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Abstract: 

In this paper we introduce the notion of Ig*–closed sets, Ig*-open sets in fuzzy ideal 

topological space and studied some of its basic properties and characterizations. 

It shows this class lies between fuzzy closed sets and fuzzy g–closed sets. 
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1. Introduction 

After the introduction of fuzzy  sets  by  Zadeh  [18]  in 1965  and fuzzy  topology 

by Chang [2] in 1968, several researches  were conducted on the generalization of 

the notions of fuzzy sets and fuzzy topology. The hybridization of fuzzy topology 

and fuzzy ideal theory was initiated by Mahmoud [6] and Sarkar [12] independently 

in 1997. They [6, 12] introduced the concept of fuzzy ideal topological spaces as an 

extension of fuzzy topological spaces and ideal topological spaces. 

A nonempty collection of fuzzy  sets  I  of  a  set  X satisfying  the 

conditions: 

(i) if A ∈ I  and B ≤ A, then B ∈ I (heredity), 

(ii) if  A ∈ I  and  B ∈  I  then  A � B ∈ I (finite  additivity) 

is called a fuzzy  ideal  on  X.  The  triplex (X, τ,  I)  denotes a fuzzy ideal 

topological space with a fuzzy ideal I and fuzzy topology τ [12]. 

The local  function  for  a  fuzzy set  A of  X  with  respect  to τ  and  I 

denoted by A* ( τ, I)    ( briefly A*) in a fuzzy   ideal   topological   space (X, τ, I) is 

the  union  of  all  fuzzy   points  xβ  such   that  if   U is a  Q-neighbourhood of xβ 

and  E ∈ I   then  for   at least   one   point y ∈ X   for   which  U(y) + A(y) − 1 > 

E(y) [12]. The ∗-closure operator of a fuzzy set A denoted by Cl*(A) in (X, τ, I) 

defined   as   Cl*(A) = A � A* .   In   (X,  τ,  I) the   collection   τ* (I)   is   an 

extension of fuzzy  topological  space  than  τ  via  fuzzy  ideal  which  is 

constructed  by  considering  the  class  β = {U−E : U ∈ τ, E ∈  I }  as   a   base 

[6,12] . 
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Recently the concepts of fuzzy semi-I-open sets [4], fuzzy α-I-open sets 

[16], fuzzy γ-I-open sets [3], fuzzy pre-I-open sets [8] and fuzzy δ-I-open sets [17] 

have been  introduced and studied in fuzzy  ideal  topological  spaces.  In  the 

present paper we introduce and  study the concept  of  fuzzy  Ig*-closed  sets  in 

fuzzy ideal topological spaces which simultaneously generalizes the concept of Ig* 

-closed sets [11]. 

2. Preliminaries 

 
 

Let X be a nonempty set.  A   family   τ   of   fuzzy   sets   of   X   is   called 

a  fuzzy  topology  [2] on  X  if  the  null  fuzzy  set  0 and the whole fuzzy set 

1 belongs to τ and τ is closed with respect to any union and finite intersection. If τ is 

a  fuzzy  topology  on  X, then  the  pair (X, τ)  is  called  a  fuzzy   topological 

space. The members of τ  are  called  fuzzy  open  sets  of  X  and  their 

complements are called fuzzy  closed  sets. The closure of a fuzzy set A of X 

denoted by Cl(A), is the intersection of all fuzzy closed sets which contains A. The 

interior [2] of a fuzzy set A of  X denoted  by  Int(A)  is the union of all fuzzy 

subsets contained in A. A fuzzy set A of a fuzzy topological space (X, τ) is called 

fuzzy semi-open if there exists a fuzzy open set U in X such that U≤A≤Cl(U) [1]. A 

fuzzy   set   A   in   (X, τ)   is   said   to   be   quasi-coincident   with   a   fuzzy   set 

B, denoted  by  AqB,  if  there  exists  a point  x ∈ X  such   that   A(x) + B(x) > 1 

[4]. A   fuzzy   set  V in    (X, τ) is   called   a   Q-neighbourhood   of   a    fuzzy 

point    xβ    if    there   exists   a    fuzzy   open   set   U   of  X   such   that   xβqU ≤ 

V [4]. 

Definition 2.1: A fuzzy set A of a fuzzy topological space (X, τ) is called fuzzy 

generalized closed written as fuzzy g-closed if Cl(A) ≤ O whenever A ≤ O and O is 

fuzzy open [14]. 

Definition 2.2: A fuzzy set A of fuzzy ideal topological space (X, τ, I) is said to be 

fuzzy ∗-closed (resp. fuzzy ∗-dense in itself) if A* ≤ A (resp. A ≤ A*) [12]. 

Definition 2.3: A fuzzy set  A  of a fuzzy  ideal  topological  space (X,  τ,  I)  is 

called  fuzzy Ig -closed if  A* ≤ U, whenever A ≤ U and U   is   fuzzy   open in X 

[13]. 

Lemma 2.1: A ≤ B ⇔  (Aq(1−B)), for every pair of  fuzzy  sets  A  and  B 

of X [9]. 
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3. Fuzzy Ig*-closed sets 

 
 

Definition 3.1: A  fuzzy set  A  of a fuzzy  ideal  topological  space (X,  τ,  I)  is 

called fuzzy Ig*-closed if A* ≤ U, whenever A ≤ U and U is fuzzy g-open in X. 

 
Remark 3.1: Every fuzzy ∗-closed set of a fuzzy  ideal  topological  space (X,  τ,  I) 

is fuzzy Ig*-closed and every fuzzy Ig*-closed is fuzzy Ig-closed set but the converse 

may not be true. 

Remark 3.2: In a fuzzy ideal topological space (X, τ, I), I is fuzzy Ig*-closed for 

every A ∈ I. 

Theorem 3.1: Let (X, τ, I) be a fuzzy ideal topological space. Then A* is fuzzy Ig*-

closed for every fuzzy set A of X. 

Proof: Let A be a fuzzy set of X and U be any fuzzy g-open set of X such that A* ≤ 

U. Since (A*)*≤ A* it follows that (A*)*≤ U. Hence A* is fuzzy Ig*-closed. 

Theorem 3.2: Let (X, τ, I) be a fuzzy ideal topological space and A be a fuzzy 

Ig*-closed and fuzzy g-open set in X. Then A is fuzzy ∗-closed. 

Proof: Since A is fuzzy g-open and fuzzy Ig*-closed and A ≤ A. It follows that 

A*≤A because A is fuzzy Ig*-closed. Hence Cl*(A) = A�A*≤ A and A is fuzzy ∗- 

closed. 

Theorem 3.3: Let (X, τ, I) be a fuzzy ideal topological space and A be a fuzzy set of 

X. Then the following are equivalent: 

(i) A is fuzzy Ig*-closed. 

(ii) Cl*(A) ≤ U whenever A* ≤ U and U is fuzzy g-open in X. 

 

(iii)  (AqF) ⟹  (Cl*(A)qF) for every fuzzy closed set F of X. 

(iv)  (AqF) ⟹  (A*qF) for every fuzzy closed set F of X. 

Proof: (i)⟹(ii). Let A be a fuzzy Ig*-closed set in X. Let A* ≤ U where U is fuzzy 

g-open set in X. Then A* ≤ U. Hence Cl*(A) = A�A* ≤ U. Which implies that 

Cl*(A) ≤ U. 

(ii)⟹(i). Let A be a fuzzy set of X. By hypothesis Cl*(A) ≤ U. Which implies that 

A*≤ U. Hence A is fuzzy Ig*-closed. 
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(ii) ⟹(iii). Let F be a fuzzy closed set of X and  (AqF). Then 1−F is fuzzy open in X 

and by Lemma 2.1, A ≤ 1−F. Therefore, Cl*(A) ≤ 1−F, because A is fuzzy Ig*-

closed. Hence by Lemma 2.1,  (Cl*(A)qF). 

(iii) ⟹(ii). Let U be a fuzzy Ig*-open set of X such that A* ≤ U. Then by Lemma 2.1, 

(Aq(1−U))  and   1−U   is   fuzzy   closed   in   X.   Therefore   by   hypothesis 

(Cl*(A)q(1−U)). Hence, Cl*(A) ≤ U. 

 
(i)⟹(iv). Let F be a fuzzy g-closed set in X such that  (AqF). Then A ≤ 1−F where 

1−F is fuzzy g-open. Therefore by (i) A* ≤ 1−F. Hence  (A*qF). 

(iv)⟹(i). Let U be a fuzzy closed set in X such that A ≤ U. Then by Lemma 2.1, 

 (Aq(1−U)) and 1−U is fuzzy closed in X. Therefore by hypothesis  (A*q(1−U)). 

Hence A* ≤ U and A is fuzzy Ig* -closed set in X. 

Theorem 3.4: Let (X, τ, I) be a fuzzy ideal topological space and A be a fuzzy 

Ig* -closed set. Then x qCl*(A) ⟹ Cl(x )qA for any fuzzy point x of X. 

Proof: Let x qCl*(A). If (Cl(x )qA). Then by Lemma 2.1, A ≤ (1−Cl(x )). And so 

by Theorem 3.3(ii), Cl*(A) ≤ (1−Cl(x )) because (1−Cl(x )) is fuzzy g-open set in 

X. Which implies that Cl*(A) ≤(1−x ). Hence by Theorem 3.3(ii),(x qCl*(A)), 

which is a contradiction. 

Theorem 3.5: Let (X,  τ,  I) be a fuzzy ideal topological space and A be fuzzy 

∗-dense in itself fuzzy Ig* -closed set of X. Then A is fuzzy g-closed. 

Proof: Let U be a fuzzy open set of X such that A ≤ U. Since A is fuzzy Ig*-closed, 

by Theorem 3.3 (ii), Cl*(A) ≤ U. Therefore, Cl(A) ≤ U, because A is fuzzy ∗-dense in 

itself. Hence A is fuzzy g-closed. 

 
Theorem 3.6: Let (X, τ, I) be a fuzzy ideal topological space where I = {0} and A 

be a fuzzy set of X. Then A is fuzzy Ig*-closed if and only if A is fuzzy g-closed. 

Proof: Since I = {0}, A* = Cl(A) for each subset A of X. Now the result can be easily 

proved. 

Theorem 3.7: Let (X, τ, I) be a fuzzy ideal topological space and A, B are fuzzy 

Ig*-closed sets of X. Then A�B is fuzzy Ig*-closed. 
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Proof: Let U be a fuzzy g-open set of X such that A�B ≤ U. Then A ≤ U and B ≤ U 

.Therefore A*≤ U and B*≤ U because A and B are fuzzy Ig*-closed sets of X. Hence 

(A�B)*≤ U and A�B is fuzzy Ig*-closed. 

Remark 3.3: The intersection of two fuzzy Ig*-closed sets in a fuzzy ideal 

topological space (X, τ, I) may not be fuzzy Ig*-closed . 

Example 3.1: Let X ={a, b} and  A, B be two  fuzzy sets  defined  as  follows: 

A (a) = 0.9 , A (b) = 0.7 

B (a) = 0.8 , B (b) = 0.7 

U (a) = 0.3 , U (b) = 0.4 

Let  τ = { 0, U, 1}  and I = {0}. Then   A  and   B   are fuzzy Ig*-closed sets in 

(X,  τ,  I) but A ∩ B is not fuzzy Ig*-closed. 

 
Theorem 3.8: Let (X, τ, I)  be a fuzzy ideal topological space and A, B are fuzzy 

sets of X such that A ≤ B ≤ Cl*(A). If A is fuzzy Ig*-closed set in X, then B is fuzzy 

Ig*-closed. 

Proof: Let U be a fuzzy g-open set such that B ≤ U. Since A ≤ B we have A ≤ U. 

Hence, Cl*(A) ≤ U because A is fuzzy Ig*-closed. Now B ≤ Cl*(A) implies that 

Cl*(B) ≤ Cl*(A) ≤ U. Consequently B is fuzzy Ig*-closed. 

 
Theorem 3.9: Let (X, τ, I)  be a fuzzy ideal topological space and A, B are fuzzy 

sets of X such that A ≤ B ≤ A*. Then A and B are fuzzy g-closed. 

Proof: Obvious. 

Theorem 3.10: Let (X, τ, I) be  a fuzzy ideal topological space. If A and  B  are 

fuzzy subsets   of   X   such that   A ≤ B ≤ A* and   A is   fuzzy    Ig*-closed. Then 

A* = B* and B is fuzzy ∗ -open in itself . 

 
Proof: Obvious. 

 
Theorem 3.11: Let (X, τ, I)  be  a fuzzy ideal topological space  and  ℱ  be  the 

family  of  all  fuzzy  ∗- closed  sets  of  X. Then  τ ⊂  ℱ  if  and  only  if   every 

fuzzy set of X is fuzzy Ig*-closed. 

 
Proof: Necessity. Let τ ⊂ ℱ and U  be a  fuzzy  g-open set in X such that  A*≤ 

U. Now  U ∈  τ ⟹ U  ∈  ℱ.  And  so Cl*(A) ≤ Cl*(U) = U and A is fuzzy 

Ig*-closed set in X. 

Sufficiency. Suppose that every fuzzy set of X is  fuzzy Ig*-closed. 

Let U ∈ τ. Since U is fuzzy Ig*-closed and U≤ U, Cl*( U) ≤ U. Hence Cl*( U) 

= U and U ∈ ℱ. Therefore τ ⊂  ℱ. 
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Definition 3.2: A fuzzy set A of a fuzzy ideal topological space (X, τ, I) is called 

fuzzy Ig*-open if its complement 1−A is fuzzy Ig*-closed. 

Remark 3.4: Every fuzzy ∗-open set in a fuzzy ideal topological space (X, τ, I) is 

fuzzy Ig*-open and every fuzzy Ig*-open is fuzzy  Ig-open. But the converse may 

not be true. 

Theorem 3.12: Let (X, τ, I) be a fuzzy ideal topological space and A is fuzzy set of 

X. Then A is fuzzy Ig*-open if and only if F ≤ Int*(A) whenever F is fuzzy g-closed 

and F ≤ A. 

 
Proof: Necessity. Let A be fuzzy Ig*-open and F is fuzzy g-closed set such that F ≤ 

A. Then 1−A is fuzzy Ig*-closed, 1−A ≤ 1−F and 1− F is fuzzy g-open in X. Hence 

Cl*(1−A) ≤ (1−F). Which implies that F ≤ Int*(A). 

Sufficiency. Let U be a fuzzy g-open set such that 1−A ≤ U. Then 1−U is 

fuzzy g-closed set of X such that 1−U ≤ A. And so by hypothesis, 1−U ≤ 

Int*(A).Which implies that Cl*(1−A) ≤ U and 1−A is fuzzy Ig*-closed. Hence A is 

fuzzy Ig*-open. 

Corollary 3.1: Let (X, τ, I) be a fuzzy ideal topological space and A is fuzzy set of 

X. Then A is fuzzy Ig*-open if and only if F ≤ Int*(A) whenever F is fuzzy closed and 

F ≤ A. 

Theorem 3.13: Let (X, τ, I) be a fuzzy ideal topological space and A be a fuzzy set 

of X. If A is fuzzy Ig*-open and  Int*( A) ≤ B ≤ A, then  B is  fuzzy Ig*-open. 

Proof: Let A be fuzzy Ig*-open in X then 1−A is fuzzy Ig*-closed. Hence Cl*(1−A) 

≤ (1−A) is fuzzy g-open set. Also Int*( A) ≤ Int*(B) ⇒ Cl*(1−B) ≤ Cl* (1−A). 

Hence, B is  fuzzy Ig*-open. 
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