting onset windows (Figure 10) and a
seizure risk prediction summary (Figure 11).

M seizure Report
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"

Grad-CAM - Segment 86

Figure 10

¥ Risk Forecast

Figure 11

These are accompanied by Grad-CAM based
heatmaps for each model, offering visual
explanations of model attention. All outputs,
including reports and heatmaps, are saved with
patient-specific identifiers and made avaiable for
download.

W Previous Petient Records

Figure 12

Additionally, The GUI provides dashboard,
which displays previously analyzed patient
records with pagination, and supports future
integration into  clinical  decision-making
pipelines (Figure 12).

4. Results & Evaluation
4.1 Seizure Detection

The 3D Convolutional Neural Network (3D-
CNN) designed for seizure detection was
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evaluated using standard classification metrics
on the CHB-MIT Scalp EEG dataset. The model
achieved an accuracy of 92.4%, precision of
91.8%, recall (sensitivity) of 90%, and an F1-
score of 91%, demonstrating strong capability in
distinguishing seizure segments from non-
seizure ones (Figure 13).

Figure 13

The confusion matrix indicates a low false-
positive rate, and the Receiver Operating
Characteristic (ROC) curve yielded an Area
Under the Curve (AUC) of 0.94, signifying
excellent class separability (Figure 14).
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Train fcc
— val Acc

o 1 2 3 3 H 6 o 1 2 3 H s H

Figure 15

4.2 Risk Forecasting

The risk forecasting model, based on a hybrid
Conv1D + LSTM architecture, demonstrated the
ability to anticipate seizure events minutes in
advance. Risk scores were generated across non-
overlapping EEG segments (30s duration),
showing a consistent temporal risk trend leading
up to the seizure.

In notable test cases, the model successfully
identified high-risk segments up to 4 minutes
before the annotated seizure onset, offering
critical lead time for intervention. The maximum
observed seizure risk score was 0.89, and the
mean risk score for preictal segments was
significantly higher than interictal regions shown
in the figure 16. And also the ROC AUC score
come out to be 0.76.

B classification Report:
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Figure 16
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Figure 18: ROC Curve

Figure 19: Thygraccuracy and Loss graph of the trained
and actual values

To improve interpretability, Grad-CAM was
applied to the ConvlD layers, highlighting
temporal regions of EEG that influenced the
model’s risk prediction. These highlighted
segments correlated closely with clinically
significant pre-seizure dynamics.

4.3 Visualization and Explainability

To facilitate model transparency and clinical
validation, Grad-CAM heatmaps were generated
post-hoc for both the seizure detection and risk
forecasting models. For the 3D-CNN, the Grad-
CAM visualization illuminated spatiotemporal
EEG regions most relevant to seizure onset. For
the ConvlD + LSTM model, attention was
focused along the temporal axis, showcasing
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time-domain EEG segments where seizure risk
was elevated.

Each visualization included overlays of
annotated seizure onset markers (represented as
red dashed lines), enabling clear visual
correlation between the model’s focus and actual
clinical events. These explainability tools assist
clinicians in interpreting the Al's decision-
making process, thereby enhancing user trust
and safety.

] Grad-CAM - Segment 86

o 500 1000 1500 2000 2500 3000 3500

Figure 20

For the Seizure detection The generated grad-
CAM heatmap (Figure 20) is overlaid on the
selected EEG segment, with a red vertical line
making the actual seizure onset time. This
allows visual correlation between the model’s
high-activation regions and the clinically
annotated events, thereby validating the model’s
attention to seizure-relevant temporal features.
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Figure 21

Figure 21 illustrates the Grad-CAM output of
the risk forecasting model, where a sharp drop in
predicted seizure risk is observed around 2600
seconds. This decline indicates the model’s
ability to identify preictal transition period,
suggesting  that seizure risk  increases
significantly just before the event, aligning well
with clinical expectations.

Note: Grade-CAM visualizations were computed post-
hoc using the segments with the highest predicted
seizure risk. The red vertical lines indicate annotated
seizure onset times for comparison. These
explainability tools enhance transparency and support
clinician validation in practical deployments.

5. Discussion

The proposed dual-stage system offers a
significant step forward in EEG-based seizure
management by combining early risk forecasting
and real-time detection within a single,
interpretable framework. Unlike traditional
models which focus solely on seizure onset
detection, this system proactively alerts about
future seizure likelihood, providing critical lead
time for clinical response.

Compared to prior works in the field of EEG-
based seizure prediction and detection such as
the seminal work by Shoeb and Guttah (2010),
which employed classical machine learning
techniques for seizure onset detection, and more
recent deep learning based architectures like the
multi-scale dilated 3D CNN proposed by Wang
et al. (2023) our proposed framework introduces
several key innovations that address persisting
limitations. Specifically, while earlier models
demonstrated high seizure detection
performance, they often lacked real-time
applicability, early forecasting capabilities, and
most critically, interpretability, which remains
essential for clinical trust and adoption.

In contrast, our dual-stage system integrates
Grad-CAM based explainability tailored to each
model’s architecture. For the seizure detection
model (3D-CNN), Grad-CAM is applied across
spatiotemporal EEG representations, enabling
visualization of which channel-time regions
contributed most to the model’s classification of
a seizure. For the risk forecasting model
(ConvlD + LSTM), Grad-CAM is adapted to
highlight temporally sensitive regions that the
network associates with increasing seizure
probability in preictal statess. These visual
attributions not only improve  model
transparency but also provide a valuable
mechanism for clinician validation, aligning Al
outputs with domain expertise.

By enabling real-time .edf ingestion, automated
preprocessing, dual-model analysis, and visual
explainability, our approach overcomes several
of the shortcomings found in prior literature.
This positions the systems as a more
comprehensive, practical, and trustworthy
solution for both seizure prediction and detection
tasks in clinical and ambulatory settings.

8
PAGE NO: 692



COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 8 2025

6. Conclusion

This study presents DIVYA, a dual-stage deep
learning framework for real-time seizure
detection and forecasting using EEG signals. It
integrates a 3D Convolutional Neural Network
(3D-CNN) for detection active seizures and a
ConvlD + LSTM hybrid model for predicting
future seizure risk based on temporal EEG
patterns. Grad-CAM visualizations enhance inter
pretability by highlighting significant EEG
regions, supporting clinical insight and trust. The
system shows strong potential for improving
epilepsy care by enabling early warnings and
timely interventions. It is particularly useful in
low-resource or remote settings where
continuous expert monitoring is not available.
Beyound detection, DIVYA aims to align deep
learning predictions with clinical reasoning,
making it more accessible and applicable in
healthcare environments.Future work  will
explore federated learning to preserve patient
privacy across institutions and extend the
model’s generalized ability to use more diverse
datasets.
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