
Software Development with a Dynamic Web-Based Editor for
Prompt-Based Code Generation

Rupesh Kumar, Abhishek Kumar, Sandeep Kumar Kaswan, Vishesh Vaishnav

Computer Science & Engineering
Arya College of Engineering & I.T. India, Jaipur

Affiliated with Rajasthan Technical University (RTU) , Kota

Project Guide: Dr. Vibhakar Pathak (Associate Professor)

Head of Department (HOD): Dr. Akhil Pandy

Project Coordinator: Dr. Vishal Shrivastava (Professor)

1. Abstract:
Research on automated code generation technologies has intensified because of the growing need to develop
software faster. The document presents the complete workflow to create a dynamic web-based editor which lets
users build and run code using natural language commands. Our system employs large language model APIs in
development tools to make coding accessible for people from different backgrounds.

The system presents an original interface which lets users translate natural language commands directly into
code execution without needing to learn programming languages. The system provides users with a web-based
platform that everyone can use while running code in secure sandboxes and receiving feedback in real-time. The
system demonstrated through diverse user testing that prompt-based code generation helped users complete
tasks faster while reducing their mental workload.

Our analysis demonstrates that real-time code generation combined with natural language processing creates an
unprecedented breakthrough in human-computer interaction when programming. The shift in this programming
realm has far-reaching effects on how programming is taught and how organizations develop software and how
professionals handle coding tasks.

2. Introduction
The traditional software development approach demands deep domain understanding together with manual
work and expertise in syntax along with algorithms and problem-solving abilities that slow down
innovation for seasoned developers. The learning curve for numerous programming languages and
frameworks together with their associated tools creates substantial entry barriers which stop many
individuals from entering software development. The conventional software development cycle requires
extensive time and resource investments starting from requirement collection until the deployment phase.

The ongoing development of machine learning (ML) and natural language processing (NLP) technologies
shows great potential for automating major sections of the software development cycle. The use of large
language models (LLMs) which were trained with extensive code and natural language data has proven
their ability to produce code with precise syntax and semantics. This new programming model allows
developers to define their code requirements through natural language which could revolutionize
programming accessibility.

This study aims to achieve the following research goals:

1. A responsive web-based code editor should be designed and implemented to transform natural
language prompts into executable code.

2. The development process will establish adaptive prompt engineering systems that support zero-shot,
few-shot, and chain-of-thought prompting methods for different task complexities.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 5 2025

PAGE N0: 468

3. A user-friendly interface will be developed to provide selection, comparison and feedback
capabilities for generated code.

4. Evaluation of functional correctness and generation latency together with benchmark task
performance forms the basis of the study.Conduct comprehensive evaluation across benchmark
tasks to assess functional correctness, generation latency, resource usage, and cost efficiency

In this research project, a modern web-based coding platform taps into current technological enhancements. The
editor performs input processing together with necessary format adjustments and connects with language model
APIs (like OpenAI's ChatGPT and Google's Gemini) to generate functional code that reaches users immediately.
The system integrates an execution environment which allows users to execute their code and perform
validation tests to support an interactive development approach.

Our objective focuses on revolutionizing application development through three key elements of speed,
accessibility and intuitive functionality. The elimination of conventional roadblocks combined with decreased
mental effort enables us to attract a diverse group of users which includes students, entrepreneurs, domain
experts and citizen developers who lack extensive programming expertise. Our vision for the future sees
programming emerging as a communication method rather than an obstructive technical element.

3. Literature Review
Evolution of Code Generation Systems
Over the past decade, the process of transforming natural language into generated code has seen substantial
development. Metafor and other early systems established basic natural language-to-code translation through
pattern matching which depended on specific domain languages. Neural networks and transformer-based
architectures have introduced more advanced methods for code generation through recent technological
developments.
OpenAI's Codex alongside GitHub Copilot and Google's AlphaCode use large language models to understand
programming contexts before generating suitable code snippets. A study conducted by Chen et al. (2021)
demonstrated that Codex successfully handled 70.2% of programming tasks when users employed appropriate
prompting methods. Li et al. (2022) discovered that chain-of-thought prompting methods led to an improved
code generation accuracy of 20.4% in complex algorithmic challenges.

Integrated Development Environments and Code Generation
Visual Studio, Eclipse and JetBrains development tools have implemented basic code generation tools which
use templates and code completion. The features in traditional IDEs usually work to understand code syntax but
they do not analyze the meaning of code or its functional operations. The research by Hassan and Wang (2018)
found that beginners who use code assistance tools still face challenges with IDE complexity.

Web-based IDEs have grown in popularity because they provide easier access to users. Replit, Glitch and
CodeSandbox let people write and run code through their browser without needing any local installation. These
platforms serve to enhance programming accessibility particularly for educational purposes and initial
development projects and small projects. The platforms depend mainly on manual code writing because their
AI support features remain basic.

Natural Language Processing in Programming
The implementation of NLP technology in programming duties has experienced extraordinary progress.
OpenAI's development of ChatGPT alongside specialized coding models has proven that these language models
can generate intricate code for various programming languages with proper prompts. Through their research,
Vaithilingam and colleagues in 2022 showed how models now create connections between understanding
natural language and generating programming code.
Dakhel and his team at GitHub discovered in their 2023 study about Copilot that prompt engineering plays a
crucial role in code quality because structured prompts achieve 35% better results than unstructured queries. The
current situation presents difficulties for producing code that meets essential standards regarding security
alongside performance and sustainability concerns.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 5 2025

PAGE N0: 469

Research Gap
Standalone code generation models lack proper integration with production-ready development environments
despite their advanced capabilities. The current solutions present the following limitations:

1.Real-time execution integration with prompt-based code generation remains problematic
2.The system lacks both thorough error management and feedback methods
3.There is no implemented system to protect the execution of code generated from untrusted sources
4.The system does not yet provide interfaces which can adapt to various user experience levels
including beginners and professionals

The proposed research introduces a dynamic web-based system which implements prompt-to-execution
capabilities while maintaining user security and system responsiveness. Through this system, users will
experience programming tasks in a new way that makes development quicker and simpler while providing
accessibility to non-technical users.

4. System Design :
Architecture Overview
The system design features a modular and scalable structure to achieve high responsiveness alongside security
and flexibility. The system architecture contains three fundamental elements known as Frontend Interface,
Backend Service, and Execution Engine.

Frontend Interface
The frontend solution uses React.js as its development framework to create a fast and interactive interface which
can be extended through modules. The platform's essential elements consist of:

• Monaco Editor integration enables users to benefit from syntax highlighting alongside auto-indentation
and basic code formatting features
• A special results console function helps users track execution outcomes and error notifications
• Users can provide text-based instructions through the natural language input field
• Users can preview their code and make changes before running it in the execution engine

Backend Service
The Node.js implementation of the backend service combines with Express.js to handle REST API management
operations. The system performs the following functions:

• API endpoints are available to accept user prompts
• The system communicates with AI models using OpenAI API to produce code results
• The system transfers user-modified code to the Execution Engine
• The system performs input validation along with sanitization and optimization before processing data

Execution Engine
The Execution Engine operates through Docker containers to establish safe and independent code execution
areas. This element provides the following capabilities:

• Supports multiple programming languages through Python and JavaScript as its primary focus
• Applies resource limitations of CPU, memory and execution time to stop system abuse
• The Execution Engine sends its results to the Backend Service for presentation on the frontend

The system architecture divides components to achieve superior management and both vertical and horizontal
scalability and allows system updates without causing downtime.

Workflow
The system's operational workflow proceeds as follows:

1. Prompt Input:
o User enters natural language instructions in the prompt field
o Frontend validates input and prepares it for backend processing

2. Backend Communication:
o Prompt is encapsulated in an HTTP request and sent to the backend through a secure API endpoint

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 5 2025

PAGE N0: 470

3. Prompt Structuring & AI Interaction:
o Backend preprocesses the prompt to enhance clarity and structure
o Processed prompt is forwarded to the AI model API
o AI model interprets the instructions and generates appropriate code

4. Code Reception and Display:
o Generated code is returned to the frontend and displayed in the editor
o Users can review, edit, or refine the code as needed

5. Execution Request:
o Upon user initiation, the code is sent to the backend for execution

6. Secure Code Execution:
o Execution Engine launches an isolated Docker container
o Code is executed with controlled resource allocation
o Output streams (stdout/stderr) and execution metrics are captured

7. Real-Time Output Display:
o Execution results are streamed back to the frontend console
o Any errors or warnings are formatted for clarity

8. Session Continuation or Restart:
o Users can modify code, submit new prompts, or end the session

This workflow enables a complete prompt-to-execution cycle with feedback mechanisms at each stage, allowing
for iterative development.

5. Implementation Details
Frontend
The React.js frontend development process utilizes its component-based structure to build scalable and
interactive user interfaces. Material UI (MUI) delivers responsive clean and device-friendly layouts through pre-
styled components that comply with Google's Material Design standards.

The essential editing functions of Monaco Editor operate as the engine for Visual Studio Code as its core. This
system allows users to work with professional-grade capabilities which include:

 Syntax highlighting for multiple programming languages

 Intelligent auto-completion suggestions

 Real-time error detection

 Customizable themes and appearance

 Multi-language support
The Axios HTTP library serves as an intermediary for client-server communication which enables asynchronous
API requests to transfer information to backend systems. The library performs error handling and response
parsing which simplifies the process of sending data between different system elements. Additional frontend
implementation details include:

 State Management: React Context API manages application-wide states including user sessions, code
data, and execution status

 Responsive Design: MUI's responsive grid system and media queries ensure optimal viewing and
interaction experiences across devices

 User Experience Enhancements: Theme toggling (light/dark mode), coding templates, and real-time
execution status indicators improve user interaction

Backend
The server-side application implements Node.js integrated with the Express.js framework to build a scalable and
high-performance system. The Express.js framework operates with minimal resources to handle URL mapping
and middleware workflows and service connections.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 5 2025

PAGE N0: 471

The backend system connects with the OpenAI API to support AI-powered code generation features. The
system uses these models to evaluate user commands and generate coding recommendations while offering
debugging support and contextual learning tips.

The secure execution of user code is achieved through Docker containerization. Docker containers establish
separate environments that effectively shield the main operating system and other users from any potentially
harmful code. Through containerization, defective or malicious scripts will always be isolated within their
running environment.

Key backend features include:

 API Endpoints: Secure RESTful endpoints for code submission, execution requests, and AI-generated
results

 Logging and Monitoring: Integration of monitoring solutions like Prometheus and structured logging to
track API usage, error events, and container health

 Load Balancing: Implementation of Nginx or cloud-based solutions to efficiently distribute traffic
during high user loads

Security Considerations
Security is a paramount concern, particularly when executing user-supplied code and handling sensitive
information. The implementation includes several security measures:
Input Sanitization
 Validation: All user inputs undergo strict validation on both frontend and backend

 Sanitization: Special characters, malicious command strings, and suspicious payloads are removed or
escaped

 Parameterized Requests: Prevention of SQL injection and other code injection vulnerabilities
Resource Limitations
 CPU and Memory Quotas: Docker containers operate within defined resource boundaries to prevent

resource exhaustion

 Container Isolation: Network connectivity within containers is minimized to prevent unauthorized
communication

Execution Timeout
 Timeout Policies: Automatic termination of code execution after predefined time limits (typically 5-10

seconds)

 Monitoring Tools: Watchdog services detect and terminate aberrant processes
Authentication and Authorization
 User Authentication: Implementation of OAuth 2.0 or JWT (JSON Web Tokens) for secure login and

API access

 Role-Based Access Control: Restricted access to advanced features based on user authorization level
Information Confidentiality
 Data Encryption: HTTPS/TLS encryption for all client-server communications

 Temporary Storage: User code and execution results are temporarily stored and securely erased after
session completion

These measures collectively create a robust security framework that protects both the system and its users from
potential vulnerabilities and attacks.

6. Results
Evaluation Methodology
To rigorously assess the effectiveness of the proposed system, we conducted comprehensive testing across
diverse prompt types and programming complexities. The evaluation methodology included:

1. Test Dataset Creation: We developed a dataset of 100 programming prompts, distributed equally among
beginner, intermediate, and advanced difficulty levels. Prompts spanned multiple domains including:
o Algorithm implementation

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 5 2025

PAGE N0: 472

o Data structure manipulation
o Web development tasks
o System automation scripts
o API integration challenges

2. Evaluation Metrics: Performance was measured using the following metrics:
o Code Correctness: Functional accuracy of generated code
o Execution Success Rate: Percentage of code that ran without errors
o Generation Latency: Time from prompt submission to code display
o User Satisfaction: Qualitative feedback on usability and results

3. User Testing: We recruited 25 participants across three expertise levels:
o Novice programmers (n=10)
o Intermediate developers (n=8)
o Expert software engineers (n=7)

Participants were tasked with completing programming challenges using both traditional methods and our
prompt-based system, with performance metrics recorded for comparison.
Quantitative Results
The system demonstrated promising performance across multiple dimensions:

1. Code Generation Success Rate:
o 85% of prompts resulted in functionally correct code
o Success rates varied by complexity: 92% for beginner tasks, 83% for intermediate tasks, and 74%

for advanced tasks
2. Execution Performance:

o 78% of generated code executed successfully on first attempt
o After user modifications, successful execution rate increased to 91%
o Average execution time was 2.3 seconds, with 95% of tasks completing within 5 seconds

3. User Efficiency:
o Task completion time decreased by 67% compared to traditional coding methods
o Novice users showed the most significant improvement (83% time reduction)
o Expert users still benefited with a 42% reduction in implementation time

4. System Performance:
o Average prompt processing time: 1.2 seconds
o Average code generation time: 2.8 seconds
o Average container startup and execution time: 1.5 seconds

Qualitative Feedback
User feedback revealed several key insights about the system's usability and effectiveness:

1. Novice Users:
o Reported significant reduction in frustration and learning barriers
o Highly valued the ability to express programming needs in natural language
o Identified the system as an effective learning tool for understanding code structure

2. Intermediate Users:
o Appreciated time savings for routine programming tasks
o Noted that the system accelerated prototyping and proof-of-concept development
o Requested more advanced code explanation features

3. Expert Users:
o Found greatest value in automating boilerplate code generation
o Suggested improvements for handling complex architectural patterns
o Expressed interest in API/library integration capabilities

Overall, 88% of participants indicated they would incorporate the tool into their regular development workflow,
with particular enthusiasm for educational and rapid prototyping contexts.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 5 2025

PAGE N0: 473

7. Discussion
 Key Findings

The evaluation results demonstrate that our web-based prompt-to-code system effectively bridges
natural language understanding and code generation in a practical, user-friendly environment. Several
key findings emerge from our analysis:

o Democratization of Programming: The system significantly reduces barriers to entry for
programming tasks. Novice users who previously struggled with syntax and language-specific
rules could successfully complete tasks by expressing requirements in natural language.

o Productivity Enhancement: Even experienced developers benefited from rapid code
generation for common tasks, allowing them to focus attention on more complex aspects of
software development such as architecture and optimization.

o Learning Acceleration: The interactive nature of the system, where users can observe
generated code, modify it, and immediately see execution results, creates a valuable learning
loop that accelerates skill development.

o Contextual Understanding: The AI models demonstrated strong capability in interpreting
domain-specific requirements and generating appropriate solutions, suggesting potential
applications across specialized fields such as scientific computing, financial analysis, and
healthcare.

 Comparison with Existing Solutions
Our system offers several advantages compared to existing approaches:

o Integrated Environment: Unlike standalone code generators like GitHub Copilot or Tabnine,
our system provides an end-to-end workflow from prompt to execution in a single interface.

o Accessibility: Compared to traditional IDEs with code generation plugins, our web-based
approach eliminates installation requirements and technical setup, making it immediately
accessible across devices.

o Security Focus: The containerized execution environment provides stronger isolation than
browser-based code playgrounds while maintaining comparable convenience.

o Feedback Loop: The immediate execution and feedback mechanism creates tighter iteration
cycles than systems that only generate code without execution capabilities.

 Limitations
Despite promising results, several limitations warrant acknowledgment:

o Complex Software Architecture: The current system is less effective for generating
complex, multi-file applications with sophisticated architectures.

o Domain Specificity: Performance varies across domains, with stronger results in web
development and data processing than in specialized fields like embedded systems
programming.

o Resource Requirements: Container-based execution requires significant server resources,
potentially limiting scalability under heavy load.

o Model Dependencies: The system's effectiveness is tied to the capabilities of underlying AI
models, which continue to evolve rapidly.

 Ethical Considerations
The development of AI-assisted programming tools raises important ethical considerations:

o Skill Development: While reducing barriers to entry, there's a risk that overreliance might
impede fundamental programming skill development.

o Code Ownership: Questions around intellectual property and attribution become complex
when code is AI-generated.

o Security Vulnerabilities: Generated code may contain subtle security flaws not immediately
apparent to users lacking security expertise.

o Accessibility Gaps: While democratizing programming, disparities in access to computing
resources and high-speed internet could create new forms of digital divide.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 5 2025

PAGE N0: 474

8. Conclusion
A fresh web-based system has been developed in this study to convert natural language instructions into code
which establishes a connection between human language and programming execution. Through the combination
of advanced language models with secure execution environments our approach exhibits substantial potential to
make software development available to everyone while increasing programming speed.

During the experimental evaluation users of all programming expertise levels experienced better development
efficiency especially those who were new to programming. The system demonstrated high accuracy during
code generation while delivering a fast and user-friendly experience. The obtained results show that prompt-
based programming could transform education methods for computer science while improving professional
development and allowing domain experts to build software without needing extensive programming
experience.

The research needs to develop new methods that handle complex software architectures and performance
optimization in specific domains while optimizing the use of available resources. The educational value of the
system would increase through the inclusion of explainable AI components which deliver code design insights.

Developments in large language models together with expanding computational resources have brought our
system one step closer to making programming accessible to a larger user base through improved efficiency and
user-friendly interfaces.

9. Future Research
Several promising directions for future research emerge from this work:

1. Multi-file Project Support: Extending the system to handle complex, multi-file projects with proper
dependency management and architectural organization.

2. Collaborative Features: Implementing real-time collaboration capabilities to enable team-based
development through shared prompts and code editing.

3. Code Explanation: Developing AI-powered explanations of generated code to enhance educational
value and trust in automatic generation.

4. Performance Optimization: Improving container management and resource allocation to reduce
execution latency and increase system capacity.

5. Domain-Specific Extensions: Creating specialized prompt templates and models for domains such as
scientific computing, mobile app development, and IoT applications.

10. References

[1] Huang, et al. "A Survey on Large Language Models for Code Generation." arXiv:2406.00515.
[2] Chen, M., et al. "Evaluating Large Language Models Trained on Code." EMNLP, 2021.
[3] Brown, T. B., et al. "Language Models are Few-Shot Learners." NeurIPS, 2020.
[4] Bhavsar, et al. "Instruction Tuning for Secure Code Generation." arXiv:2402.09497.
[5] Radford, A., et al. "Improving Language Understanding by Gen...
[6] Huang, et al. "A Survey on Large Language Models for Code Generation." arXiv:2406.00515.
[7] Chen, M., et al. "Evaluating Large Language Models Trained on Code." EMNLP, 2021.
[8] Brown, T. B., et al. "Language Models are Few-Shot Learners." NeurIPS 2020.
[9] Bhavsar, et al. "Instruction Tuning for Secure Code Generation." arXiv:2402.09497.
[10] Radford, A., et al. "Improving Language Understanding by Generative Pre-Training." OpenAI 2018.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 5 2025

PAGE N0: 475

