
A Comprehensive Platform for Code Submission,
Assignment Analysis, and Personalized Learning in

Programming Education
1st Ninad More

Dept. of Computer Engineering
Pune Institute of Computer Technology

ninadmore183@gmail.com

2nd Peeyush Kulgude
Dept. of Computer Engineering

Pune Institute of Computer Technology
peeyush.kulgude777@gmail.com

3rd Pranay Agrawal
Dept. of Computer Engineering

Pune Institute of Computer Technology
agrawalpranay070@gmail.com

4th Prof. Dipali Kadam
Dept. of Computer Engineering

Pune Institute of Computer Technology

Abstract—The increasing demand for efficient and scalable
solutions in programming education has led to the development of
KodeKraken, a web platform designed to streamline code submis-
sion, perform detailed assignment analysis, and provide person-
alized learning experiences for students. This paper presents the
features and design of KodeKraken, focusing on automated code
checking, plagiarism detection, and differentiation of students
based on performance to classify them as slow or fast learners.
Additionally, we discuss how KodeKraken enables instructors
to monitor student progress and provide targeted feedback,
ultimately improving both teaching and learning outcomes.
Future work involves expanding the platform’s capabilities with
advanced machine learning models to further personalize the
learning experience.

Index Terms—Code Submission, Assignment Analysis, Plagia-
rism Detection, Personalized Learning, Slow Learners,

I. INTRODUCTION

In the rapidly evolving landscape of education, there is an
increasing need for advanced tools that enhance student assess-
ment and feedback mechanisms. As education shifts towards
more digital and remote environments, web-based platforms
have become integral for managing assignments, grading, and
student evaluation. These platforms not only facilitate the
submission of assignments but also provide advanced features
like automated grading, plagiarism detection, and personalized
learning insights. To support educators and improve student
engagement, it is essential to leverage modern technologies
such as code editors, version control, and machine learning
for effective decision-making in student performance analysis.

Considering this, we observe that assignment evaluation
plays a critical role in shaping students’ learning paths, as it
provides timely feedback and identifies areas of improvement.
Machine learning, in particular, has gained prominence in
enhancing these systems by automating key tasks such as
plagiarism detection and profiling students based on their
performance. In plagiarism detection, algorithms analyze the
submitted content to identify similarities with existing works,
categorizing submissions as authentic or flagged for further re-

view. Meanwhile, code editors with integrated version control
track progress and ensure that students follow best practices in
software development, providing real-time insights into their
coding process.

In the realm of student performance evaluation, machine
learning models are used to identify bright and slow learners,
allowing for personalized interventions. This categorization is
based on a variety of metrics, including assignment submission
times, coding accuracy, and engagement patterns. Models such
as decision trees and neural networks are being employed to
predict student performance and adapt the learning experience
accordingly. Additionally, code versioning tools are incorpo-
rated to ensure that the learning process is documented, help-
ing educators track improvements and areas where students
may struggle.

This paper aims to provide a comprehensive overview
of the methodologies employed in educational platforms for
student assignment submission, grading, plagiarism detection,
and personalized learning insights. By examining the current
state of research and identifying key technologies such as
machine learning models and code versioning systems, this
study aspires to contribute valuable insights into the future of
technology-enhanced education.

II. OBJECTIVE

The primary objectives of KodeKraken are to streamline the
student assignment submission and evaluation process while
leveraging advanced technologies to enhance the learning
experience. This paper aims to evaluate and compare various
methodologies employed within KodeKraken, focusing on
simplifying the code submission and automated evaluation
process through the integration of intuitive code editors and
robust version control systems. Additionally, the analysis of
student performance is a critical component, utilizing machine
learning models to identify slow and fast learners, enabling
educators to tailor their support and interventions accord-
ingly. Ensuring academic integrity is paramount; therefore,

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 4 2025

PAGE N0: 190

user
Textbox



KodeKraken addresses this through industry-standard plagia-
rism detection tools that effectively identify potential instances
of plagiarism, reinforcing the importance of originality in
student work. Moreover, the platform is dedicated to providing
personalized feedback based on individual student progress,
enhancing the learning experience by offering insights that
guide students in their coding journey and helping them
address specific areas for improvement. Finally, KodeKraken
supports educators in managing student progress effectively
by offering data-driven insights that facilitate timely inter-
ventions, equipping teachers with the necessary tools to
monitor performance and engage with students proactively.
Ultimately, this research aspires to provide valuable insights
and recommendations for refining educational methodologies
within KodeKraken, focusing on the integration of advanced
technologies such as machine learning, plagiarism detection,
and performance analysis to enhance the overall learning
experience for both students and educators.

III. LITERATURE SURVEY

Plagiarism in programming assignments is a widespread
issue in educational institutions, and various techniques have
been developed to detect copied or plagiarized code. These
methods include token-based, tree-based, and graph-based de-
tection systems, each addressing the challenges of identifying
code clones while accounting for variations in coding styles
and minor modifications. Integrating such techniques is criti-
cal for platforms like KodeKraken, which utilizes automated
plagiarism detection tools to ensure academic integrity and
encourage original student work. Achieving a balance between
detection accuracy and system performance is crucial, espe-
cially when designing scalable systems capable of handling
large volumes of submissions.

Automating the assessment of programming assignments
has become essential to manage the increasing number of
student submissions, particularly in large classes. Automatic
grading systems that evaluate code against predefined test
cases and provide real-time feedback are foundational for plat-
forms aiming to streamline the grading process. Approaches
such as static code analysis and dynamic execution testing
have been effective in assessing the correctness and quality
of code, with the added benefit of offering timely feedback
to students, which is instrumental in improving their coding
skills. This feedback mechanism is a core feature of platforms
designed to enhance student learning outcomes.

The integration of automated testing and grading in learning
management systems (LMS) has proven beneficial in man-
aging code submissions. Encouraging students to adopt test-
first coding practices, where test cases are written before
implementing solutions, has shown to improve programming
habits and understanding of code quality. By fostering a focus
on correctness and quality, automated systems are able to
support teachers in evaluating student submissions efficiently
while promoting good programming practices among students.

Detecting plagiarism in programming courses remains a
challenge due to the subtle changes students make to evade

detection. Robust plagiarism detection tools that analyze struc-
tural similarities between code submissions have become es-
sential for ensuring fairness in the assessment process. Regular
plagiarism checks help identify instances of copied code and
provide a valuable tool for educators to maintain academic
honesty in programming courses. By integrating plagiarism
detection systems, platforms can effectively reduce instances
of academic dishonesty.

Novice programmers often face significant challenges in
areas such as syntax, logic, and proper code organization.
To address these difficulties, platforms that simplify the sub-
mission process while enforcing coding standards can play
a pivotal role in helping students improve. Providing struc-
tured environments for submitting assignments, along with
regular feedback, enables students to focus on overcoming
common programming challenges. This structured approach is
particularly beneficial for beginners, fostering better learning
outcomes.

The use of online integrated development environments
(IDEs) in educational settings has streamlined the process
of evaluating student code submissions. These IDEs enable
real-time code assessment without requiring manual setup,
significantly improving the efficiency of code evaluation. By
integrating online compilers, platforms can offer immediate
feedback to students, helping both students and educators
quickly assess code quality and correctness. This real-time
feedback capability is a key feature for platforms aiming to
optimize the code submission and evaluation process.

Automating the assessment of programming assignments
has become essential to manage the increasing number of
student submissions, particularly in large classes. Automatic
grading systems that evaluate code against predefined test
cases and provide real-time feedback are foundational for plat-
forms aiming to streamline the grading process. Approaches
such as static code analysis and dynamic execution testing
have been effective in assessing the correctness and quality
of code, with the added benefit of offering timely feedback
to students, which is instrumental in improving their coding
skills. This feedback mechanism is a core feature of platforms
designed to enhance student learning outcomes.

The integration of automated testing and grading in learning
management systems (LMS) has proven beneficial in man-
aging code submissions. Encouraging students to adopt test-
first coding practices, where test cases are written before
implementing solutions, has shown to improve programming
habits and understanding of code quality. By fostering a focus
on correctness and quality, automated systems are able to
support teachers in evaluating student submissions efficiently
while promoting good programming practices among students.

Detecting plagiarism in programming courses remains a
challenge due to the subtle changes students make to evade
detection. Robust plagiarism detection tools that analyze struc-
tural similarities between code submissions have become es-
sential for ensuring fairness in the assessment process. Regular
plagiarism checks help identify instances of copied code and
provide a valuable tool for educators to maintain academic

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 4 2025

PAGE N0: 191



honesty in programming courses. By integrating plagiarism
detection systems, platforms can effectively reduce instances
of academic dishonesty.

The use of online integrated development environments
(IDEs) in educational settings has streamlined the process
of evaluating student code submissions. These IDEs enable
real-time code assessment without requiring manual setup,
significantly improving the efficiency of code evaluation. By
integrating online compilers, platforms can offer immediate
feedback to students, helping both students and educators
quickly assess code quality and correctness. This real-time
feedback capability is a key feature for platforms aiming to
optimize the code submission and evaluation process.

Automating the assessment of programming assignments
has become essential to manage the increasing number of
student submissions, particularly in large classes. Automatic
grading systems that evaluate code against predefined test
cases and provide real-time feedback are foundational for plat-
forms aiming to streamline the grading process. Approaches
such as static code analysis and dynamic execution testing
have been effective in assessing the correctness and quality
of code, with the added benefit of offering timely feedback
to students, which is instrumental in improving their coding
skills. This feedback mechanism is a core feature of platforms
designed to enhance student learning outcomes.

The integration of automated testing and grading in learning
management systems (LMS) has proven beneficial in man-
aging code submissions. Encouraging students to adopt test-
first coding practices, where test cases are written before
implementing solutions, has shown to improve programming
habits and understanding of code quality. By fostering a focus
on correctness and quality, automated systems are able to
support teachers in evaluating student submissions efficiently
while promoting good programming practices among students.

DISCUSSION

The integration of various machine learning models and
tools in KodeKraken plays a crucial role in enhancing both
the student and teacher experience, particularly in identifying
learner performance and ensuring academic integrity. Notably,
Naive Bayes and Linear SVM classifiers have been instru-
mental in distinguishing between slow and fast learners, with
Naive Bayes often outperforming SVM in scenarios where
students’ performance data is more categorical, such as quiz
results and submission timing. Linear SVM, however, excels
in handling more complex, multidimensional data such as
continuous student progress over time, assignment accuracy,
and improvement patterns. Together, these models provide a
robust framework for analyzing student learning behaviors and
delivering personalized feedback.

In addition to learning analysis, TF-IDF and text summa-
rization techniques have demonstrated their utility in ensuring
the integrity of student submissions by detecting plagiarism.
TF-IDF calculates the importance of terms in student code
submissions, facilitating the detection of similarities across

different assignments. This is further enhanced by text sum-
marization methods, which extract critical lines of code for
quicker comparison, streamlining the plagiarism detection
process.

The frontend of KodeKraken, developed using Dart, inte-
grates seamlessly with the backend built in Java, leveraging
API integration to enable efficient data flow between the two.
The platform also includes a code editor with versioning
capabilities, allowing students to write, submit, and track the
evolution of their assignments. Teachers can view students
grouped in batches, assess their submissions, and assign grades
accordingly. The integration of version control ensures that
teachers can track a student’s coding process over time,
identifying areas of improvement or inconsistency.

These machine learning techniques and tools work synergis-
tically within KodeKraken to not only automate administrative
tasks but also enhance educational outcomes. Just as sentiment
analysis models have improved decision-making processes
in financial markets, the application of advanced machine
learning approaches in KodeKraken improves educational
evaluation, ensuring timely and accurate assessment of student
progress. The system’s ability to combine plagiarism detec-
tion, learner classification, and summarization into a unified
platform highlights its potential to revolutionize assignment
submission and evaluation workflows.

METHODOLOGY AND IMPLEMENTATION

A. Code Submission Evaluation Pipeline:

• KodeKraken provides an automated code submission and
evaluation pipeline that allows students to upload assign-
ments with predefined test cases. The pipeline follows
these steps:
1) Code Upload: Students submit code assignments
through the Flutter-based frontend.
2) Syntax Validation: Initial syntax checks are performed
on the client-side before submission.
3) Execution Environment: The backend (FastAPI) pro-
cesses submissions using a secure, containerized execu-
tion environment to prevent malicious code execution.
4) Test Case Evaluation: The submitted code is executed
against predefined test cases stored in Firestore DB, and
results are recorded.
5) Performance Metrics Calculation: Execution time,
memory usage, and correctness of the submission are
measured and logged.

B. Plagiarism Detection:

KodeKraken integrates TF-IDF and CodeBERT for plagia-
rism detection:

• Tokenization Preprocessing: The system removes
comments and normalizes code to eliminate superficial
differences.

• TF-IDF Scoring: A text-based similarity score is
computed to compare code submissions.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 4 2025

PAGE N0: 192



• CodeBERT Embeddings: A deep learning model
(CodeBERT) is used to extract semantic meaning and
compare structurally different but functionally similar
code.

• Threshold-Based Classification: Submissions are flagged
if their similarity score exceeds a predefined threshold.

C. Student Performance Classification

• Students are classified as slow or fast learners using a
KNN model, with plans to transition to Random Forest.
The classification is based on the following parameters:

• Version Time Difference: The time interval between
consecutive code submissions.

• Plagiarism Score: Higher scores indicate a greater
likelihood of copying solutions.

• Total Number of Versions: The number of times a student
resubmits a solution.

Workflow:
–Data Collection: Student submission history is stored
in Firestore DB.
–Feature Engineering: Extract relevant parameters from
submission history.
–Model Training: KNN is initially used to classify
students based on their historical patterns.
–Model Deployment: The trained model is integrated
into the FastAPI backend to generate real-time feedback.

D. Instructor Dashboard

• Assignment Overview: A summary of student submis-
sions and evaluation results.

• Plagiarism Reports: A list of flagged submissions with
similarity scores.

• Student Performance Insights: Representation of slow
learners and fast learners

CHALLENGES AND FUTURE DIRECTIONS:

Even with the advancements made in KodeKraken, several
challenges remain that need to be addressed to fully realize
its potential:

Data Availability and Quality: The success of the machine
learning models, such as those used for identifying slow and
fast learners, heavily depends on the quality and quantity of
student data. While KodeKraken processes student assignment
data, the models would benefit from more diverse data points,
such as behavioral or engagement metrics, to better assess
learning patterns and make more informed predictions. Access
to high-quality, real-time data on student performance is
essential to enhance the model’s predictive capabilities.

Model Interpretability: Much like in other fields, the ma-
chine learning models used in KodeKraken, especially for clas-
sifying learners, operate as “black boxes,” making it difficult

for educators to understand how the system arrives at certain
conclusions. Ensuring that the models used for classifying
students as bright or slow learners are interpretable is crucial.
Educators need to trust and understand these systems to make
informed decisions based on their output.

Handling Diverse Code and Assignment Complexity: Stu-
dent submissions may vary significantly in complexity, style,
and approach. While the current models handle basic code
analysis and plagiarism detection, future development should
focus on enhancing the platform’s ability to handle more
complex coding styles and ensure fair assessments across
different programming approaches. Additionally, integrating
deeper learning models capable of understanding advanced
coding concepts or logical structures would be beneficial in
providing more accurate feedback and evaluations.

CONCLUSION

This study has highlighted the essential components of
KodeKraken in streamlining the process of code submission,
plagiarism detection, and personalized learning analysis. The
integration of machine learning models, such as Linear SVM
and Naive Bayes, has proven to be effective in identifying slow
and fast learners, providing valuable insights for educators.
Plagiarism detection techniques, using methods like TF-IDF
and text summarization, ensure academic integrity while sup-
porting educators in efficiently managing student assignments.

The platform’s code editor and versioning features have
facilitated smooth code submission, and its integration with
machine learning models for learner analysis has demonstrated
the potential for a more personalized educational experience.
The combined approach of advanced plagiarism detection and
learning assessment helps teachers offer targeted feedback,
which is crucial for fostering student growth.

In conclusion, KodeKraken provides a robust framework
for automating assignment submissions, monitoring student
progress, and ensuring fair evaluations. Future improvements
should focus on enhancing data quality and model inter-
pretability to make the platform even more reliable, while also
expanding the scope of learning indicators to better capture
student performance nuances.

REFERENCES

[1] Roy, C., and Cordy, J. R. (2007). A Survey of Source Code Clone
Detection Research. Computer Science Review, 2(3), 137-158

[2] Joy, M., and Luck, M. (1999). Plagiarism in Programming Assignments.
IEEE Transactions on Education, 42(2), 129-133

[3] Lahtinen, E., Ala-Mutka, K., and Järvinen, H. M. (2005). A Study of
the Difficulties of Novice Programmers. ACM SIGCSE Bulletin, 37(3),
14-18.

[4] Edwards, S. H. (2003). Teaching software testing: Automatic grading
meets test-first coding. Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education, 245-249

[5] Leinonen, J., Väätäjä, H., and Pöllänen, P. (2016). Online IDEs in
Programming Education: Usage Experiences and Comparison. Proceed-
ings of the 16th Koli Calling International Conference on Computing
Education Research, 25-34

[6] Hanks, B., and McDowell, C. (2008). Program quality with pair
programming in CS1. Proceedings of the 39th SIGCSE Technical
Symposium on Computer Science Education, 205-209

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 4 2025

PAGE N0: 193



[7] V.L. Miguéi, A. Freitas, P.J.V. Garcia and A. Silva, ”Early segmentation
of students according to their academic performance: A predictive
modelling approach,” Decision Support System,vol. 6, no. 5, pp. 65-
78, 2018.

[8] P. Kamal and S. Ahuja,”An ensemble-based model for prediction of
academic performance of students in undergrad professional course,”
Journal of Engineering Design and Technology, vol. 98, pp. 654-672,
2019

[9] Chitra, A., and Rajkumar, A. (n.d.). Plagiarism detection using machine
learning-based paraphrase recognizer, 2015

[10] Sangeeta, K., Naveen Babu, G. V. S. S., and Madhuri, G. (2020).
Classification and prediction of slow learners using machine learning
algorithms. International Journal of Computer Trends and Technology
(IJCTT), 68(2). © IJCTT Journal.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 4 2025

PAGE N0: 194


