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Abstract 

        This study presents a computational framework for modeling host–parasite interactions, 

specifically focusing on the dynamics between Argulus foliaceus and trout in aquaculture 

systems. A system of three coupled nonlinear ordinary differential equations is developed to 

describe the temporal evolution of host fish, attached parasites, and free-living parasite 

populations. To obtain approximate analytical solutions, the homotopy analysis method 

(HAM)—a powerful semi-analytical technique for solving nonlinear systems—is 

implemented. The derived solutions are rigorously compared with numerical simulations, 

exhibiting strong concordance and confirming the robustness and precision of the HAM 

approach. Sensitivity analysis is conducted to identify key parameters—such as host birth rate, 

parasite attachment rate, and mortality rate—that critically influence system behavior. The 

computational methodology demonstrated here not only facilitates efficient simulation and 

analysis of biologically complex systems but also serves as a foundation for future extensions 

involving spatio-temporal modeling or stochastic processes. This work underscores the 

potential of advanced analytical algorithms in enhancing decision-making and system control 

in computational biology and aquaculture management.. 
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1. Introduction 

 

    Argulus foliaceus, commonly known as the fish louse, is a large ectoparasite that 

significantly impacts commercially important fish species such as rainbow trout 

(Oncorhynchus mykiss) and brown trout (Salmo trutta) in stillwater fisheries (Pasternak et al., 

2000; Oktener, 2006). Infestations by this parasite reduce fish quality and catchability, leading 

to reputational damage and substantial economic losses for aquaculture operations 

(McPherson, 2011). Parasites like A. foliaceus extract nutrients from their hosts, often 

compromising host health and increasing susceptibility to environmental stressors (Hakalahti, 
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2005; Rameen Atique et al., 2024). While parasite infestations rarely cause mass fish 

mortalities independently, they exacerbate existing stress conditions such as overcrowding, 

temperature fluctuations, and deteriorating water quality, gradually leading to increased fish 

morbidity and mortality (Bunkley-Williams et al., 1994). 

      Current control strategies against A. foliaceus rely heavily on chemical treatments and 

physical interventions, which are frequently expensive, ecologically disruptive, and only 

partially effective. Persistent infestations despite frequent treatments highlight the need for a 

deeper understanding of parasite-host interactions (McPherson, 2011). Computational 

modeling has emerged as a powerful tool in this context. Several studies (e.g., Dobson et al., 

1992) have developed nonlinear ordinary differential equation (ODE)-based models to 

investigate the dynamics of fish-parasite interactions. These models integrate ecological 

parameters such as host density, parasite load, fishing pressure, and stocking strategies to 

simulate system behavior under varied conditions. 

     In particular, the work of McPherson et al. (2012) introduced a model capturing the host–

parasite dynamics in trout fisheries, incorporating catchability reduction due to parasitic load 

and different management scenarios. However, most of these models are solved numerically, 

with limited availability of analytical insights into the system’s behavior. 

      This study aims to address this gap by deriving approximate analytical solutions for the 

coupled nonlinear differential equations that govern the population dynamics of host fish, 

attached parasites, and free-living parasite stages. We apply the Homotopy Analysis Method 

(HAM), a semi-analytical technique known for its flexibility and robustness in solving 

nonlinear systems. The analytical expressions derived here facilitate deeper insight into the 

time-dependent behavior of the host–parasite system and provide a computational framework 

that can inform decision-making in aquaculture management and disease mitigation strategies. 

 

2. Mathematical formulation of the problem 

     To analyze the dynamics of parasitic infestation in aquaculture systems, we propose a 

nonlinear dynamical model representing the interactions among three key populations: the 

healthy trout hosts, the attached Argulus foliaceus parasites, and the free-living parasitic stages 

(e.g., metanauplii). The model, originally conceptualized by McPherson et al. (2012), is based 
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on a system of coupled nonlinear ordinary differential equations (ODEs), capturing the time 

evolution of each subpopulation.Let H(t) denote the number of healthy (uninfected) host fish 

at time t, P(t) the population of parasites attached to hosts, and W(t) the population of free-

living parasite stages. The dynamics of the system are governed by the following equations: 
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Where H(t) is population of healthy (uninfected) host fish at time t, I(t) is  population of 

infected fish (with attached parasites) at time t, P(t)is  population of free-living parasites at 

time t. The parameters α  and β  represent parasite-induced mortality and the rate at which 

free-living parasite stages attach to the fish, respectively. Here,   is the mortality rate of 

attached parasites, while   and d   represent the birth and mortality rates of the free-living 

parasite stages, respectively.  

             The nonlinear term )/1( HkPP    accounts for density-dependent parasite-induced 

mortality, where k controls the degree of clustering of parasites across the host population, as 

originally formulated by Anderson et al. (1978).This system exhibits rich nonlinear behavior 

due to the coupling of multiplicative interaction terms (e.g., βHW), nonlinear mortality, and 

nontrivial catchability dynamics. A schematic diagram of the interaction network is presented 

in Fig. 1, illustrating the biological and computational structure of the system. 

      From a computational perspective, the model provides a robust framework for simulating 

host–parasite population dynamics, validating numerical solvers, and applying analytical 

approximation methods such as the Homotopy Analysis Method (HAM). The system serves 

as a testbed for nonlinear system analysis, stability evaluation, and control strategies in 

biologically inspired computational modelling. 
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Fig.1.    Compartmental Model of Parasite Transmission Dynamics 

2.1. Baseline model (Constant catch rate) 

     In this case aHHs )(  and cPHc ),( .  This model is included here to show the impact 

of the reduction in capture on a well-known model, and also to provide a point of departure 

for the other models presented in this paper. In this model, the rate equations become as 

follows (McPherson et al.2012) : 

��(�)

��
= (� − �)� − ��                                                                                                     (4) 
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where P,H  and W  denotes size of fish population, attached parasite and number of free-

living parasite stages respectively and d,,,,,c,a  and k denotes birth rate of fish, capture 

rate, increased host mortality due to parasite, rate of attachment, mortality of attached stages, 

birth rate of parasites, mortality of free-living stages and parameter of the negative binomial 

distribution which measures inversely the degree of aggregation of parasites within the host 

population respectively. 

The initial conditions are: 

  �(� = 0) = 1, �(� = 0) = 1, �(� = 0) = 1                                                                (7) 

The system has equilibrium at 

�∗ =
��

�(���)
, �∗ =
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(� − �)                                                                    (8) 
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     Liao (1992,2007)  proposed a powerful analytical method ( HAM)for solving nonlinear 

problems. Unlike all perturbation and non-perturbative techniques, the this method 

(Domairry,2009, Liao, 2010, Sohouli, 2010, Mastroberardino, 2011) provides a convenient 

way to control and adjust the convergent region and rate of approximation series when 

necessary. Briefly speaking, this method has the following advantages:  It is valid even if a 

given nonlinear problem does not contain any small/significant parameters at all; It can be 

employed to efficiently approximate a nonlinear problem by choosing different base 

functions. 

     More and more researchers have been successfully applying this method to various 

nonlinear problems in science and engineering. In this paper, we employ HAM to solve the 

nonlinear differential equations (Eqns. (4) to (6)). The basic concept of the homotopy analysis 

method is given in Appendix A. 

 

3. Result and Discussion of Baseline model 

     By solving equations (4) to (6), using the homotopy analysis method (see Appendix -B), 

we can obtain the following new approximate expression for the population of fish, attached 

parasite and number of free-living parasites as follows: 
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Given that � = (� − �) and )( cn   ,  and it is specified that a<<c. 

Since a<<c, the mortality rate of attached parasites is given by m=a−c<0, indicating a net loss 

or decline in the attached parasite population over time 

 

3.1 Numerical simulation 

   The nonlinear equations (Eqns. (4) - (6)) are solved numerically.  To show the efficiency of 

the present method, our result is compared with the numerical solution.  The function ode45 

(Range-Kutta Method) in Matlab software( Rasi et al.2013) , a function of solving the initial 
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value problem, is used to solve the Eqns. (4) - (6) numerically.  The numerical results are 

compared with the analytical solution obtained using the HAM method in Figs (2) – (8). 

 

3.2. Effect of the parameters 

     Equations (9), (10) and (11) are the new and simple analytical expressions of the fish 

populations, attached parasite and free-living parasite for all values of parameters.  

  2(a)                                                                           2(b) 

 

Fig.2 (a,b). Effect of the parameter a (birth rate of fish) and c (capture rate) on fish population 

using eqn.(9). Solid lines: analytical; dotted lines: numerical. 

           Figure 2(a,b) illustrates the impact of two key parameters birth rate of fish (a) and 

capture rate by parasites (c) on the size of the fish population H(t) over time, using both 

analytical  and numerical  approaches. The Fig.2(a) shows that as the birth rate a increases 

from 0.1 to 1.0, the fish population decreases at a slower rate. Higher values of a contribute 

to sustaining the population for a longer duration by compensating for losses due to parasitism 

and natural death. This indicates that a higher reproductive rate acts as a buffer against 

population decline, helping to maintain ecological balance even in the presence of parasitic 

threats. 

     The Fig 2(b) demonstrates the effect of varying the capture rate c, where increasing c from 

1.0 to 2.3 leads to a more rapid decline in the fish population. This implies that a higher 

parasitic burden significantly reduces fish numbers over time. The graph clearly shows that 

the fish population is highly sensitive to changes in parasitic intensity, emphasizing the need 

for controlling parasite levels in aquatic systems. Both panels reveal excellent agreement 

between the analytical and numerical results, validating the accuracy of the proposed model 

and its potential use in predicting and managing fish population dynamics in parasitized 

environments. 
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       3(a)                                                                3(b)   

 

Fig. 3(a, b). Effect of (a) μ (mortality of attached stages) and (b) λ (attachment rate) on 

attached parasites using Eq. (10). Solid lines: analytical; dotted lines: numerical. 

       Figures 3(a) and 3(b) collectively illustrate the time-dependent behavior of the total 

number of attached parasites P(t) under the influence of varying parameters μ and β, 

respectively. In Figure 3(a), the parameter μ is varied while keeping other parameters constant. 

As μ increases, the decay of P(t) becomes more rapid, indicating that a higher μ which likely 

represents the detachment or natural mortality rate of parasites accelerates the reduction of 

parasite load on the host. This suggests that enhancing mechanisms associated with parasite 

removal (e.g., host immune response or detachment) leads to faster elimination of parasites 

from the system. 

       In contrast, Figure 3(b) demonstrates the effect of the parameter β on parasite dynamics. 

Increasing β also results in a faster decline of P(t), though this parameter may represent an 

external control factor such as treatment strength or environmental pressure. The curves show 

that a higher β significantly enhances the reduction rate of parasite attachment, similar to the 

role of μ in Figure 3(a). Together, these figures highlight the critical influence of both internal 

(biological) and external (intervention-based) parameters in effectively managing parasite 

populations, with both μ and β serving as key levers for controlling infection spread over time. 

 

       Figures 4(a) and 4(b) illustrate the dynamic behavior of the number of free-living 

parasites W(t) over time, under the influence of different model parameters—specifically, the 

diffusion coefficient d in Fig. 4(a) and the interaction rate λ in Fig. 4(b). Both figures 

consistently show a decay in the parasite population with time, indicating a natural or 

environmentally driven decline process. However, the rate and extent of this decay vary 

significantly depending on the values of d and λ. 
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      In Fig. 4(a), increasing the diffusion parameter d accelerates the decay of W(t). This 

suggests that higher diffusion may enhance the dispersion or mortality of parasites in the 

environment, leading to a faster depletion of the free-living population. For instance, when 

d=4, the parasite count rapidly declines, whereas for smaller d values such as 1 or 1.5, the 

decay is more gradual, indicating lower environmental dissipation. 

 

                4(a)                                                                               4(b) 

 

 

 Fig. 4(a, b). Free-living parasites vs. time from Eq. (11) for varying parameter values, with 

other parameters fixed. Solid lines: analytical (Eq. 11); dotted lines: numerical simulation. 

       In Fig. 4(b), a similar trend is observed with respect to the interaction rate λ. As λ 

increases, the parasite population declines more swiftly. This parameter likely governs the rate 

at which parasites infect hosts or transition out of the free-living phase. A higher λ implies 

more effective host-parasite interaction, leading to a faster reduction in W(t). 

       Together, these figures emphasize the critical roles of both environmental (diffusion) and 

biological (infection or interaction) parameters in determining the persistence of free-living 

parasites. Effective parasite control strategies could target either increased environmental 

removal (via higher d) or enhanced host-parasite interaction (via higher λ) to minimize the 

risk of infection in aquatic ecosystems. 
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Fig.5 The population of fish H , attached parasite P  and free-living parasite W  versus time 

t  for some fixed values of parameters.     

     Figure 5 illustrates the dynamic interaction between three populations: fish, attached 

parasites, and free-living parasites, as a function of time under a fixed set of parameter values. 

Initially, the fish population shows a gradual decline, likely due to increasing parasite load 

that hampers survival and reproduction. In contrast, the attached parasite population rises 

steadily as more parasites infect host fish. The free-living parasite population initially surges 

rapidly—possibly due to reproduction and lack of immediate attachment—but eventually 

begins to stabilize or decline as attachment opportunities or host availability decrease. 

          Over time, a clear interaction pattern emerges. The peak in free-living parasites 

precedes the rise in attached parasites, indicating a time lag between release and successful 

infection. Meanwhile, the fish population reaches a lower equilibrium or continues declining, 

reflecting the cumulative effect of parasitic pressure. This figure underscores the 

interconnected dynamics and time-delayed feedbacks within the host–parasite system, 

revealing how changes in one population influence the others over time. 

 

4. Host–Parasite Model with Reproductive Suppression 

Host–parasite interactions play a critical role in shaping the population dynamics of aquatic 

ecosystems, particularly in aquaculture environments where parasitic infections can 

significantly impair host survival and productivity. In this study, we propose a nonlinear 

mathematical model to describe the dynamics between a host fish population (e.g., trout) and 

a parasitic species (Argulus foliaceus), incorporating key biological mechanisms such as 

parasite-induced reproductive suppression and nonlinear attachment behavior. The model 

captures three interacting populations: the host fish, the attached parasites, and the free-living 

(waterborne) parasites. Unlike classical models, this formulation introduces an exponential 

function to represent the reduction in host fecundity as a function of parasite burden, as well 

as a nonlinear mortality term to reflect parasite competition and density-dependent effects. 

This extended framework provides a more realistic representation of host–parasite interactions 

and offers valuable insights for developing effective management strategies in fishery 

systems. Taking into account the parasite-induced reduction in capture, the rate equations in 

this model becomes  
��(�)
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5. Result and Discussion of Host–Parasite interaction model 
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     By solving the equations (12) to (14), using Homotopy analysis method (see Appendix -

B) we can obtain the following new approximate expression for the population of fish, 

attached parasite and free-living parasite as follows: 
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Where  )( cam   and )1(  n  

5.1. Numerical simulation 

    The nonlinear boundary‐value problem given by Eqs. (12)–(14) was also solved 

numerically in order to assess the accuracy and efficiency of our HAM-based analytic 

approximation. To that end, we employed MATLAB’s built-in ode45 solver—which 

implements an adaptive Runge–Kutta method—to integrate the system as an initial‐value 

problem over the same domain and with the identical parameter set ( Matlab 6.1). Figures 12–

14 overlay the numerical profiles generated by ode45 against our HAM solution: in each case, 

the two curves are virtually indistinguishable, confirming that the present analytic approach 

reproduces the high‐fidelity, numerically obtained results with excellent precision. 

    5.2 Effect of the parameters 

  6(a)                                                                  6(b) 

 

Fig. 6. Fish population size vs. time from Eq. (15) for different b and γ , representing birth 

and capture rates. Solid lines: analytical; dotted lines: numerical. 
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    The size of fish population H  versus the time t  are plotted from Eqn. (15) for various 

values of a  (birth rate of fish) and c  (capture rate), and for some fixed values of parameters 

in (a) and (b) respectively. The key to the graph: Solid line represents Eqn. (15) and dotted 

line represents the numerical simulation 

       Figure 6(a) illustrates the effect of varying the fish birth rate parameter a on the size of 

the fish population H(t) over time, while keeping other parameters constant. It is observed that 

as the birth rate increases from a=0.1 to a=0.7, the rate of decline in fish population decreases 

significantly. For lower values of a, the fish population drops rapidly, indicating that natural 

reproduction is insufficient to counterbalance the losses due to mortality and harvesting. 

Conversely, higher values of a help sustain the population over a longer time frame, 

highlighting the positive influence of reproductive capacity on population survival. 

      Figure 6(b) explores the impact of different capture rates ccc on the fish population 

dynamics under fixed birth and other ecological parameters. As the capture rate increases from 

c=0.8 to c=1.2, the fish population declines more quickly. This trend confirms that higher 

harvesting pressure directly accelerates population reduction, even when the birth rate remains 

moderate. The results emphasize the sensitivity of fish population sustainability to the capture 

rate, reinforcing the importance of regulating fishing efforts to avoid overexploitation and 

potential collapse of the fish stock. 

               7(a)                                                           7(b) 

 

 

Fig. 7.  Total number of attached parasites over time for varying μ  and α. Solid lines: 

analytical solution from Eq. (16); dotted lines: numerical simulation. 

 

     Fig. 7(a) demonstrates the influence of the parameter α, representing the mortality rate of 

attached parasite stages, on the total number of attached parasites P(t) over time. As α 
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increases from 0.01 to 2, the decline in parasite population becomes more rapid. Higher values 

of α correspond to faster elimination of parasites, likely due to enhanced death rates at the 

attached stage. In contrast, when α is low, the parasite population persists for a longer duration, 

indicating slower mortality. These results underscore the critical role of parasite mortality in 

reducing parasite burden and suggest that interventions aimed at increasing parasite death 

rates can effectively lower infection levels over time. 

 

          Fig. 7(b) investigates the effect of the parameter μ, which represents the increased 

mortality of the host due to parasite infestation, on the parasite population dynamics. As μ 

increases from 0.1 to 3, the total number of attached parasites decreases more sharply. This 

pattern arises because higher host mortality indirectly reduces the parasite population by 

shortening the host’s lifespan, thereby limiting the parasite’s ability to survive and reproduce. 

Lower values of μ lead to slower decay in parasite numbers, indicating prolonged host 

viability and sustained parasite presence. This analysis highlights the importance of host–

parasite interaction dynamics in determining parasite survival and can inform strategies that 

disrupt parasite lifecycles by enhancing host resistance or reducing host susceptibility. 

8(a)                                                                        8(b) 

 

 

 Fig. 8. Free-living parasites vs. time from Eq. (17) for different μ and β. Solid lines: 

analytical; dotted lines: numerical. 

 

Fig. 8(a) illustrates the effect of the mortality rate d on the number of free-living 

parasites H(t) over time. As d increases from 0.3 to 2.5, the parasite population declines more 

rapidly. This indicates that higher mortality significantly reduces the survival duration of the 

free-living parasites. For instance, when d=2.5, the population quickly approaches zero, while 

at lower values like d=0.3, the decay is much slower. Thus, the mortality rate plays a crucial 

role in determining the persistence of parasites in the environment, with higher values leading 

to faster population extinction. 
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In contrast, Fig. 8(b) demonstrates the impact of the birth rate λ on the parasite 

population dynamics. As λ increases from 0.1 to 1.5, the number of parasites declines more 

slowly, suggesting that higher birth rates promote longer survival of the population. At low λ, 

the population decays quickly, whereas higher values of λ effectively counterbalance the 

mortality and maintain the population for a longer period. This highlights the importance of 

the reproduction rate in sustaining free-living parasites, even under conditions of high 

mortality or environmental stress. 

6. Conclusions and Future work 

      In this study, we developed and analyzed a nonlinear system of ordinary differential 

equations modeling the dynamic interactions among host fish, attached parasites (Argulus 

foliaceus), and their free-living stages. The model captures key biological mechanisms such 

as parasite-induced suppression of host reproduction and nonlinear attachment dynamics. To 

solve the resulting strongly nonlinear system, we employed the Homotopy Analysis Method 

(HAM)—a powerful semi-analytical technique that avoids traditional linearization or 

perturbation assumptions and is particularly well-suited for high-complexity models. 

    The derived analytical expressions offer valuable insights into the transient behavior of the 

system and the sensitivity of population dynamics to key parameters, including attachment 

rate, mortality coefficients, and parasite burden. The effectiveness of the HAM framework 

was confirmed through numerical simulations carried out in Scilab/MATLAB, which 

demonstrated strong consistency between analytical approximations and numerical results. 

This synergy between analytical modeling and computational validation establishes a robust 

hybrid methodology for addressing nonlinear systems in biological and ecological contexts. 

From a computational standpoint, this work underscores the utility of symbolic and numerical 

hybrid algorithms for solving real-world nonlinear dynamical systems. The modeling 

framework and solution strategy presented here can serve as a foundation for developing 

simulation tools and predictive software in fields such as ecological modeling, 

epidemiological forecasting, and complex systems analysis. 

      Future research directions include extending the current model to account for spatial 

heterogeneity using reaction–diffusion systems and integrating time-delay elements to reflect 

biological maturation periods. Incorporating stochastic dynamics, parameter uncertainty, and 

data-driven calibration would further improve the model's applicability to real-world fisheries. 

Additionally, the development of optimal control algorithms based on this framework could 

COMPUTER RESEARCH AND DEVELOPMENT  (ISSN NO:1000-1239)  VOLUME 25 ISSUE 7 2025

PAGE NO: 444



inform sustainable parasite management strategies. These extensions would significantly 

enhance the versatility of the proposed computational model, enabling its application to a 

broader range of nonlinear systems in computational biology, applied mathematics, and 

artificial intelligence–driven ecological modeling. 
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Appendix A: Basic concepts of Liao’s homotopy analysis method  

Consider the general nonlinear differential equation (Liao 2003): 

0)]([ xuN                                                        (A.1) 

where N denotes a nonlinear operator, x is the independent variable, and u(x) is the unknown 

function. For simplicity, the boundary or initial conditions are not included here, as they can 

be incorporated following a similar procedure. 

To analytically handle such nonlinear problems, Liao ( 2003) extended the classical homotopy 

concept and developed the zero-order deformation equation, a fundamental component of the 

HAM. This method constructs a continuous deformation from an initial approximation to the 

exact solution by introducing an embedding parameter, and it provides flexibility through an 

auxiliary parameter that controls convergence. 

)];([)()]();([)1( 0 pxNxphHxupxLp                (A.2) 

Here, p∈[0,1 is the embedding parameter, ℏ≠0 is a nonzero auxiliary parameter, H(x) is an 

auxiliary function, L is an auxiliary linear operator, and u0(x) is an initial guess of the solution 

u(x), which is the unknown function to be determined. One of the notable advantages of the 

HAM is the considerable freedom it offers in the selection of these auxiliary components. 

By construction, when p=0 and p=1, the zero-order deformation equation satisfies: 

�
�(�; 0) = ��(�)

�(�; 1) = �(�)
                                                                                               (A.3) 

which ensures a continuous deformation from the initial guess u0(ξ) to the exact solution u(ξ) 

as the embedding parameter p varies from 0 to 1. 

Thus, as the embedding parameter p increases from 0 to 1, the solution u(x;p) continuously 

deforms from the initial guess u0(x) to the exact solution u(x). Expanding u(x;p) in a Taylor 

series with respect to p, we obtain: 







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m pxuxupx                      (A.4) 

where  
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px

m
xu


                           (A.5) 

If the auxiliary linear operator L, the initial guess u0(x), the auxiliary parameter ℏ, and the 

auxiliary function H(x) are chosen appropriately such that the series expansion (A.4) 

converges at p=1, then the exact solution u(x) of the original nonlinear differential equation 

(A.1) is given by: 


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


1

0 )()()(
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m xuxuxu .                                                                                                   (A.6) 

Define the vector  �
→

= {��, ��, . . . , ��}   
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Differentiating the zero-order deformation equation (A.2) mmm times with respect to the 

embedding parameter p, then setting p=0, and finally dividing the resulting expression by m!, 

we obtain the so-called mth-order deformation equation: 

This recursive system enables the sequential determination of um(ξ), thereby constructing an 

analytic approximation to the solution of the original nonlinear problem. 

)()(][ 11 
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  mmmmm uxhHuuL                                       (A.8) 

where    
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and 
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Applying 1L  on both side of equation (A.8), we get 

)]()([)()( 1
1
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




  mmmmm uxHhLxuxu                         (A.11) 

In this way, it is easily to obtain mu  for ,m 1  at thM  order, we have 





M

m
m )x(u)x(u

0  
When the homotopy series converges at p=1, it yields an accurate approximation to the exact 

solution of the original nonlinear equation (A.1). For a detailed discussion on the convergence 

theorems and conditions of the HAM, the reader is referred to Liao (2003). 

     If equation (A.1) admits a unique solution, then the HAM series solution will converge to 

this unique solution, provided the auxiliary components are properly selected. However, if the 

original equation (A.1) does not possess a unique solution, HAM is still capable of yielding a 

valid solution though it may be one among multiple possible solutions depending on the 

chosen initial guess and auxiliary functions. 

 

Appendix B:  Approximate analytical solutions for Eqn. (4) - (6) using HAM 

In order to solve Eqn. (4) to (6) by means of the HAM, we first construct the Zeroth-order 

deformation equation by taking H (t) = 1. 


















 PHca
dt

dH
phHca

dt

dH
p )()()1(                                                        (B.1) 























H

P
kPcHW

dt

dT
phPc

dt

dP
p

2

)()()1(                           (B.2) 


















 HWdWP
dt

dW
phdW

dt

dW
p )1(                                                          (B.3) 

The approximate solutions of Eqn. (4) - (6) are as follows: 
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...2
2

10  HppHHH                                                                                               (B.4) 

...2
2

10  PppPPP                                                                                                    (B.5)   

...2
2

10  WppWWW                                                                                                (B.6) 

Substituting (B.4) in Eqn. (B.1) and equating the like powers of p  we get  

0)(: 0
00  Hca

dt

dH
p                                                                                                  (B.7) 
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Substituting (B.5) in Eqn. (B.2) and equating the like powers of p  we get 
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Substituting Eqn. (B.6) in Eqn. (B.2) and equating the like powers of p  we get 

0: 0
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dt
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The initial conditions in Eqn. (7) becomes 

1,1 00  PH  and 10 W  when 0t                                                                            (B.13) 

0,0 11  PH  and 11 W  when 0t                                                                            (B.14) 

Now applying the initial conditions (B.13) in Eqns. (B.7), (B.9) and (B.11) we get 
tcaeH )(
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tceP )(
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                                                                                                                  (B.16) 

dteW 0                                                                                                                          (B.17) 

Substituting the values of 00 P,H  and 0W  in Eqn. (B.8) and (B.10) and solving the equations 

using the initial conditions (B.14) we obtain the following results: 
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Adding Eqn. (B.15) and (B.18), we get Eqn. (9) in the text. Similarly we get Eqn. (10) and 

Eqn. (11) in the text. 

 

Approximate analytical solutions for Eqn. (12), (13) and (14) using HAM 

In order to solve Eqns. (12) to (14) by means of the HAM, we first construct the Zeroth- order 

deformation equation by taking H (t) = 1. 
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The approximate solutions of Eqns. (12) - (14) are as follows: 
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Substituting (B.24) in Eqn. (B.21) and equating the like powers of p  we get 
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Substituting (B.25) in Eqn. (B.22) and equating the like powers of p  we get 
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Substituting (B.26) in Eqn. (B.22) and equating the like powers of p  we get 
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The initial conditions in Eqn. (7) becomes 

1,1 00  PH  and 10 W  when 0t                                                                             (B.33) 
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0,0 11  PH  and 11 W  when 0t                                                                             (B.34) 

Now applying the initial conditions (B.33) in (B.27), (B.29) and (B.31) we get 
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Substituting the values of 00 , PH  and 0W  in Eqn. (B.28) and (B.30) and solving the equations 

using the initial conditions (B.34) we obtain the following results: 
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Adding Eqns. (B.35) and (B.38), we get Eqn. (15) in the text. Similarly, we get Eqns. (16) and 

(17) in the text. 
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