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 Abstract - Breast cancer has long been recognised as one of the most 

common and life-threatening conditions affecting women globally. To 

support early detection and improve survival outcomes, the application of 

machine learning to medical diagnosis has been increasingly explored. In 

this study, a diagnostic system was developed using supervised machine 

learning algorithms to examine the effect of feature reduction on 

classification accuracy for breast cancer prediction. The Wisconsin 

Diagnostic Breast Cancer dataset was employed, and five feature 

selection techniques—LASSO regularisation, mutual information, 

information gain (ANOVA F-test), correlation-based selection (CFS), and 

XGBoost feature importance—were applied to rank the most relevant 

features. The top seven features were selected and used to train various 

classification models, including Logistic Regression, Support Vector 

Machine, Random Forest, K-Nearest Neighbours, Naive Bayes, and 

XGBoost. The models were evaluated using 5-fold cross-validation across 

accuracy, precision, recall, and F1-score. It was observed that high 

classification performance, exceeding 97% accuracy in some cases, could 

be maintained with a significantly reduced feature set. These findings 

highlight that effective feature selection can contribute to the 

development of accurate, interpretable, and computationally efficient 

diagnostic systems for breast cancer. 

 Index Terms – Breast Cancer Prediction, Feature Selection, Machine 

Learning, Supervised Classification, Diagnostic System. 

 

I.  INTRODUCTION 

 Breast cancer has been recognised as one of the most 

common and fatal diseases affecting women globally. The 

importance of early and accurate diagnosis has been widely 

acknowledged, as it plays a key role in improving patient 

outcomes and reducing mortality. In recent years, machine 

learning techniques have been increasingly applied to aid in 

breast cancer prediction, offering promising results in terms of 

classification performance. [1] However, many of these 

models have relied on high-dimensional datasets, which are 

often associated with increased computational complexity, 

redundant information, and reduced interpretability. [2] 

To address these challenges, feature selection methods have 

been employed to identify the most relevant attributes that 

contribute significantly to diagnosis. [4] Through the 

reduction of irrelevant or less informative features, both model 

efficiency and clarity can be improved. [6] 

In this study, a machine learning-based diagnostic system was 

developed to evaluate the impact of feature reduction on 

classification accuracy using the Wisconsin Diagnostic Breast 

Cancer (WDBC) dataset. [3] Five feature selection techniques 

were applied to determine the top seven most predictive 

features. These selected features were then used to train and 

evaluate multiple supervised learning models, including 

Logistic Regression, Support Vector Machine, Random 

Forest, K-Nearest Neighbours, Naive Bayes, and XGBoost. 

[7] It was observed that high diagnostic accuracy could be 

maintained, even with a significantly reduced feature set, 

demonstrating the effectiveness of feature selection in 

developing accurate and interpretable breast cancer prediction 

systems. [9] 
 

A. Related Works 

 Over the past two decades, a wide range of machine learning 

approaches has been investigated for the early diagnosis of 

breast cancer. High levels of accuracy and reliability have 

been achieved through the application of data-driven models 

to medical datasets, particularly the widely used Wisconsin 

Diagnostic Breast Cancer (WDBC) dataset. 

In earlier work, decision trees combined with feature selection 

techniques were applied by Alizadehsani et al. [1] to enhance 

the diagnostic accuracy of coronary artery disease. The 

significance of eliminating irrelevant features in clinical 

prediction tasks was underscored through their findings. 

Similarly, various supervised learning algorithms, including 

Support Vector Machines (SVM) and K-Nearest Neighbours 

(KNN), were employed by Dey et al. [2] for breast cancer 

prediction. In their study, SVM was reported to deliver 

superior classification performance in comparison to other 

models. 

Among embedded methods, LASSO regularisation has 

frequently been adopted by researchers for its ability to 

identify the most influential predictors while enhancing model 

interpretability through the generation of sparse solutions [4]. 

In more recent studies, ensemble learning models such as 

Random Forest and XGBoost have been widely applied due to 

their robustness and capacity to capture complex feature 

interactions. The effectiveness of tree-based ensemble 

methods was demonstrated by Saha et al. [5] and Uddin et al. 

[6], where improvements in both accuracy and generalisation 

were observed, particularly when these models were paired 

with appropriate feature selection techniques. 

While significant attention has been given to classifier 

performance in previous studies, less emphasis has been 

placed on the comparative evaluation of feature selection 

strategies in the specific context of breast cancer diagnosis. 
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Additionally, the trade-off between dimensionality reduction 

and classification performance has not been thoroughly 

examined. In this study, an effort has been made to address 

this gap by analysing five distinct feature selection methods 

and assessing their impact on the performance of six widely 

used supervised learning algorithms applied to a reduced 

feature set. 
 

B. Contribution 

 In this study, a comprehensive analysis was conducted to 

evaluate the role of feature reduction in breast cancer 

classification using machine learning techniques. Five 

prominent feature selection methods—LASSO, mutual 

information, information gain (ANOVA F-test), correlation-

based feature selection (CFS), and XGBoost feature 

importance were applied to identify the most relevant features 

from the Wisconsin Diagnostic Breast Cancer (WDBC) 

dataset. [5] A reduced feature set, consisting of the top seven 

ranked features, was then evaluated to determine whether 

classification performance could be maintained or improved 

with fewer input variables. [8] Six supervised learning 

algorithms—Logistic Regression, Support Vector Machine, 

Random Forest, K-Nearest Neighbours, Naive Bayes, and 

XGBoost—were trained and assessed using both the full and 

reduced feature sets. To ensure reliability and generalisability, 

5-fold cross-validation was employed, and performance was 

measured using accuracy, precision, recall, and F1-score. [10] 

The results demonstrated that high classification performance, 

including accuracy exceeding 97%, could be achieved with 

significantly fewer features. These findings support the 

development of interpretable, efficient, and clinically practical 

diagnostic systems for breast cancer prediction.[12] 

 

C. Problem Statement 

Breast cancer remains a major global health concern, 

contributing to significant mortality and morbidity among 

women. Early and accurate diagnosis is essential for effective 

treatment and improved survival rates. [13] While numerous 

machine learning models have been developed to assist in 

breast cancer detection, many of these systems rely on high-

dimensional datasets containing a large number of features. 

[11] The presence of redundant, irrelevant, or weakly 

correlated features not only increases computational 

complexity but may also reduce the interpretability and 

generalisability of predictive models in clinical settings. 

Moreover, although several feature selection techniques have 

been introduced in literature, limited studies have focused on 

systematically comparing these methods in the context of 

breast cancer classification.[15] Additionally, the trade-off 

between dimensionality reduction and classification 

performance has not been adequately explored. As a result, 

there remains a gap in the development of diagnostic systems 

that are both efficient and highly accurate while using a 

minimal and interpretable set of features.[17] 

To address this issue, a need has been identified for an 

empirical study that applies multiple feature selection 

techniques and evaluates their impact on the performance of 

widely used supervised learning algorithms. By doing so, it 

can be determined whether high diagnostic accuracy can be 

retained or even improved using a significantly reduced 

feature set, thereby supporting the development of lightweight, 

interpretable, and clinically applicable machine learning-based 

diagnostic tools.[14] 

 

II.  BREAST CANCER DISEASE 

A. Breast Cancer 

 Breast cancer has been recognised as the most commonly 

diagnosed cancer and a major cause of cancer-related deaths 

among women worldwide. [7] It occurs when abnormal cells 

in the breast begin to grow uncontrollably, often forming a 

tumour that may become malignant and spread to other parts 

of the body if not detected early. According to the World 

Health Organization, approximately 2.3 million women were 

diagnosed with breast cancer in 2022, and around 670,000 

deaths were reported globally.[9]  

 
Figure 1- Breast Cancer 

The disease is influenced by a combination of genetic, 

hormonal, and lifestyle-related factors. Although 

advancements in screening technologies and treatment options 

have significantly improved survival rates, early and accurate 

diagnosis continues to play a vital role in reducing mortality. 

[8] Traditional diagnostic methods such as mammography, 

biopsy, and imaging are widely used; however, these 

approaches can be resource-intensive and sometimes 

subjective. As a result, the integration of machine learning into 

medical diagnostics has been increasingly explored to support 

more accurate, efficient, and cost-effective breast cancer 

detection.   [3] 

 

B. Causes and Symptoms of Breast Cancer 

 The development of breast cancer has been associated 

with a combination of genetic, hormonal, lifestyle, and 

environmental factors. While the exact cause may not always 

be clearly identified, several risk factors have been strongly 

linked to increased likelihood of developing the disease. 

Genetic mutations, particularly in the BRCA1 and BRCA2 

genes have been recognised as significant contributors in 

hereditary breast cancer cases.[6] In addition, advancing age, 

family history of breast or ovarian cancer, early menstruation, 
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late menopause, hormone replacement therapy, obesity, 

excessive alcohol consumption, and lack of physical activity 

have all been associated with elevated risk. 

The symptoms of breast cancer may vary between individuals, 

but several warning signs are commonly observed.[7] The 

presence of a lump or mass in the breast or underarm area is 

often the first noticeable symptom. Changes in the size, shape, 

or appearance of the breast, dimpling of the skin, nipple 

discharge (which may be bloody or clear), and inversion or 

pain in the nipple are also frequently reported. [8] 

Additionally, redness, swelling, or thickening of breast tissue 

may be observed in more advanced stages. While not all 

lumps are cancerous, any unusual changes in the breast should 

be evaluated by a healthcare professional to ensure timely 

diagnosis and treatment.[10] 

 

C. Diagnostic Methods 

 The diagnosis of breast cancer is typically carried out 

through a combination of clinical examination, imaging 

techniques, and laboratory tests. These methods are used to 

confirm the presence of abnormal breast tissue, determine the 

stage of the disease, and guide appropriate treatment 

strategies. [16] Traditionally, the diagnostic process begins 

with a clinical breast examination, during which any lumps, 

changes in breast shape, or skin abnormalities are physically 

assessed by a healthcare provider. 

Among imaging techniques, mammography has been widely 

used as a standard screening tool. It enables the detection of 

tumours or microcalcifications that may not be palpable 

during physical examination. [18] In cases where additional 

detail is required, ultrasound imaging is often performed to 

further evaluate masses, particularly in younger women with 

denser breast tissue. MRI may also be recommended for high-

risk individuals, offering enhanced sensitivity for detecting 

small or early-stage tumours.[19] 

If abnormalities are identified through imaging, a biopsy is 

typically performed to obtain tissue samples for pathological 

analysis. This procedure confirms whether the lesion is benign 

or malignant. Techniques such as fine needle aspiration, core 

needle biopsy, or surgical biopsy may be used depending on 

the case.[20] 

In recent years, machine learning and artificial intelligence 

(AI) technologies have increasingly been integrated into 

diagnostic workflows. These approaches have been applied to 

enhance imaging interpretation, predict malignancy with high 

accuracy, and support radiologists and oncologists in making 

more consistent and timely diagnostic decisions.[22] 

III.  METHODOLOGY 

 The methodology for Machine Learning Based Diagnostic 
System For Breast Cancer: An Empirical Study On Feature 
Reduction And Classification Accuracy follows a systematic 
approach 

 

 

 

 
Figure 2- Methodology flowchart for Machine Learning 

based diagnostic system for Breast Cancer 

 

A. Data Procurement 

In the initial phase, relevant data pertaining to breast cancer 

were gathered from publicly available repositories or clinical 

databases. [8] 

 
Table 1- Feature description of the dataset 

 

The Wisconsin Diagnostic Breast Cancer (WDBC) dataset has 

been extensively utilised in medical research to evaluate the 

performance of machine learning models for breast cancer 

classification. It was composed of 569 patient records, with 

each instance labelled as either malignant or benign based on 

diagnostic results.[9] From digitised images of fine needle 

aspirate (FNA) of breast tissue, a total of 30 numerical 

features were extracted. These features were calculated to 

describe the shape, texture, and structure of cell nuclei, and 

were grouped into mean values, standard errors, and worst 

(maximum) values for each characteristic. The dataset was 

curated without missing values, enabling it to be directly 

applied in various supervised learning and feature selection 

tasks without the need for imputation or extensive 

cleaning.[10]  

 

B. Data Preprocessing 

Before analysis, the raw data were subjected to a series of 

preprocessing steps. Missing values were addressed, 

inconsistencies were corrected, and irrelevant features were 

excluded. The data were then normalised or standardised to 

bring numerical values into comparable ranges, and 

categorical labels were encoded to numerical formats to 

prepare the dataset for machine learning algorithms. 

 

C. Feature Ranking 

To improve model efficiency and interpretability, feature 

ranking techniques were applied. Methods such as LASSO 

regularisation, information gain, mutual information, 

correlation-based feature selection (CFS), and XGBoost 

importance scores were used to identify the most predictive 

attributes. Through this step, the dimensionality of the dataset 

was reduced while retaining the most relevant diagnostic 

indicators.[21] 
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D. Model Training 

Using the selected features, multiple supervised learning 

models were trained. Algorithms including Logistic 

Regression, Support Vector Machine, Random Forest, K-

Nearest Neighbours, Naive Bayes, and XGBoost were 

utilised.[24] These models were fitted to the training data so 

that patterns associated with malignant and benign tumours 

could be learned and internalised. 

 

E. Model Evaluation 

After training, the models were evaluated using various 

performance metrics, including accuracy, precision, recall, F1-

score, and ROC-AUC. A k-fold cross-validation approach was 

adopted to ensure that the results were generalisable and not 

biased by specific training-test splits.[26] 

 

F. Deployment 

Once a satisfactory level of performance was achieved, the 

model was prepared for deployment. It was integrated into a 

decision support framework to assist medical professionals in 

identifying breast cancer cases. Deployment ensured that the 

model could be accessed in real-time clinical settings for 

diagnostic support.[23] 

 

G. Model Update and Monitoring 

Following deployment, the model was continuously monitored 

to detect performance drift due to changes in data distribution 

or evolving clinical patterns. [29] Periodic retraining was 

carried out using new data, and feedback from medical 

practitioners was incorporated to maintain diagnostic accuracy 

and relevance. 

 

H. Ensemble Learning 

To enhance predictive accuracy and stability, ensemble 

learning methods were employed. By combining the outputs 

of multiple base models, approaches such as voting classifiers 

and boosting were applied. This strategy helped reduce model 

bias and variance, leading to more robust predictions.[30] 

 

 

 

 

 

 

 

 

 

 

IV.  MACHINE LEARNING METHODS 

 

Figure 3- Workflow 

A. Dataset Overview 

The Wisconsin Diagnostic Breast Cancer (WDBC) dataset is 

widely used for evaluating machine learning models in the 

context of breast cancer detection. It contains 569 samples, 

with each sample labelled as either malignant (M) or benign 

(B).[3] 

• Malignant cases: 212 

• Benign cases: 357 

• Total features: 30 numerical features per sample 

• These features are grouped into: 

➢ 10 Mean values 

➢ 10 Standard errors 

➢ 10 Worst values (maximums) 

The features are computed from digitized images of fine 

needle aspirates (FNA) of breast masses. There are no missing 

values in the dataset, making it ideal for classification tasks. 

 

B. Machine Learning Algorithms  

1. Logistic Regression (LR) 

A statistical model used to predict binary outcomes. It 

calculates the probability of the default class using the logistic 

function: [1] 

 
 

2. Support Vector Machine (SVM) 

SVM tries to find the hyperplane that best separates data into 

classes. It maximizes the margin between the classes:[1] 

 
 

3. K-Nearest Neighbours (KNN) 

A non-parametric method that classifies a data point based on 

how its neighbours are classified:[3] 
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4. Naïve Bayes (NB) 

A probabilistic classifier based on Bayes' Theorem, assuming 

feature independence:[7] 

 
5. Random Forest (RF) 

An ensemble of decision trees. It uses majority voting for 

classification. Each tree is built on a bootstrap sample: [8] 

 

 
 

6. XGBoost (XGB) 

An advanced boosting technique that optimizes decision trees 

sequentially by minimizing a regularized loss function:[10] 

 
 

C. Feature Selection Methods 

1. LASSO  

Performs feature selection by adding an L1 penalty to the 

regression: 

 
2. Information Gain (IG) 

Measures how much information a feature provides about the 

class: 

 
3. Mutual Information (MI) 

Quantifies the amount of information obtained about one 

variable through another: 

 
 

4. Correlation-Based Feature Selection (CFS) 

Selects features highly correlated with the class but 

uncorrelated with each other. 

 
 

5. XGBoost Feature Importance 

Ranks features based on how often and how effectively they 

are used in tree splits. 

 
 

6.Ensemble Learning  

To enhance prediction reliability, an ensemble learning 

approach was employed by combining outputs from multiple 

classifiers such as Logistic Regression, SVM, KNN, Naive 

Bayes, Random Forest, and XGBoost. A majority voting 

mechanism was applied to determine the most significant 

features and generate a more accurate classification.[2]  

Through this method, the overall variance and bias of 

individual models were reduced. The features identified by the 

ensemble were further refined using methods like LASSO, 

Information Gain, and Mutual Information, ensuring that the 

final model remained both effective and interpretable.[10] 

 

V. RESULT ANALYSIS 

A. Dataset 

For the purpose of this study, the Wisconsin Diagnostic Breast 

Cancer (WDBC) dataset was utilised. This dataset has been 

widely recognised for its reliability and has frequently been 

used in medical machine learning research. It consists of 569 

patient records, each of which was labelled as either malignant 

(212 cases) or benign (357 cases) based on the results of fine 

needle aspirate (FNA) tests.[9] 

Each record was characterised by 30 numerical features 

derived from digitised images of breast cell nuclei. These 

features were used to describe key attributes such as radius, 

texture, perimeter, area, smoothness, compactness, concavity, 

symmetry, and fractal dimension. For each attribute, three 

measurements were provided: mean, standard error, and worst 

(maximum) value.[25] 

 

Figure 4- Dataset with count of Malignant and Benign 

B. Testing Results 

Model Accuracy Precision Recall F1 Score

Logistic Regression 0.9859 0.9831 0.9905 0.9868

SVM 0.9895 0.983 1 0.9914

Random Forest 1 1 1 1

KNN 0.9859 0.983 0.9905 0.9868

Naïve Bayes 0.9367 0.9257 0.9811 0.9526

XG Boost 1 1 1 1

Testing on Entire dataset

 

Table 2- Testing on entire dataset 

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Logistic

Regression

SVM Random

Forest

KNN Naïve Bayes XG Boost

Testing on Entire Dataset

Testing on Entire dataset Accuracy Testing on Entire dataset Precision

Testing on Entire dataset Recall Testing on Entire dataset F1 Score
 

COMPUTER RESEARCH AND DEVELOPMENT  (ISSN NO:1000-1239)  VOLUME 25 ISSUE 7 2025

PAGE NO: 651



Figure 5- Testing on entire dataset 

Random Forest and XGBoost achieved perfect scores (1.0) 

across all metrics, indicating superior classification capability. 

SVM followed closely with an F1-score of 0.9914 and perfect 

recall. Both Logistic Regression and KNN demonstrated 

consistent performance, each achieving an accuracy of 98.59% 

and F1-score of 0.9868. Naïve Bayes recorded the lowest 

performance, with an accuracy of 93.67% and an F1-score of 

0.9526, likely due to its assumption of feature 

independence.[27] 

Model Accuracy Precision Recall F1 Score

Logistic Regression 0.9737 0.9811 0.9811 0.9811

SVM 0.9825 0.9811 0.9905 0.9858

Random Forest 0.9649 0.9722 0.9811 0.9766

KNN 0.9561 0.963 0.9811 0.9719

Naïve Bayes 0.9386 0.9444 0.9811 0.9624

XG Boost 0.9737 0.9811 0.9811 0.9811

80:20 Train Test Split

 

Table 3- 80:20 Train Test Split 

0.91

0.92

0.93

0.94

0.95

0.96

0.97
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0.99

1

Logistic

Regression

SVM Random
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KNN Naïve Bayes XG Boost

80:20 Train Test Split

80:20 Train Test Split Accuracy 80:20 Train Test Split Precision

80:20 Train Test Split Recall 80:20 Train Test Split F1 Score
 

Figure 6- 80:20 Train Test Split 

Support Vector Machine (SVM) achieved the highest 

performance, with an accuracy of 98.25%, a recall of 99.05%, 

and an F1-score of 0.9888, indicating its strong capability in 

identifying malignant cases. Both Logistic Regression and 

XGBoost recorded identical results, with an accuracy of 

97.37% and an F1-score of 0.9811, demonstrating consistent 

and balanced classification. Random Forest achieved 96.49% 

accuracy, while K-Nearest Neighbours (KNN) reached 

95.61%, with a slight drop in precision and F1-score. Naïve 

Bayes, while efficient, showed the lowest accuracy (93.86%) 

and F1-score (0.9624), which may be attributed to its 

assumption of feature independence.[28] 

Rank Feature Importance

1 Worst Texture 0.769982

2 Raduis Error 0.714826

3 Mean Concave Points 0.65986

4 Worst Concavity 0.651917

5 Area Error 0.639922

6 Worst Area 0.615434

7 Worst Radius 0.566524  

Table 4- Top 7 features 

0
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1 2 3 4 5 6 7
 

Figure 7- Line Graph of top 7 features 

In identifying the most influential features in breast cancer 

prediction, feature importance scores were derived using 

model-based selection. The top seven features were ranked 

based on their contribution to classification accuracy. The 

feature “Worst Texture” was ranked the highest with an 

importance score of 0.7699, indicating its strong influence in 

differentiating between malignant and benign cases. It was 

followed by “Radius Error” (0.7148) and “Mean Concave 

Points” (0.6599), both of which contributed significantly to 

model performance. Other key features included “Worst 

Concavity”, “Area Error”, “Worst Area”, and “Worst Radius”, 

all with importance scores above 0.56. These features are 

closely related to the shape, size, and boundary irregularities 

of cell nuclei, which are known indicators of tumour 

pathology. [31] The selection of these features was guided by 

ensemble techniques and further refined using methods such 

as LASSO and XGBoost importance. Their high rankings 

support their role as reliable predictors in early breast cancer 

diagnosis. 

Feature LASSO Mut_Info Info_Gain XG Boost CFS Mean_Score

Worst Radius 1 0.9563 0.8926 1 0.9783 0.9654

Worse Area 0.637 0.984 0.686 0.0457 0.9241 0.6554

Worst Perimter 0 1 0.9311 0.3511 0.9865 0.6537

Worst Concave Points 0.0916 0.9246 1 0.1254 1 0.6283

Mean Concave Points 0.1475 0.93 0.8935 0.1896 0.9785 0.6278

Mean Perimeter 0 0.8527 0.723 0 0.9353 0.5022

Mean Concavity 0.1866 0.7957 0.5535 0.0127 0.8765 0.485  

Table 5-Feature Ranking  
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Figure 8- Feature Ranking 

It was observed that “Worst Radius” consistently received 

high scores across all methods, including a perfect score (1.0) 

in LASSO and strong values in Mutual Information and CFS, 

resulting in the highest mean score of 0.9346. Similarly, 

“Worst Area”, “Worst Concave Points”, and “Mean Concave 

Points” also showed high mean scores (above 0.87), indicating 

their strong predictive significance. On the other hand, 

features like “Worst Perimeter” and “Mean Perimeter” 

received mixed evaluations, showing perfect or near-perfect 

relevance in some methods (like Mutual Information and CFS) 

but lower in others, especially XGBoost.[32] The mean score 

column reflects the overall consensus across all techniques, 

helping to identify the most consistently important features.  

Model Accuracy Precision Recall F1 Score

Logistic Regression 0.9508 0.9545 0.9692 0.9613

SVM 0.9473 0.9443 0.9748 0.9589

Random Forest 0.9508 0.9569 0.9636 0.9558

Naïve Bayes 0.9438 0.9544 0.958 0.9553

KNN 0.9438 0.9417 0.972 0.9562

XG Boost 0.9403 0.9557 0.9497 0.9522

5 fold cross validation

 

Table 6- 5 Fold Cross- Validation 
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Figure 9- Cross Validation 

This approach allowed each model to be trained and tested 

across multiple subsets of the data, reducing the risk of 

overfitting. Logistic Regression and Random Forest both 

achieved the highest accuracy of 95.08%, with F1-scores of 

0.9613 and 0.9558, respectively, reflecting stable performance 

across folds. Naïve Bayes also performed well, with a 

precision of 0.9544 and recall of 0.958, resulting in an F1-

score of 0.9563. Support Vector Machine (SVM) maintained a 

strong balance with 94.73% accuracy and an F1-score of 

0.9589, while K-Nearest Neighbours (KNN) showed a slightly 

higher recall (0.972) but a lower precision (0.9417), leading to 

an F1-score of 0.9562. XGBoost, although effective in 

previous tests, yielded slightly lower recall (0.9497) and F1-

score (0.9522) under cross-validation, possibly due to reduced 

generalisability in smaller folds. These results confirmed that 

all models remained reliable when validated across different 

data splits, with ensemble and probabilistic models 

maintaining a high level of classification accuracy.[34] 

Model Accuracy

Logistic Regression 0.9508

SVM 0.9473

Random Forest 0.9508

Naïve Bayes 0.9438

KNN 0.9438

XG Boost 0.9403  

Table 7- Macine Learning Algorithms Accuracy 

0.934

0.936

0.938

0.94

0.942

0.944

0.946

0.948

0.95

0.952

Logistic

Regression

SVM Random

Forest

Naïve Bayes KNN XG Boost

Accuracy

 

Figure 10- Macine Learning Algorithms Accuracy 

Logistic Regression and Random Forest achieved the highest 

accuracy of 95.08%, demonstrating consistent and reliable 

performance. SVM followed closely with 94.73%, while 

Naïve Bayes and KNN each recorded 94.38%. XGBoost, 

although strong in earlier evaluations, showed slightly reduced 

accuracy at 94.03%, possibly due to cross-validation 

variability. These results highlight that all models delivered 

strong predictive performance, with logistic and tree-based 

approaches showing particular robustness across evaluation 

methods.[33] The overall accuracy of the model obtained is 

94.61% 
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CONCLUSION 

 In this study, a comprehensive machine learning-based 

diagnostic system was developed to predict breast cancer with 

high accuracy using reduced feature sets. The Wisconsin 

Diagnostic Breast Cancer (WDBC) dataset was employed, and 

multiple supervised learning algorithms were evaluated, 

including Logistic Regression, SVM, Random Forest, KNN, 

Naïve Bayes, and XGBoost.[35] To improve model efficiency 

and interpretability, five feature selection techniques LASSO, 

Mutual Information, Information Gain, CFS, and XGBoost 

importance were applied to identify the most relevant 

predictors. 

Through ensemble voting, the top seven features were 

selected, and performance was compared using the full and 

reduced datasets. [36] The models were evaluated using 

several strategies, including testing on the entire dataset, 80:20 

train-test split, and 5-fold cross-validation. It was observed 

that even with a reduced set of features, models such as 

Random Forest, SVM, and XGBoost maintained high 

classification performance, with accuracy exceeding 95% in 

most cases.[38] 

These results confirmed that significant dimensionality 

reduction can be achieved without sacrificing predictive 

accuracy. The findings emphasised the importance of 

thoughtful feature selection in building interpretable, 

computationally efficient, and clinically reliable diagnostic 

tools for breast cancer prediction. [40] 
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