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Abstract—Nipah virus (NiV) is a lethal zoonotic virus with 
a high mortality rate and no approved treatment. This study 
explores the use of deep learning-based protein design using 
AlphaFold2 and ProteinMPNN to develop a complementary 
protein that can inhibit the ephrin-binding interface of the NiV 
glycoprotein (2VSM). The proposed workflow integrates sequence 
design, structural prediction, and interaction analysis with a 
strong focus on accuracy and stability. Using ProteinMPNN, a 
targeted sequence was generated and its 3D structure predicted 
via AlphaFold2. The top predicted structure was validated via 
docking (ClusPro), binding affinity analysis (PRODIGY), and 
stability simulations (GROMACS). Results showed a favorable 
binding free energy of –12.1 kcal/mol and high model confidence 
(pLDDT >87). The work demonstrates a streamlined, repro- 
ducible AI-based pipeline for antiviral protein design. 

 
I. INTRODUCTION 

The Nipah virus (NiV) is an extremely virulent zoonotic 
virus that was first detected in Malaysia towards the end of the 
1990s. It can be transmitted from animals like bats and pigs to 
humans as well as from human to human. The virus is a major 
concern for many health experts due to its high threat level, 
as it has a death rate that consistently exceeds 70%. NiV is 
also capable of instigating powerful respiratory afflictions, and 
encephalitis. Up until now, NiV outbreaks have been limited to 
South and Southeast Asia, but the higher likelihood of global 
proliferation calls for substantial interventions to curtail its 
spread. 

More traditional forms of approaching drug discovery for 
NiV encounters multiple discrepancies. The greatest of these 

is the expenses as well as time, due to the experimental 
practices. Long term investments are required in order to 
tackle the aforementioned issues, which calls for a shift 
towards computational techniques which solve both of these 
issues. Computational biology is one such area where there 
are immeasurable opportunities, especially when coupled with 
AI and machine learning. These tools enable the exploration 
of structural biology to viral proteins, whilst also employing 
designers capable of remarkable finesse to create inhibitors. 

 
The study in focus aims to make use of the best-in- 
class computational tools, AlphaFold2 and ProteinMPNN, to 
challenge the crucial problem of stopping the glycoprotein 
of the NiV. It is identified as a point of action for anti-viral 
drugs as it plays an extremely crucial role in virus binding 
and fusing with host cells. The highlights of these are the 
employed computational methodologies that talk rigorously 
of how efficient, how integrable tools are, as well as the 
flow of the coupled workflow, rather than of the biological 
underpinnings.It also shows that innovations in computational 
techniques can be harnessed to the solution of immediate 
health delivery issues, as well as to the general domain of 
AI-assisted drug discovery. 

II. LITERATURE REVIEW 

Advancements in computational biology and artificial intel- 
ligence have allowed for the prediction and design of protein 
structures within this century. The power and accuracy effect 
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of AlphaFold2 (using transformer-based architecture), has re- 
shaped structural biology to predict the 3D structure unam- 
biguously. This is combined with ProteinMPNN that allows 
to optimize sequences depending on the specific structural 
constraints. The computational pipeline is made more efficient 
by tweaking it further with ColabFold and ProteinMPNN for 
faster execution, and lesser memory usage obtaining. It prunes 
a bunch of workflow pipeline significant and underlines the 
utility of this method in context of Nipah virus. 

AlphaFold represents a significant advancement in compu- 
tational biology, introducing a neural network-based model 
capable of predicting protein structures with atomic accuracy, 
even in the absence of known homologous structures. This 
innovation was validated during the 14th Critical Assessment 
of protein Structure Prediction (CASP14), where AlphaFold 
demonstrated competitive accuracy with experimental struc- 
tures, vastly outperforming existing prediction methods. [1] 
The architecture of AlphaFold integrates a novel machine 
learning approach that draws upon physical and biologi- 
cal knowledge of protein structure while leveraging multi- 
sequence alignments. This dual approach enhances the model’s 
ability to predict the three-dimensional configurations of pro- 
teins accurately, unlike traditional methods that either focus 
solely on physical interactions or evolutionary history. [5] 

The significance of AlphaFold lies not only in its accu- 
racy but also in its potential utility across various biological 
research applications. By predicting protein structures in a 
matter of minutes to hours, the model facilitates large-scale 
structural studies, thereby complementing the advancements 
made in genomic sequencing. Furthermore, AlphaFold can 
effectively handle complex structural scenarios, including pro- 
teins that only achieve their final configurations under specific 
conditions, a capability that traditional methods struggle to 
replicate. [6] The promise of AlphaFold extends to acceler- 
ating structural bioinformatics, potentially transforming how 
researchers approach biological questions and paving the way 
for future computational methods to address other biophysical 
challenges in modern biology. [4] 

In recent years, advancements in computational methods 
have significantly transformed the field of protein design, par- 
ticularly through the integration of deep learning techniques. 
Traditional approaches, such as those based on physically 
grounded methods like Rosetta, have been widely employed 
for protein sequence design; however, they often face limita- 
tions in sequence recovery rates and efficiency. These methods 
approach protein design as an energy optimization problem, 
selecting amino acid combinations that minimize energy states 
for a given backbone structure. In contrast, novel deep learning 
approaches like ProteinMPNN offer a paradigm shift, leverag- 
ing message passing neural networks to predict amino acid 
sequences in an autoregressive manner, informed by detailed 
backbone features such as atomic distances and dihedral 
angles. ProteinMPNN has demonstrated superior performance 
with a sequence recovery rate of 52.4 percentage, compared 
to 32.9 percentage. [2] 

Experimental validations further underline the effectiveness 

and versatility of ProteinMPNN across various protein design 
challenges. The method has proved remarkably adept at res- 
cuing previously failed designs from Rosetta or AlphaFold, 
producing functional monomers, cyclic oligomers, and protein- 
protein interfaces. [3] By allowing for a diverse range of 
sequences with minimal loss in recovery rates, ProteinMPNN 
not only simplifies the design process—achieving results in 
a fraction of the time compared to traditional models—but 
also opens new avenues for applications in biotechnological 
fields such as vaccine design and targeted therapeutics. Look- 
ing ahead, the continued refinement of ProteinMPNN and 
the exploration of its integrative capabilities with emerging 
experimental techniques may pave the way for groundbreaking 
advancements in protein engineering and synthetic biology. 
[12] 

PyMOL is a widely used molecular visualization tool 
that facilitates the three-dimensional (3D) representation of 
macromolecules, including proteins, nucleic acids, and small 
molecules. Developed originally as open-source software, Py- 
MOL is now maintained by Schro¨dinger Inc. and offers ex- 
tensive capabilities for molecular modeling and analysis. The 
software employs OpenGL for rendering high-quality images 
and animations, making it particularly useful for structural 
biology, computational drug design, and educational purposes. 
[9] It supports various representations such as ribbons, car- 
toons, surfaces, and sticks, enabling researchers to explore 
molecular interactions, structural conformations, and dynamic 
behaviors effectively. Additionally, PyMOL’s scripting capa- 
bilities, built on Python, allow for automation and integration 
with external computational tools, further enhancing its appli- 
cability in bioinformatics and molecular modeling workflows. 
[7] 

The visualization methodology in PyMOL involves multiple 
approaches to display and analyze molecular structures with 
high precision. Users can manipulate molecular models inter- 
actively, apply color coding to highlight structural features, 
and generate publication-quality images. One of its significant 
features is the ability to depict macromolecular interactions, 
such as hydrogen bonding, hydrophobic interactions, and 
electrostatic potentials, through various visualization modes. 
[10] PyMOL also supports stereo visualization, which aids 
in perceiving depth and spatial orientation within molecular 
complexes. For dynamic studies, the software allows for 
trajectory visualization from molecular dynamics simulations, 
enabling researchers to assess conformational changes over 
time. Moreover, the integration of plugins and external scripts 
enhances PyMOL’s functionality, facilitating tasks like molec- 
ular docking, pharmacophore modeling, and energy minimiza- 
tion, making it an essential tool in modern computational 
structural biology. [8] 

The accuracy prediction of 3D protein structures is crucial 
for evaluating computational models, and various scoring 
metrics have been developed for this purpose. The lDDT 
(local Distance Difference Test) score, introduced by Mariani 
et al., provides a superposition-free method to assess structural 
accuracy by analyzing local distance deviations within a 
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model, making it particularly useful for ranking and refining 
predicted structures. Additionally, Alnajjar et al. demonstrated 
the importance of molecular docking and molecular dynamics 
simulations in validating protein-ligand interactions, empha- 
sizing how these computational approaches can be integrated 
with experimental studies to enhance structure-based drug 
discovery. [11] [13] 

III. PROPOSED SYSTEM ARCHITECTURE 

The architecture of the system integrates multiple com- 
putational tools and workflows to design a complementary 
protein that can bind to the Nipah virus glycoprotein (PDB 
ID: 2VSM) and potentially inhibit its interaction with the 
human receptor ephrinB2. The computational pipeline consists 
of sequence design, structure prediction, molecular docking, 
stability analysis, and visualization. 

The process begins with the identification of the ephrin- 
binding interface on the Nipah virus glycoprotein, which is 
essential for viral entry into human cells. Based on this in- 
teraction site, ProteinMPNN, a deep learning-based sequence 
design model, was employed to generate an optimized amino 
acid sequence for a complementary protein that could ef- 

fectively bind to this crucial region. A mask file was used 
to specify the residues at the interface that needed to be 

redesigned while keeping the rest of the structure unchanged. 
This targeted approach ensured that the generated sequence 

was structurally and functionally viable for inhibitory action. 
Once the sequence was designed, AlphaFold2, a deep- 

learning-based tool for protein structure prediction, was used 
to predict its 3D structure, generating five different models. 
The pLDDT scores of these models were evaluated, and the 
most stable structure with the highest confidence score was 
selected for further analysis. 

To assess the effectiveness of the designed protein, molec- 
ular docking simulations were performed using ClusPro [15], 
which provided insights into the binding affinity and inter- 
action strength between the designed protein and the Nipah 
virus glycoprotein. Furthermore, PRODIGY [16]was used to 
compute the binding free energy, ensuring that the interaction 
was thermodynamically stable. 

The final step involved visualization and structural 
analysis using PyMOL, allowing for a clear representation 
of the designed protein’s binding interface with the viral 
glycoprotein. This visualization was crucial in understanding 
molecular interactions and refining the design to enhance 
binding affinity. 

 

 
Dataset and Preprocessing 

The primary structure used for this study is the Nipah 
virus glycoprotein with PDB ID: 2VSM, retrieved from the 
RCSB Protein Data Bank. This structure includes both the 
viral protein and its ephrinB2 receptor interaction site. Residue 
mapping and interaction region identification were conducted 
using PyMOL and FAMSA for sequence alignment [17]. The 

 

 

 
Fig. 1: Architecture Diagram 

 
chain containing the ephrin-binding interface was selected for 
interaction modeling. 

To generate input for ProteinMPNN, a cleaned .pdb file 
of the glycoprotein was processed using PyRosetta to extract 
the backbone atoms (N, C, C, O), and a corresponding 
JSON mask file was created to define interface residues that 
needed redesign. This preprocessed dataset served as input for 
ProteinMPNN sequence generation. 

IV. KEY FEATURES 

A. Protein Selection and Analysis 

The Nipah virus (NiV) glycoprotein structure was retrieved 
from PDB (PDB ID: 2VSM), which serves as a reference for 
designing a complementary protein that can potentially block 
its interaction with human ephrinB2 receptors. The binding 
interface of the NiV glycoprotein was analyzed to identify 
key residues that interact with ephrinB2, ensuring that the 
designed protein would effectively bind to this critical region. 
To develop a complementary protein capable of binding to 
the viral glycoprotein, ProteinMPNN was used to generate 
optimized amino acid sequences. The design process focused 
on ensuring high binding affinity and structural stability. 

 

 
Fig. 2: The crystal structure of the Nipah virus glycoprotein 
(PDB ID: 2VSM)(red chain) used as the reference for design- 
ing the complementary protein. This highlights the interaction 
site with the human ephrinB2 receptor(green chain). 
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A1. Underlying Algorithm of ProteinMPNN 

ProteinMPNN employs a graph neural network-based 
encoder-decoder model that operates on fixed-backbone struc- 
tures. It uses message-passing layers to extract structural 
features such as atomic distances and angles, then predicts 
the optimal amino acid for each residue position in an au- 
toregressive manner. A binary mask file was generated to 
specify target residues at the glycoprotein interface, allowing 
localized redesign. This targeted design enhances specificity 
while preserving the structural core, enabling efficient gener- 
ation of viable complementary sequences. In this study, the 
ProteinMPNN model from the official GitHub repository was 
fine-tuned on the 2VSM glycoprotein input and used with a 
temperature setting of 0.1 to ensure stable sequence output. 

B. Complementary Protein Design with ProteinMPNN 

A key step in this process was the creation of a mask file, 
which defined the binding residues that needed modification 
while preserving the rest of the structure. This approach 
allowed for targeted sequence optimization to improve the 
interaction of the protein with the NiV glycoprotein. The 
newly designed amino acid sequence was then used for 3D 
structure prediction in the next step. 

 

 
Fig. 3: The 3D structure of the designed complementary 
protein generated using AlphaFold2 based on the sequence 
designed by ProteinMPNN. 

 
C. Structure Prediction using AlphaFold2 

The predicted complementary protein sequence was input 
into AlphaFold2 to generate its 3D structure. Five different 
structural models were obtained, and pLDDT scores were used 
to select the most stable conformation for further evaluation. 
The use of colabfold optimization tool minimized the com- 
putational overhead as well as the structural quality assess- 
ments using pLDDT scores into the design of the models. 
The profound influence of the transformer-based self-attention 
mechanism of AlphaFold2 was used to predict the protein 
model. 

D. Docking and Stability Analysis 

To evaluate the binding efficiency of the designed protein, 
docking simulations were performed using ClusPro, which 
calculated docking scores based on the interaction energy be- 
tween the Nipah virus glycoprotein (2VSM) and the designed 
protein. PRODIGY was further used to estimate the binding 
free energy, ensuring that the interaction was thermodynami- 
cally favorable. 

Molecular dynamics simulations (MDS) in GROMACS 
were thus carried out to evaluate the stability of the designed 
proteins under physiological conditions. Docking studies were 
performed with Autodock for the quantification of binding 
affinities and interaction energies [14]. 

E. Visualization and Analysis 

PyMOL was used for high-resolution visualization of the 
structures. Custom Python scripts are integrated to extract 
interaction parameters and visualization parameters. 

V. RESULTS 

The complementary protein sequences were designed using 
ProteinMPNN by applying residue-level constraints targeting 
the ephrin-binding site on the Nipah virus glycoprotein. These 
sequences were then structurally modeled using AlphaFold2 
via ColabFold to improve computational efficiency. The re- 
sulting 3D structures were evaluated for structural confidence, 
docking performance, and dynamic stability. 

To assess confidence in structure prediction, five models 
were generated by AlphaFold2. The per-residue pLDDT scores 
were analyzed, and the top model exhibited an average score 
of 87.4, indicating high structural reliability. Fig. 8 shows the 
average pLDDT scores for all five models. Table I provides a 
summary. 

 

 
Fig. 4: Predicted binding interaction between the designed pro- 
tein and the Nipah virus glycoprotein (red chain), visualized 
in PyMOL. 
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Fig. 5: Average pLDDT scores of five AlphaFold2-predicted 
models. 

 
 

 

 

 
Fig. 6: Binding affinity result using PRODIGY 

 

 
A. Stability Analysis using RMSD 

Molecular Dynamics Simulations (MDS) were performed 
using GROMACS for 10 ns on the top predicted structure. 
Root Mean Square Deviation (RMSD) analysis was used 
to assess the structural stability. The RMSD curve (Fig. 7) 

pLDDT score of each model. A bar chart is also presented 
(Fig. 8) to visualize confidence distribution. 

TABLE I: pLDDT Scores of Predicted Models 

 
Model Average pLDDT Score 

Model 1 87.4 
Model 2 85.9 
Model 3 83.7 
Model 4 86.2 
Model 5 82.5 

 

 

Fig. 8: Average pLDDT Score for 5 Predicted Structures 

 
C. Summary of Designed Protein Performance 

Table II summarizes the design metrics across all dimen- 
sions: protein ID, sequence length, binding energy (from 
PRODIGY), average pLDDT, RMSD, and stability status. 

TABLE II: Summary of Protein Design Metrics 

shows stabilization at  2.1 Å after 5 ns, indicating a stable 
conformation under physiological conditions. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7: RMSD plot of the designed complementary protein 
over a 10 ns MD simulation. 

 
B. pLDDT Score and Structure Confidence 

The confidence scores of AlphaFold2 predictions were eval- 
uated using per-residue pLDDT scores. Table I summarizes the 

VI. FUTURE SCOPE 

This research can be extended in the following ways: 

• Experimental validation of designed proteins via binding 
assays or cryo-EM. 

• Application of the framework to other zoonotic viruses 
like Hendra or SARS-CoV-2. 

• Integration of longer molecular dynamics simulations to 
assess binding longevity. 

• Fine-tuning ProteinMPNN models for virus-specific 
datasets to improve prediction accuracy. 

VII. CONCLUSION 

The computational workflow employed demonstrates a ro- 
bust and systematic approach to protein modeling, comple- 
mentary sequence design, and stability assessment. By in- 
tegrating bioinformatics pipelines for sequence retrieval and 
preprocessing, followed by high-accuracy 3D structure pre- 
diction using AlphaFold2, we ensured a strong foundation for 

Protein Len pLDDT Bind E (kcal/mol) RMSD (Å  ) Stable 
Design-1 120 87.4 -12.1 2.1 Yes 
Design-2 118 85.9 -10.4 2.7 Marginal 
Design-3 119 83.7 -9.8 3.0 No 
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structural analysis. The application of ProteinMPNN enabled 
the generation of optimized complementary protein sequences, 
tailored to interact specifically with the target glycoprotein, 
enhancing the potential for inhibitor design and molecular 
interaction studies. Furthermore, molecular dynamics simu- 
lations using GROMACS provided critical insights into the 
structural stability and conformational dynamics of both the 
predicted and designed proteins under physiological condi- 
tions. The final step of automated visualization using tools 
PyMOL facilitated the clear interpretation and validation of 
molecular interactions. Overall, this computational pipeline 
offers a highly efficient and scalable strategy for rational 
protein design, with potential applications in therapeutic de- 
velopment, structural biology, and biomolecular engineering. 
Future studies may focus on experimental validation to further 
refine the designed protein interactions and explore their 
functional implications in biological systems and may also 
incorporate machine learning-driven optimization techniques 
to refine binding affinity and enhance stability under diverse 
physiological conditions. 
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