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Abstract—Skin cancer is the one of the deadliest diseases
among other diseases. Improving patient outcomes is largely
dependent on the early and precise detection of different skin
lesions. In this work, we access and compare the performance
of four well-known convolutional neural network (CNN) ar-
chitectures for multiclass skin tumor classification: VGG16,
MobileNetV2, DenseNet201, and EfficientNetB0. We train and
validate all models using the same experimental setup using the
ISIC dataset, which covering 9 specific types of skin lesions.
To ensure a fair comparison, a combination of quantitative and
visual analysis metrics are used to evaluate model correctness.
With a 91.44% classification accuracy, DenseNet201 outper-
formed the other models in terms of stability and performance.
These findings support the use of different CNN architectures in
clinical decision-making tools and offer a useful understanding
of their effectiveness in dermatological image classification.

Index Terms—CNN,DL

I. INTRODUCTION

Skin tumors persist as a common and quickly spreading type
of cancer in the world, representing a major public health con-
cern. Detecting skin lesions early and accurately is essential
to curb disease progression and boost patient outcomes. Con-
ventional diagnostic approaches are highly dependent on man-
ual dermoscopic examination, which can be time-consuming,
susceptible to inter-observer variability, and reliant on the ex-
perience of the dermatologist. In actual clinical environments,
the high volume of patients and the variability of cases may
cap the performance of manual diagnosis. These challenges
underscore the urgent requirement for automated, scalable, and
reliable solutions to support clinicians in the early detection
and classification of skin tumor. Here, artificial intelligence-
powered automated image-based classification systems present
the possibility of decreasing diagnostic mistakes, facilitating
clinical processes, and enhancing access to dermatological
services, especially in remote or underprivileged areas.

Identify applicable funding agency here. If none, delete this.

Healthcare image analysis has been significantly impacted
by recent advances in deep learning(DL). In particular, CNNs
have demonstrated an unmatched capacity for accurately
classifying images and identifying visual patterns. CNNs
can automatically generate hierarchical feature representations
from raw pixel data, which is different from traditional DL
techniques that use hand-designed features. Because of this
capabilities, CNNs are especially well-suited for applications
such as skin lesion categorization, where precise diagnosis
necessitates taking into account differences in shape, color,
and texture. Every year, at least one new CNN architecture
with variations in depth, design, computational cost, and
performance behavior is released. CNNs have been shown to
classify different kinds of skin lesions in dermatology with
performance comparable to that of human specialists.

There is still a large gap in knowledge regarding how vari-
ous CNN architectures fare under standardized conditions for
complicated multiclass classification tasks. Most of the recent
studies emphasize binary classification or test models across
varying datasets and training procedures, rendering direct
comparisons challenging. This work is inspired by the require-
ment of systematic comparison of various CNN models on a
standardized dataset for nine-class skin cancer classification
using multiclass classification. Our objective is to benchmark
four of the most popular CNN architectures—VGG16, Mo-
bileNetV2, DenseNet201, and EfficientNetB0—on the ISIC
dataset, under a standardized experimental framework. The
goal is to examine their performance not just in terms of
classification accuracy but also in computational efficiency,
training behavior, and generalization ability.Our investigation
into these trade-offs is designed to assist in the effective
selection and integration of DL models into clinical skin tumor
diagnosis workflows.
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II. LITERATURE SURVEY

This research [1] introduces a CNN-based classification
model for skin cancer based on 2,357 images over 9 different
types of skin tumor. The model uses several convolutional and
dropout layers to counteract overfitting as well as optimize
performance. In testing, the model reached an overall accuracy
of 77% on the test set, with additional testing indicating
that this rate could increase to 85% under optimization. The
performance was verified with metrics like specificity, confu-
sion matrix, and accuracy comparison between training and
validation data. The research also focused on the implemen-
tation of autotuning, data augmentation, and transfer learning
techniques to reduce overfitting and enhance generalization.
The relatively light architecture of the model allows for real-
time deployment, which makes it viable for actual clinical
application, particularly in resource-poor environments.

The research [2] offers a Machine Learning solution for
skin tumor identification and classification based on a CNN
trained on the HAM10000 dataset, consisting of 10,015 der-
matoscopic images of different skin lesions. Preprocessing of
the dataset was done by sorting images into individual class
folders, resizing images to 220×220 pixels, and employing
techniques for image augmentation to counter class imbalance
and increase data diversity. The dataset was divided in 80:20
ratio.The model contain Convolutional, pooling, ReLU acti-
vation, flattening, and fully connected layers. These layers all
aid in effective feature extraction, dimensionality reduction,
and final classification.

To achieve better convergence and lower loss,it uses 12
layers, Adam as the optimizer across 50 epochs. Further-
more, a comparison analysis, which contrasts the CNN model
compared to other technologies like transfer learning and
Generative Adversarial Networks (GANs), demonstrates the
ease of use and reliability of CNNs. Not withstanding the
benefits that GANs and transfer learning offer, such as the
generation of synthetic data and the use of pretrained model
will show the robust results when well trained on the specific
data.

This research [3] presents a DL system that is based on
sequential observation of melanocytic lesions to improve early
detection of melanoma, especially for high-risk patients. Un-
like typical single-time-point assessments, the proposed model
is trained on serial dermoscopic images with temporal evolu-
tion, enabling identification of subtle architectural changes in
melanomas. While clinicians and traditional algorithms have
proven to be inconsistent in diagnostic accuracy, the model
developed in this study was more specific and equally sensitive
but performed particularly well in distinguishing suspicious
evolution in benign lesions.

The algorithm also foresaw melanoma ahead of clinicians
in a high rate of cases, and therefore has potential as a

prognostic aid. Despite limitations such as impaired accuracy
for small or indeterminate lesions and overestimation through
malignancy-skewed dataset, the study points to the model’s
ability to reduce unnecessary biopsies and optimize lesion
surveillance. Comparison against 12 clinicians revealed that
the model either matched or surpassed numerous clinicians,
particularly in avoiding false positives. The approach is con-
cerned with the manner in which dynamic lesion data can
be worthwhile and suggests that such AI systems would
augment clinician decision-making, especially in high-risk
dermatological surveillance. Further work involves risk-based
biomarker identification and testing performance in real-world
clinical environments.

This work [4]suggests the utilization of a hybrid machine
learning framework combining ABCD rule-based feature ex-
traction, CNN, and K-means clustering algorithms for the
improved early detection of skin tumor using an Android
mobile app that is user-friendly. The system receives der-
moscopic images from the ISIC archive and undergoes pre-
processing processes such as digital hair removal (DHR),
grayscale, and segmentation to obtain lesion regions. Important
diagnostic features like asymmetry index, border irregularity,
compactness, radial variance, and color features are extracted
with dermatologically relevant thresholds. They are used for
classification using a multilayer backpropagation model and
further strengthened by convolutional layers, optimized using
hyperparameter values such as Adam optimizer, cross-entropy
loss, and batch size of 32 for 150 epochs.

Experimental results prove that the present model is more
sensitive, specific, and classifies better than existing methods
like CNNs, MLPs, and hybrid ANN-SVM systems. One of
the most significant contributions of the work is integrating
the model into an Android smartphone application where
patients can record and analyze skin lesion images locally
on the phone to obtain instantaneous predictions of potential
malignancy. Although the system is found to be useful in
early diagnosis, the authors point out drawbacks like risks
of overfitting and computational complexity, proposing future
enhancement through dataset enlargement, architecture tuning,
and better privacy preservation for clinical use in real-world
settings.

The research paper [5] examines the efficiency of CNN
against Support Vector Machines (SVM) for classifying skin
cancer. The study highlights need for early detection. Em-
ploying a database of skin tumor lesions taken from Kaggle,
the authors employed image improvement methods such as
CLAHE and MSRCR, feature extraction using the ABCD
rule, GLCM, and shape features. CNN and SVM algorithms
were trained and tested on 30 samples each. The findings
indicated that CNN had a better accuracy (95.03%) and
specificity (89.44%) than SVM (93.04% accuracy and 87.82%
specificity). Statistical tests conducted using IBM SPSS in-
dicated that the variation in performance was minimal, but
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CNN performed better consistently numerically. CNN also
performed better in classifying and segmenting melanoma and
squamous cell carcinoma. The research concludes that CNNs,
especially when augmented with sophisticated enhancement
and optimization methods, are better suited for efficient and
precise skin cancer classification than conventional machine
learning techniques such as SVM.

III. METHODOLOGY

A. Overall process

This system outlines a general flow of multiclass skin
cancer classification, starting from image input and prepro-
cessing, through model training, to final classification and out-
put.Figure1 represents the workflow of the proposed technique.
The detailed explanation of each stage, including specific
techniques and models used, will be provided in the upcoming
sections

Fig. 1: Workflow of the proposed system

B. Dataset Collection and Preprocessing

The datset utilized in this study consist of 2357 images skin
lesions from the ISIC dataset. Figure 2 represents the some
set of sample skin lesions, [6], [7] The skin lesion images

Fig. 2: skin lesion dataset sample

divided into many classes based on the type of skin tumor.The
images are organized with in the single parent directory,where
each sub directory represent the skin tumor class. It contain 9
classes.

C. Image Preprocessing

To ensure uniform representation across classes and allevi-
ate potential biases introduced by class imbalance, we limited
the number of images per class to a maximum threshold of
2000. Figure 3 illustrates the distribution of images across
each class prior to augmentation. This preprocessing step

Fig. 3: Images in Each class before Agumentation

ensures that no single class dominates the training process and
facilitates balanced learning across the neural network. Each
image was resized to a uniform dimension of 128×128 pixels.
This resizing operation ensures computational efficiency and
consistency in input shape throughout the convolutional neural
network. The pixel values were normalized to a range of [0,1]
using min-max normalization by dividing each pixel value by
255.This transformation is mathematically expressed as:

x′ =
x− xmin

xmax − xmin
(1)

In our case, since pixel values are originally in the range
[0,255] the formula simplifies to:

x′ =
x

255
(2)

from the above equation, where:
• x is the original pixel value.
• x′ is the normalized pixel value.

This normalization is crucial for accelerating convergence dur-
ing training and ensuring that different pixel intensities across
channels do not adversely affect model performance.After this
data augmentation is performed using Image data generator
with some adjustments like flipping, rotation.After augmenta-
tion each class consist of 2000 images. Figure 3 illustrates the
Number of images in each class before augmentation. If a class

Fig. 4: Number of images in each class after augmentation.
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originally had fewer samples, synthetic images were generated
using augmentation to fulfill the target count.figre 4 represent
the number of images in each class after the Agumentation
takes place.After this, dataset is split in to training( 80%) and
testing(20%).from the training dataset 10% of the dataset is
reserved for the validation dataset.

D. Model Architecture

Four different CNN architectures were examined in this
study.They are MobileNetV2, EfficientNetB0, VGG16, and
DenseNet201 models.In the upcoming section will see the
detail explanation of each model.

i. MobilNetV2:

This model uses MobileNetV2 as its base, which is
a lightweight and fast neural network. The default top
layers are removed, so we can add our own classification
layers. It uses pre-trained weights from ImageNet to help
the model learn faster and better. The input image size is
set to 128x128 with 3 color channels (RGB). After getting
the features from MobileNetV2, we use a Global Average
Pooling(2D) layer to reduce the feature maps into a single
long vector by taking the average of each channel. This
helps reduce the chance of overfitting. Drop out layer
is add to randomly turn off some neurons, which helps
the model generalize better. A Dense (fully connected)
layer and ReLU activation is added to learn more complex
features. Then, we apply another Dropout layer (30%) for
more regularization. Figure 5 represent the architecture of
the model.

Fig. 5: MobileNetV2 Architecture

Finally, the model has an output layer with as many units
as there are classes, using softmax activation to give the
probabilities for each class. The model is trained using the
SGD optimizer with 0.001 learning rate and momentum
(0.9), which helps the model learn smoothly and steadily.

ii. EfficientNetB0:

This model is designed for classifying images into 9
categories. It starts by taking an input image of size
224×224×3 (a normal RGB image). The main part of the
model is EfficientNetB0, a powerful pre-trained network,

which will extract the required feature from skin lesions.
This part doesn’t include its original classification layers,
as we replace them with our own.Figure 6 represent the
architecture of the model.

Fig. 6: EfficientNetB0 Architecture

After EfficientNetB0 processes the image, the output
goes through a Global Average Pooling layer, which
simplifies the data by averaging each feature map.
Then, a Dropout layer is added to prevent overfitting by
randomly turning off 70% of the neurons during training.
And the model uses a Dense (fully connected) layer
with 9 output units and softmax activation to give the
probability of the lesion belonging to particular class.

iii. VGG16:

The model starts by taking an input image of size
224x224 with 3 color channels. [8] This input is fed into
a VGG16 convolutional base, excluding its original fully
connected layers. The weights of this base are frozen
to preserve the learned features from ImageNet. The
output of the convolutional base is then flattened into
a one-dimensional vector, which passes through a series
of fully connected layers: first a dense layer with 512
units followed by a dropout layer with a 0.2 rate for
regularization.After this dense and and dropout layer was
added.
Finally, the model ends with a dense output layer of 9
units using softmax activation, producing class probabili-
ties for the nine skin disease categories. Compilation will
take place by Adam optimizer, using a low learning rate,
and optimized with categorical cross-entropy loss to han-
dle the multi-class classification task effectively.Figure 7
represents the VGG16 model architecture.

Fig. 7: VGG16 Architecture
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iv. DenseNet201:

This model uses densenet201 to extract features from
images and then flattens those features into a 1D vector.
A dropout layer is added to reduce overfitting, also fully
connected layers were added. Finally, a softmax output
layer gives class probabilities for classification. This is a
fairly strong model for image classification tasks using
transfer learning.Figure 8 represents the DenseNet201
Architecture diagram.

Fig. 8: DesnseNet201 Architecture

E. Model Compilation and Training:

In this stage, the model is first compiled using the Stochastic
Gradient Descent (SGD) optimizer, which updates the model
weights based on the gradient of the loss function. We set
the learning rate to 0.001 and use a momentum of 0.9 to
help accelerate convergence and reduce oscillations.Updated
velocity and Gradient of the loss is calculated using below
formula 3 and 4, here,

• θ = Model weights
• v = Velocity (accumulated gradient)
• η = Learning rate
• µ = Momentum
• ∇θJ(θ) = Gradient of the loss with respect to the

parameters
Then,

vt = µ · vt−1 − η · ∇θJ(θ)

θ = θ + vt
(3)

This helps accelerate SGD in relevant directions and damp-
ens oscillations. optimizer, which updates the model weights
based on the gradient of the loss function. The loss function
used is categorical cross-entropy, which is suitable for multi-
class classification tasks. The categorical cross-entropy loss is
calculated using the formula 4:

Loss = −
C∑
i=1

yi log(ŷi) (4)

where,
• C is the number of classes.
• yi =true label
• ŷi=predicted probability for class i

To improve training efficiency, we use a callback called
Reduce learning rate gradually. It monitors the validation

accuracy and reduces the learning rate by a factor of 0.5 if
no improvement is seen for 3 consecutive epochs, down to a
minimum of 0.00001. This adaptive learning helps the model
learn better and avoid plateauing. Finally, the model is trained
with 50 epochs and a batch size of 32.

IV. RESULTS AND DISCUSSION

In this section will discuss the results of the experimented
4 different models.

A. MobileNetB2

The performance of the MobileNetV2 model for the classi-
fication of 9-class skin tumors was evaluated using accuracy,
loss, and the confusion matrix. The model achieved a training
accuracy of 88.46% with a corresponding loss of 0.3748,
indicating effective learning and good generalization on the
training data as shown in the figure 9 and 10. However, the
validation accuracy was 66.20%. A Confusion matrix will help
in identifying specific categories with higher misclassification
rates. Figure 11 represents MobileNetV2 confusion matrix
diagram.

Fig. 9: Training VS Validation accuracy graph.

Fig. 10: Training VS Validation loss graph
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Fig. 11: Confusion Matrix for the MobileNetV2 Model

B. EfficientB0

This model shows the skin cancer classification across
the all 9 classes. Figure 12 shows the training and valida-
tion accuracy graph curves.The validation accuracy is around
80.24%.Figure 13 shows the the training and validation loss
curves,with the less training losses. Figure 14 shows the con-
fusion matrix diagram with 9 different skin tumor classes.Most
classes are well-classified, and the model has improved after
the fine tuning.Higher values along the diagonal indicate better
classification accuracy for each class.

Fig. 12: Training VS Validation accuracy graph.

C. VGG16 Model

This model shows the skin tumor classifcation across the
all 9 classes. Figure 15 shows the accuracy graph curves. The
validation accuracy is around 80.32%. Figure 16 shows the
training and validation loss curves, with the lowest training
losses.

Figure 17 shows the confusion matrix diagram with 9
different skin tumor classes. Most classes are well-classified,
and the model has improved after fine tuning. Higher values

Fig. 13: Training VS Validation loss graph

Fig. 14: Confusion Matrix for the EfficientNetB0 model

along the diagonal indicate better classification accuracy for
each class.

Fig. 15: Training VS Validation Accuracy graph.
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Fig. 16: Training VS Validation loss graph.

Fig. 17: Confusion Matrix for the VGG16 model.

D. DenseNet201 model

The DenseNet201-based model for skin tumor classification
shows solid performance across the full range of nine classes.
Its deep architecture with dense connections facilitates strong
feature reuse and gradient flow, improving accuracy and gen-
eralization.Figure 18 shows the Traing vs Validation accuracy
graph, with Training accuracy around 99% and validation
accuracy 91.44%.

The accuracy graph indicates stable learning without over-
fitting, while the confusion matrix in the Figure 20 shows the
classification report 9 different skin tumor correct a predic-
tions. And the figure 19 represents the training and validation
loss curve with less loss around 0.1. Overall, DenseNet201
effectively handles the complexity of multiclass skin lesion
classification.

Fig. 18: Training VS Validation Accuracy graph

Fig. 19: Training VS Validation loss graph.

Fig. 20: Confusion Matrix for the DenseNet201 model.
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V. COMPARISON OF 4 DIFFERENT MODELS

Below Table I presents a comprehensive comparison be-
tween four DL models used for skin tumor classification:
VGG16, MobileNetV2, DenseNet201, and EfficientNetB0. re-
lated studies [9], [10].

Model Accuracy (%) Macro Avg(%) Weighted(%)
VGG16 80.32 81 81.01
MobileNetV2 66.20 66 66.30
DenseNet201 91.44 91 91
EfficientNetB0 80.24 80.53 80.19

TABLE I: Overall Performance Comparison of Deep
Learning Models

Among these, DenseNet201 outperforms the others by
achieving the highest test accuracy of 91.44% and the low-
est loss of 0.54, indicating better generalization and robust-
ness. In contrast, MobileNetV2 achieves the lowest accu-
racy of 66.20%, suggesting its lighter architecture may not
be sufficient for this complex classification task. VGG16
and EfficientNetB0 exhibit comparable performance, both
around 80.32% accuracy. Additionally, the Macro Average and
Weighted Average metrics further confirm that DenseNet201
yields superior balanced performance across all classes.

VI. CONCLUSION AND FUTURE WORK

DenseNet201 emerged as the most effective model for
skin tumor multi-class classification in terms of overall ac-
curacy and robustness, closely followed by EfficientNetB0.
MobileNetV2 presents a practical alternative for resource-
constrained environments, while VGG16, despite its lower per-
formance, still provides a baseline for comparative purposes.
Particularly DenseNet and EfficientNet, are better suited for
complex dermatological image classification tasks, especially
when multiple skin tumor types are involved.

For future work, we aim to increase the model’s perfor-
mance by incorporating advanced techniques such as attention
mechanisms to help focus on clinically relevant regions of
skin lesions. Exploring multi-modal learning by integrating
patient metadata with image features could further improve
diagnostic accuracy. Finally, validating these models on larger,
more diverse datasets and deploying lightweight versions for
real-time use on mobile or web platforms will be crucial for
real-world applicability.
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