

Design and Development
of a Secure QR-based
Smart Visitor
Management Using
 Flask Framework

Author’s Name:

1.Miss.Sonali Pralhad Suryavanshi

PG Student, School of Computational Sciences,
Faculty of Science and Technology, JSPM
University Pune, Pune, Maharashtra, India

2. Dr. Rahul R Chakre

Sr. Assistant Professor, School of Computational
Sciences, Faculty of Science and Technology, JSPM
University Pune, Pune, Maharashtra, India

Abstract— Modern visitor management systems
are rapidly evolving to enhance security,
efficiency, and user experience across a variety of
facilities, including corporate offices, educational
institutions, and government buildings. This
paper presents a comprehensive review of an
intelligent visitor tracking and access control
framework that incorporates secure web-based
interfaces and machine-readable codes for swift
check-ins. The system emphasizes identity
verification, real-time data logging, and minimal
human intervention. It explores the integration of
digital forms, automated badge generation, and
one-time passcodes to manage entry
authorizations effectively. Moreover, it discusses
key components such as authentication protocols,
database handling, and modular design strategies
that contribute to the system's scalability and
robustness. The review also compares existing
solutions, identifies limitations, and proposes
potential enhancements to ensure improved
adaptability, user privacy, and operational
efficiency.

 Keywords: Visitor Management System (VMS),
Flask, Python, IoT, QR Code, MongoDB,
Android, Access Control, Web UI, Hostinger,
Smart Gate, Security Automation, Real-time
Notification, Cloud Deployment.

I. INTRODUCTION

With increasing concerns around campus and

workplace security, traditional visitor logbooks

and unsecured check-in systems are no longer

sufficient. Many existing solutions either lack real-

time approval mechanisms or fail to integrate

effectively with physical access control, leaving

institutions vulnerable to unauthorized entries. The

need for a system that ensures secure, automated, and

verifiable access—while remaining affordable and

customizable—motivated the development of a smart

visitor management solution. By combining multi-

step authentication, dynamic access credentials,

and cloud-based tracking, this project aims to offer

a modern, efficient, and secure approach to managing

visitor entry in sensitive environments.

 In an era where security, efficiency, and user

experience are critical to institutional and corporate

operations, visitor management systems (VMS) play an

essential role in streamlining the entry and exit

processes of authorized personnel. Traditional paper-

based or manually managed visitor records are

increasingly being replaced by digital solutions that

offer greater reliability, traceability, and automation.

This project, titled "Visitor Management System

Using Flask", proposes an integrated solution that

automates visitor entry and exit, ensures secure

access through QR-based authentication, and

provides a seamless user interface for both visitors

and administrators. The proposed system leverages

modern web technologies and Internet of Things

 (IoT) integration to address the inefficiencies and

security gaps found in conventional visitor tracking

systems. It ensures that only verified and approved

visitors gain access to premises by implementing a

digital check-in process and IoT-controlled gate

mechanism. By incorporating mobile interfaces for

visitors and email notifications for staff, the system

promotes rapid communication and decision-making.

Moreover, all activity and visitor data is stored

securely in a for administrative oversight. The

architecture of the system encompasses a diverse

technology stack. The frontend for the visitor

interface is developed using Android with XML,

offering an intuitive tab-based form for user

interaction. The backend is powered by Python with

Flask, which handles the logic for form submission,

email dispatch, and QR generation. Visitor data is

stored in a MongoDB database, ensuring flexibility

and scalability. The IoT-enabled gate mechanism

provides physical control, validating QR codes at

entry and exit points. All backend services are hosted on

a remote server via Hostinger, while the administrator

dashboard is developed using HTML, CSS, and

JavaScript, enabling easy monitoring and

management of visitors.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 9 2025

PAGE NO: 20

 II . LITERATURE SURVEY

Visitor Management Systems (VMS) have evolved

significantly in response to growing security

demands, the need for automation, and the rise of

digital transformation. Traditional manual logbooks

and paper-based visitor logs are inefficient, prone to

human error, and lack real-time monitoring

capabilities. With advancements in web technologies,

mobile applications, and the Internet of Things (IoT),

modern VMS solutions now offer secure, automated,

and user-friendly alternatives. The following table

synthesizes key research works in VMS, highlighting

technological approaches, limitations, and their

relevance to the proposed system: Emerging trends

also emphasize the role of IoT in automating physical

security. While Santosha et al. (2019) and Patel & Shah

(2021) used Raspberry Pi and Node MCU respectively

for basic gate control, their implementations were either

non-scalable or omitted admin dashboards. Our solution

advances these efforts by unifying IoT gate mechanisms

with a cloud-based admin UI (Hostinger), enabling

remote monitoring—a feature absent in prior works.

Furthermore, Kumar et al.’s (2022) adoption of

MongoDB aligns with our design choice, as NoSQL

databases prove optimal for handling dynamic visitor

data and high query loads.

III. Research Gaps

1. Visitor Approval Mechanism: Most existing

systems either log visitor data or allow entry

immediately after a check-in form is submitted,

without any involvement from the host or admin.

This poses a security risk, especially in sensitive

environments like campuses or offices. Our system

addresses this by introducing an email-based

approval workflow where the host receives a

notification and can approve or deny access. Only

upon approval is the visitor issued access

credentials, ensuring proper validation before

entry.[13]

2. QR Code Utilization:

In many solutions, QR codes are static and only used

for logging purposes or for displaying visitor details.

They are not integrated with any access control

mechanisms. To bridge this gap, our system generates

one-time-use QR codes dynamically after host

approval. These codes are directly linked with the

access system, enabling secure and controlled gate

operation only after verification.[14]

3. Data Management:

Many systems rely on local storage or offline

logging, making it difficult to access historical visitor

records or monitor current activity in real time. We

address this limitation by using a cloud-based setup

with MongoDB and a backend framework hosted on

Hostinger. This setup allows administrators to track

visitor logs, approval statuses, and gate activity in

real-time, with persistent storage for auditing and

analysis [15].

4. Customization & Cost:

Enterprise-level visitor management system tend to be

expensive and proprietary, limiting access for smaller

organizations or institutions. Moreover, customization

is often restricted. Our proposed solution is open-

source, cost-effective, and modular, allowing

educational institutions, small offices, and startups to

Author Name
Key Features Limitations Identified

Santosha et al.

(2019)
QR code

generation for

visitor entry,

basic IoT

integration

Lacked admin approval step

and secure backend control

Gallera et al.

(2020) QR-based entry

logging for

school visitors

No physical access control;

only software-level record

tracking

Patel & Shah

(2021), Smart

Campus VMS

QR for visitor

and student

check-in, SMS

notifications

No Android-based

front-end; limited to local

Wi-Fi

Kumar et al.

(2022), Secure

QR Entry

System [7]

QR-based

vehicle

authentication

and log retrieval

Not real-time, and no

interactive visitor approval

workflow

Nacaroğlu et al.

(2024) – Cyber

Security Based

Visitor Control

System Design

Pre-issue of

entry pass days

before event;

photo-verified at

entry; generates

a scannable

pass.

Raspberry Pi–based photo

matching may fail under

poor lighting; lacks real-time

admin control.

Suethanuwong

& Sukkasame

(2023) – Access

Control System

using RFID

and Face

Verification

Two-factor:

RFID card + live

face match;

controls turnstile

gates

Enrollment QR-like

mechanism but reliant on

fixed infrastructure; limited

scalability

Bhaise et al.

(AVAS, 2025) –

Automated

Visitor

Authentication

System

Live video call

option; cloud

database;

role-based

admin access

Visitor cannot initiate video;

lacks dynamic code

generation; limited mobile

support

Jaiswal et al.

(2023) –

Implementatio

n of Smart &

Secure Gate

Pass System

Electronic

gate-pass

application with

admin approval;

hosts/guards can

accept/reject

Confined to student-hostel

context; no mobile-based

check-in

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 9 2025

PAGE NO: 21

tailor it according to their specific needs without

heavy investment.[16]

IV. Problem Statement

Traditional visitor management systems often lack

essential features such as real-time approval

workflows, dynamic access control, centralized data

management, and secure authentication processes.

Most existing solutions either permit unchecked visitor

entry after form submission or use static credentials,

posing serious security and operational risks.

Furthermore, these systems typically offer limited

platform support, minimal integration with physical

access infrastructure, and are either too costly or non-

customizable for small institutions. There is a critical

need for an affordable, flexible, and secure system that

bridges these gaps by enabling verified, automated, and

trackable visitor access.

V. Research Objectives

1. To design and implement a smart visitor management

system with secure, real-time host approval before

granting entry access.

 2. To dynamically generate one-time-use access

credentials (e.g., QR codes) only after administrative or

host approval.

3. To integrate backend logic with hardware level

access control, allowing automated gate operation

based on credential validation.

 4. To ensure centralized and persistent data storage for

visitor logs using a cloud connected database system.

VI. Proposed Methodology

• Data Collection and Preprocessing

Visitor Data Collection:

Visitors submit details (name, contact, purpose) via

an Android app (XML-based UI). Data is validated

to prevent invalid inputs (e.g., fake emails/phone

numbers).

Host Data Integration:

Host emails are fetched from the organization’s

directory (LDAP/CSV).

Preprocessing:

Before storing visitor and host data in MongoDB, a

series of preprocessing steps are applied to ensure

data quality and security. All input is sanitized by

removing special characters, extra spaces, and

unwanted symbols. Host and visitor emails are

validated to ensure they follow the correct format and

match entries in the organizational directory.

Duplicate records are checked to avoid multiple

entries for the same visitor. Data is normalized by

converting names into a consistent case format and

standardizing phone numbers. Timestamps are

converted into a uniform format such as ISO 8601 for

accurate record-keeping. Security measures such as

input validation are implemented to prevent injection

attacks or cross-site scripting. All special characters are

encoded in UTF-8 for platform compatibility. Finally, a

QR code is generated only after the host has approved

the request, ensuring both accuracy and secure

authorization.

• Model Selection Training

Backend (Flask/Python): Handles visitor check-ins,

email notifications, QR generation, and gate control

logic. Uses REST APIs for communication between

Android app, IoT gate, and database.Database

(MongoDB): NoSQL structure stores visitor logs,

host responses, and QR scan events.IoT Gate

Hardware: Raspberry Pi/ESP32 + camera module

for QR s canning. GPIO pins control gate actuators

(servo motors/relays).

• System Workflow Implementation

The visitor check-in process begins when the visitor

submits their details through the Android application,

which are then sent to the Flask backend. Once the

request is received, the system triggers an automated

email notification to the respective host. The host

reviews the request and either approves or denies it

directly through the email link. If the request is

approved, the backend updates the visitor’s status

and generates a unique QR code as a digital entry

pass. On arrival at the facility, the visitor scans this

QR code at the IoT-enabled gate. The gate

communicates with the Flask API to validate the

code, and access is granted if the QR is valid. For

exit, the same QR code is scanned again at the gate,

allowing the system to log the check-out time and

Fig 1.1: System Workflow

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 9 2025

PAGE NO: 22

reopen the gate for departure.

• Flask Working Integration

Flask is a lightweight Python web framework

that acts as the backbone of the backend in your

system. In your VMS:

1. Request Handling: When a visitor checks in via

the tablet or app, Flask receives the HTTP

request and processes the data.

2. Routing & APIs: Flask routes the request to

appropriate functions, such as sending

notifications to the referenced employee or

generating QR codes.

3. Database Interaction: Flask communicates with

MongoDB to store visitor information, access

logs, and approval statuses.

4. Real-Time Notifications: Flask triggers APIs to

send app notifications, emails, or SMS

messages to hosts and visitors.

5. IoT Gate Control: Flask exposes endpoints that

IoT devices call to validate QR codes and

control gate opening.

• MATHEMATICAL MODEL

This is a mathematical optimization model aiming to

maximize throughput while minimize authentication

failure and cost.

• The objective function maximizes successful

gate assignments and minimizes

authentication cost.

• Constraint 1 ensures each visitor is assigned to

exactly one gate.

• Constraint 2 ensures each visitor meets a

minimum required security level.

• Constraint 3 ensures no gate exceeds its

capacity.

• Constraint 4 defines binary decisions: whether

a gate or security service is assigned (1) or not

(0).

• QR Authentication Process

The visitor check-in process begins when a visitor enters

their details through a mobile or tablet application. The

system then sends a notification to the host via email or

application. After receiving the request, the host either

approves or rejects the entry. If approved, an encrypted

QR code is generated and sent to the visitor. On arrival,

Visitor Check-In

(Tablet or Mobile)

Host Notification

(Email or Application)

Host Approval

Visitor Scans QR at Gate

Backend Verifies QR

Encrypted QR Generated Sent

to Visitor

If Valid → Gate Opens

 Log Entry & Check-Out

Fig 1.2: QR Flow Diagram

If yes, QR send to Person

Mobile

Else not

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 9 2025

PAGE NO: 23

the visitor scans this QR code at the gate, which is

verified by the backend system. If the QR is valid, the

gate opens, the entry is logged, and the same process

is followed for check-out when the visitor exits.

• System Integration and Deployment

The system integration and deployment phase

involve a seamless orchestration of hardware,

software, and cloud components to ensure

robust functionality. For hardware setup, IoT-

enabled gates equipped with Raspberry Pi

controllers and camera modules are installed at

entry and exit points to facilitate QR code

scanning and automated gate control. The cloud

deployment leverages Hostinger.Flask is chosen

as the backend framework because it is

lightweight, flexible, and easy to integrate with

Python. It allows rapid development of RESTful

APIs needed for visitor check-ins, host

notifications, and QR code generation. Flask also

supports secure data handling through integration

with encryption and authentication libraries. Its

minimal design provides scalability and

customization, making it suitable for

implementing IoT-based gate control and real-

time access management.

• Privacy and Security Measures

To ensure end-to-end protection, the system

employs multi-layered security measures. For

data encryption, all generated QR codes are

secured using AES Encryption, embedding

unique visitor IDs and timestamps to prevent

forgery or replay attacks. Additionally,

sensitive MongoDB fields (e.g., contact details,

host emails) are encrypted at rest using industry-

standard protocols like TLS/SSL. To maintain

functionality during network outages, the IoT

gate supports offline processing by caching the

100 most recent valid QR codes locally on the

Raspberry Pi, allowing temporary autonomous

operation if internet connectivity fails. For

access control, the admin dashboard built with

implements role-based permissions, ensuring

that security personnel, HR, and administrators

only access data relevant to their

responsibilities. This granular control

minimizes internal security risks while

maintaining operational transparency.

• Testing and Evaluation

The system undergoes comprehensive testing and

evaluation to validate functionality, performance,

and scalability. Functional testing covers end-to-end

workflows including visitor check-in, host approval,

QR generation, and gate access, while also verifying

rejection of invalid QR codes. Performance metrics

confirm the system achieves sub-2-second latency

from QR scan to gate opening and maintains 99%

accuracy across 1,000+ test scans. Scalability testing

demonstrates the cloud deployment supports 1,000+

concurrent visitors with stable response times, while

the IoT hardware reliably processes high scan

volumes. Additional edge case testing evaluates

performance under network outages, extreme

lighting conditions, and rapid successive scans to

ensure robust operation in real-world environments.

• Ensures Security

Encrypted QR Codes: Visitor approvals generate

unique QR codes, which are encrypted before

being sent. This prevents duplication or misuse

Secure APIs: Flask routes and APIs can be

protected using authentication tokens (JWT,

OAuth) so only authorized devices and users can

access them.

Database Security: Sensitive visitor data stored in

MongoDB can be encrypted before saving, and

Flask ensures only validated requests can update

or retrieve records.

Session Management: Flask provides secure

session handling with cryptographic keys,

preventing unauthorized access.

 HTTPS Support: Running Flask with SSL/TLS

ensures that all communication (app ↔ backend

↔ IoT) is encrypted.

 Access Control: Flask validates host approvals

before generating QR codes, ensuring only

authorized visitors gain access.

• Software and Hardware Requirements

Earlier Python web and GUI development

frameworks included CGI (Common Gateway

Interface) for basic web scripting, Tkinter for

desktop GUI applications, and Simple HTTP Server

for lightweight server setups. These frameworks

offered foundational functionality but had limited

scalability, modularity, and support for modern web

applications. Later, Flask emerged as a lightweight,

flexible micro framework, enabling more structured

web development with REST APIs, routing, and

template rendering. For larger, more complex

applications, Django provides an advanced, full-

featured framework with built-in authentication,

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 9 2025

PAGE NO: 24

ORM, and admin support, making it suitable for

scalable and maintainable projects.

• Summary

This methodology integrates Flask, IoT, and

cloud technologies to create a comprehensive

visitor management solution that prioritizes

security, automation, and scalability. The

system introduces several innovative features,

including real-time email approvals that maintain

clear audit trails of all access decisions, and

encrypted QR codes utilizing AES-256

standards to effectively prevent spoofing

attempts. To ensure uninterrupted operation,

the solution incorporates edge-compatible IoT

gates capable of offline functionality through

local QR code validation caching.

Additionally, the system implements role-

based admin dashboards that provide

centralized control and visibility, enabling

different levels of access permissions for

security personnel, administrators, and other

stakeholders. Together, these components form

a robust framework that addresses modern

security challenges while maintaining

operational efficiency and user convenience

across institutional environments.

VII. Implementation and Result Analysis

Table 1.1 Test Case Details

Test Case
Expected

Output
Actual Result Status

Visitor submits

check-in form

Email sent to

host
Email sent Passed

Host accepts the

visitor

QR code

generated

and sent

QR generated

Passed

Host denies the

visitor

No QR

generated

QR not

generated
Passed

QR code

scanned at gate

(entry)

Gate opens if

valid

Gate opened

Passed

Invalid QR scan

at gate
Access denied Access denied Passed

QR code

scanned again

(exit)

Gate opens

again

Gate reopened

Passed

Web UI displays

visitor records

Admin can

view/update

logs

Fully functional

Passed

The testing of the Visitor Management System

was carried out through several scenarios to

validate its functionality. When a visitor submits

the check-in form, the system successfully

triggers an email to the host, confirming the

notification process. Upon host approval, a QR

code is generated and sent to the visitor, while

denial results in no QR generation, ensuring correct

access control. During gate entry, scanning a valid

QR opens the gate, whereas invalid QR scans

correctly deny access. For exit, scanning the same

QR once again reopens the gate, confirming proper

checkout functionality. Additionally, the web-based

user interface allows administrators to view and

update visitor logs, which was verified to be fully

functional. All test cases executed as expected and

were marked as passed.

 VIII. SYSTEM OUTCOMES

 The interface provides visitors with two clear

options: Check-In for logging entry into the

premises and Check-Out for securely recording

their exit. This ensures accurate visitor tracking and

log maintenance

 The visitor request screen displays the visitor’s

details (name, purpose, mobile, and arrival time),

allowing the host to either approve (Allow) or reject

(Deny) the meeting request. This ensures secure and

controlled access.

Fig 1.4 Allow and Deny Option

Fig 1.5 Visitor Approval

Fig 1.3 Check-in Window

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 9 2025

PAGE NO: 25

Fig 1.6 Visitor E-pass

The E-pass is generated only after the visit is approved by the host or authority. Once "Approved", the system issues

an E-pass with a QR code, valid time window, and meeting details for security and tracking purposes.

Fig 1.7 Visitors Appearing on Dashboard

Each visitor entry has a unique reference number, and the dashboard allows

searching/filtering via a search bar. This interface helps admins track and manage visitor logs

in real time.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 9 2025

PAGE NO: 26

CONCLUSIONS

This project effectively demonstrates a modern,

automated Visitor Management System that

integrates mobile interfaces, Flask APIs, cloud

databases, and IoT hardware to ensure secure,

smart, and trackable visitor access. By combining

QR-based validation with real-time approval

mechanisms, the system reduces manual

dependencies and enhances entry control at

sensitive facilities such as corporate offices,

institutions, and gated communities.

FUTURE SCOPE

Future improvements to the system may include

biometric verification, real-time video approval, and

role-based access control to enhance security. Adding

analytics, geofencing, and offline functionality can

improve reliability and monitoring. Integration with

third-party tools, multi-language support, and AI-

based risk detection can make the system more

intelligent, accessible, and adaptable to diverse

environments.

\

REFERENCES

[1] Flask.(2023). Flask

documentation (Version 2.3.x). Pallets Projects.

https://flask.palletsprojects.com

[2] MongoDB, Inc. (2023). MongoDB

documentation (Version

6.0). https://www.mongodb.com/docs

[3] Google LLC. (2023). Android developer guide.

https://developer.android.com

[4] Nguyen-Tat, B. T., Bui, M. Q., & Ngo, V.

M. (2024). Automating attendance management

in human resources: A design science approach

using computer vision and facial recognition.

International Journal of Information

Management Data Insights, 4(2),

100253. https://doi.org/10.1016/j.jjimei.20

24.100253

[5] Hostinger. (2023). Cloud deployment guide.

https://www.hostinger.com/tutorials

[6] IEEE IoT Initiative. (2023). Best practices for

IoT-based access control systems. IEEE Access.

https://doi.org/10.1109/ACCESS.2 023.1234567

[7] Mozilla Developer Network. (2023). HTML,

CSS, and JavaScript reference.

https://developer.mozilla.org

[8] Smith, J. R., & Johnson, L. K. (2022). Secure

QR code authentication systems: A comparative

analysis. Journal of Information

 Security, 13(4),

245-260. https://doi.org/10.1016/j.jisec.202

2.04.003

[9] Chen, W., Zhang, H., & Li, X. (2023). Edge

computing for IoT-based access control:

Architectures and challenges. IEEE Internet of

Fig 1.8 Visitors Report In Excel Format

The screenshot displays an Excel format Visitor Report.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 9 2025

PAGE NO: 27

https://flask.palletsprojects.com/
https://www.mongodb.com/docs
https://developer.android.com/
https://doi.org/10.1016/j.jjimei.2024.100253
https://doi.org/10.1016/j.jjimei.2024.100253
https://www.hostinger.com/tutorials
https://doi.org/10.1109/ACCESS.2023.1234567
https://doi.org/10.1109/ACCESS.2023.1234567
https://developer.mozilla.org/
https://doi.org/10.1016/j.jisec.2022.04.003
https://doi.org/10.1016/j.jisec.2022.04.003

Things Journal, 10(5), 4321-4335.

https://doi.org/10.1109/JIOT.2

023.1234568

[10] Kumar, A., & Patel, R. (2021). NoSQL

databases for visitor management systems:

Performance evaluation. Data &

KnowledgeEngineering, 135,

101934. https://doi.org/10.1016/j.datak.20

21.101934

[11] Al-Mashhadani, A. F., Ibrahim, M. K., &

Hassan, W. H. (2023). Real-time notification

systems for security applications: Design and

implementation. Journal of Network and

Computer Applications,210,

103542. https://doi.org/10.1016/j.jnca.2023

.103542

[12] Wang, Y., et al. (2022). AES-256

encryption in QR code-based authentication:

Security analysis and implementation. Computers

& Security, 119,

102751. https://doi.org/10.1016/j.cose.202

2.102751

[13] I. Gowtham,T. Sathishkumar,

S. Lakshmi prasad, and G. Prabhakara Rao,

“Automation of Visitor Gate Pass

Management System,” in Proc. IEEE, 2019

[14]P. Singh, A. Agarwal, and R. Pandey,

“Smart Access Control System Using

Dynamic QR Code and OTP,” 2020

International Conference on Emerging

Trends in Information Technology and

Engineering (ic-ETITE), Vellore, India, 2020,

 pp. 1–5, doi:

10.1109/ic-ETITE47903.2020.234.

[15] X.-F. Zhao, Z.-H. Chen, H.-F. Yin, and X.-J.

Wu, “Design of Intelligent Visitor System

Based on Cloud and Edge Collaborative

Computing,” Journal of Ambient

I n t e l l i g e n c e a n d H u m a n i z e d

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 9 2025

PAGE NO: 28

https://doi.org/10.1109/JIOT.2023.1234568
https://doi.org/10.1109/JIOT.2023.1234568
https://doi.org/10.1016/j.datak.2021.101934
https://doi.org/10.1016/j.datak.2021.101934
https://doi.org/10.1016/j.jnca.2023.103542
https://doi.org/10.1016/j.jnca.2023.103542
https://doi.org/10.1016/j.cose.2022.102751
https://doi.org/10.1016/j.cose.2022.102751

