
The Last Echo

A. Prof A.A.Patil, Professor, SKN Sinhgad Institute Of Technology & Science, Kusgaon(BK), Lonavala, India,

@gmail.com

B. Mr. Vishwajit Wagh, Student, SKN Sinhgad Institute Of Technology & Science, Kusgaon(BK), Lonavala, India,

vishwajitwagh111@gmail.com

C. Mr. Raj Lamb, Student, SKN Sinhgad Institute Of Technology & Science, Kusgaon(BK), Lonavala, India,

rajlamb2503@gmail.com

D. Ms. Renuka Kale, Student , SKN Sinhgad Institute Of Technology & Science, Kusgaon(BK), Lonavala, India,

renukakale2504@gmail.com

E. Mr. Prashant Take , Student, SKN Sinhgad Institute Of Technology & Science, Kusgaon(BK), Lonavala, India,

takeprashant29@gmail.com

Abstract: The Last Echo is an innovative Java-based Android application that enables users to create and store personalized

messages that are sent to loved ones upon their death. By integrating Aadhaar-based authentication, the application ensures

that messages are automatically dispatched once a user’s Aadhaar credentials are deactivated, providing a secure and reliable

posthumous communication method. The platform leverages technologies such as Spring Boot, PostgreSQL, and Android

SDK to manage message creation, storage, and delivery. Prioritizing data privacy, encryption, and legal compliance, The

Last Echo offers a compassionate, secure, and user friendly solution for ensuring that a user’s final words are shared with

dignity
Keywords: Posthumous messaging, Final message delivery, Aadhaar integration, Biometric authentication, Java Android application, Secure

message storage, Message encryption, UIDAI (Unique Identification Authority of India), Privacy and data protection

 I. INTRODUCTION

The Last Echo is a Java-based Android application

designed to allow users to send personalized,

precomposed final messages to their loved ones upon

their death. The app integrates securely with Aadhaar

for user authentication, ensuring that the messages are

automatically delivered when the user’s Aadhaar

credentials are deactivated following their passing.

This project focuses on providing a user friendly

interface for message composition, encrypted message

storage, and a reliable delivery mechanism triggered by

Aadhaar deactivation. By utilizing Spring Boot for the

backend, PostgreSQL for secure data storage, and

Android as the frontend, the application offers a

comprehensive solution for managing final

communications. The app emphasizes security, data

privacy, and compliance with legal standards, making

sure users’ last words are conveyed with care, accuracy,

and dignity. By providing a compassionate platform for

users to express their final words, The Last Echo

addresses a significant gap in the current digital

landscape. The app empowers individuals to leave

behind messages of love, advice, or even instructions

for their loved ones, ensuring that their final thoughts

are conveyed with care and dignity. This combination

of 9 technical sophistication and emotional sensitivity

makes The Last Echo a unique and meaningful solution

for secure posthumous

communication. A major focus of the project is the user

friendly interface for composing and managing these

messages. The app makes it simple for users to draft

heartfelt communications and store them in an

encrypted format, protecting their privacy. Encryption

ensures that only the intended recipients will access

these messages, adding an extra layer of security to the

app. By maintaining privacy and data integrity, ”The

Last Echo” aligns with ethical and legal standards in

handling sensitive information, giving users peace of

mind. It is more than just an app; it’s a thoughtful ser

vice for end-of-life communication. By combining

secure authentication, encrypted storage, and an

intuitive user experience, it provides users with peace

of mind that their final messages will reach loved ones

accurately and with dignity. This application offers a

unique and meaningful way for individuals to say their

last goodbyes, creating a lasting impact on both the

users and their families

II. LITERATURE SURVEY

Posthumous communication systems have been the

subject of increasing interest as society becomes more

digitally interconnected. Existing platforms like Dead

Man’s Switch and If I Die App allow users to create

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 6 2025

PAGE NO: 6

Tanoy
Textbox

Tanoy
Textbox

Tanoy
Textbox

Tanoy
Textbox

Tanoy
Textbox

messages that are delivered after their death, usually

triggered by a period of user inactivity. While innovative,

these platforms lack robust verification mechanisms to

confirm the user's death, which can lead to either

premature message delivery or failure to deliver entirely.

Similarly, social media platforms such as Facebook offer

memorialization features, allowing profiles to be

managed posthumously, but these are limited in scope

and rely on user-reported evidence rather than verified

death data. These limitations highlight the need for more

reliable, secure, and usercentered systems that can

effectively manage digital communication after death.

In the Indian context, Aadhaar—the Unique Identification

Authority of India’s biometric-based digital identity

system—has emerged as a critical infrastructure for

identity verification. Aadhaar is now used in various

sectors, including banking, healthcare, and public services.

More recently, the Indian government has introduced

procedures for deactivating Aadhaar numbers upon death,

based on municipal and state-level death registration

services. This deactivation process serves as a verifiable

and secure confirmation of death, offering a unique

opportunity to use Aadhaar status as a trigger mechanism

for automating sensitive processes like posthumous

message delivery. The integration of Aadhaar deactivation

in such systems is novel and ensures a level of authenticity

and reliability that other systems lack.

From a technical standpoint, secure digital messaging relies

heavily on well-established encryption standards and

privacy-preserving protocols. Technologies such as end-to-

end encryption (E2EE), AES-256 encryption, and secure

data transfer via HTTPS are widely used to ensure the

confidentiality of communications. Legal frameworks like

the General Data Protection Regulation (GDPR) and

India’s emerging Personal Data Protection Bill (PDPB)

emphasize data minimization, purpose limitation, and

informed user consent. These considerations are essential

when designing systems that handle emotionally sensitive

and legally significant data, such as final messages sent

after death. Thus, any platform offering posthumous

messaging must prioritize compliance with these privacy

standards. In terms of the development stack, technologies

like Spring Boot, PostgreSQL, and the Android SDK

provide a robust foundation for building secure and

scalable applications. Spring Boot simplifies backend

development and integrates seamlessly with Spring

Security for authentication and authorization. PostgreSQL

offers a reliable relational database management system

with support for advanced encryption and access control

features. The Android SDK is the standard framework for

creating intuitive and performant mobile applications, with

native support for integrating biometric authentication and

secure local storage. These technologies together support

the seamless operation of a system like The Last Echo,

enabling efficient message creation, encrypted storage, and

timely delivery.

Finally, the ethical and psychological dimensions of

posthumous messaging cannot be overlooked. Research in

the field of than technology—the intersection of death and

digital technology—shows that receiving messages from

deceased individuals can aid in the grieving process and

provide emotional closure. However, there are ethical

concerns regarding the emotional impact of such messages

on recipients, as well as the importance of clear user

consent and timing. Therefore, systems like The Last Echo

must offer user-controlled settings for message delivery,

including options for timing, recipient selection, and the

ability to revoke or update messages during the user’s

lifetime.

III. PROPOSED SYSTEM

Hardware Requirements

1. Development Hardware Requirements :

Developer Workstation (Laptop/PC): Processor: Intel

Core i5 or higher, or equivalent (AMD Ryzen 5 or higher)

RAM: 8 GB minimum (16 GB recommended for

smoother multitasking) Storage: At least 256 GB SSD

(for faster build times and application compilation)

Graphics: Integrated graphics are usually sufficient for

Android development, but a discrete GPU (NVIDIA or

AMD) will speed up emulators. Operating System:

Windows 10/11, macOS, or Linux (Ubuntu or similar).

2. Server-Side Hardware Requirements (for hosting

backend) : This depends on whether you want to host the

backend on your own in frastructure or use cloud-based

services like AWS, GCP, or Azure. Self-hosted Server

(On-premises or VPS): Processor: Intel Xeon or AMD

EPYC (Quad-core or higher) RAM: 4 GB minimum (8

GB or higher recommended depending on user load)

Storage: SSD storage (at least 100 GB for databases and

application data) 15 Network: Reliable internet

connection with good upload speed. OS: Linux (Ubuntu,

CentOS) or Windows Server. For higher loads, you may

need to scale the instance based on the number of users.

3. End-user Device Requirements (Android

Devices) : Android Version: Android 6.0 (Marshmallow)

and above (depending on SDK version you’re using)

RAM: 2 GB or higher(the app should be optimized to run

on lowerend devices too) Storage: The app itself may not

require much space, but users will need enough storage to

store messages. Internet Connection: Stable internet for

receiving notifications and delivering messages after

deactivation.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 6 2025

PAGE NO: 7

4. Other Hardware Considerations : Aadhaar

Integration: If Aadhaar authentication is done via

biometric hardware (fingerprint scanner, iris scanner),

additional hardware may be required for testing.

Otherwise, if you’re relying on OTP-based or other

digital methods, this is not needed. 5. For Mobile Phones

: RAM: Minimum: 2 GB RAM. Recommended: 4 GB

RAM or more. Storage: Minimum: 100 MB of free space

for app installation. Space will also be required for storing

user-composed messages and any media files they may

attach (audio, video, images). More space is advisable if

users plan to store larger files. At least 1 GB of free space

for the app, messages, 16 and other data.

Internet Connectivity: Stable 3G/4G or Wi-Fi

connection for syncing data, receiving notifications,

and verifying Aadhaar details. Security Features:

Fingerprint Sensor or Biometric Authentication or NFC

(Near Field Communication) Camera: If users want to

attach media files (such as a video or photo) with their

messages, having a phone with a decent camera (8MP

or higher) can be recommended.

Software Requirements

1.Software Requirements for PC/Laptop

(Development Server side) : Operating System:

Windows: Windows 10 or higher (64-bit). MacOS:

macOS 10.14 (Mojave) or higher. Linux: Ubuntu 18.04

LTS or higher, or any equivalent Linux distribution.

Java Development Kit (JDK): JDK Version: Java SE

Development Kit 11 or higher (LTS versions

recommended). Integrated Development Environment

(IDE): Android Studio: Latest ver sion with Android

SDK for Android development. IntelliJ IDEA or

Eclipse: For Spring Boot and Java backend

development. Android SDK: Android SDK with build

tools, platform tools, and AVD (Android Virtual

Device) Manager for testing. Database: PostgreSQL:

Version 12 or higher. It will also need tools like

pgAdmin or a similar database management tool for

PostgreSQL. Spring Boot Framework: Spring Boot 2.x

(compatible with your Java ver sion) for backend

development. API Testing Tool: Postman or Insomnia:

For testing REST APIs. Authentication: Aadhaar API

or Aadhaar Integration Kit (depending on how Aadhaar

integration will be implemented). Other Tools: JRE

(Java Runtime Environment): Java Runtime Environ

17 ment (JRE) for running the application on machines

without development tools installed. Docker

(Optional): For containerizing the backend or

PostgreSQL database

2. Software Requirements for Mobile Phones (End-

User De vices) : Operating System (OS): Android

Version: Android 6.0 (Marshmallow) or higher.

Storage: The app should require about 100 MB of free

storage for in stallation, plus extra space depending on

the size of user messages and attachments. Security:

The app should use Android’s built-in security features

like Key store for encrypting sensitive data. Biometric

Authentication Libraries (Optional): For integrating

fingerprint or face unlock features for enhanced

security. Permissions: Internet Access: For syncing

messages and user data with the backend. Storage

Access: For saving or attaching media files (e.g.,

images or videos) in the messages. Notification Access:

To notify users when actions are completed or Aadhaar

credentials are deactivated.

3. Software Requirements for PC/Laptop (End Users)

: Browser: Google Chrome: Version 80 or higher.

Mozilla Firefox: Version 75 or higher. Microsoft Edge

(Chromium-based): Version 80 or higher. Internet

Access: A reliable internet connection to interact with

the application backend, for message retrieval and

synchronization. Desktop Application (Optional): If

you develop a desktop-based application in addition to

mobile, the following software is needed: Operating

System (OS): Windows 10 or higher, macOS 10.14 or

higher, Ubuntu 18.04 LTS or higher. 18 Java Runtime

Environment (JRE): JRE 11 or higher (if you’re

deploying a Java-based desktop application). Browser

(Optional): Google Chrome or Firefox

IV. SYSTEM ARCHITECTURE

The system architecture depicted in the diagram follows

a multi-layered structure, ensuring modularity, security,

and scalability. It comprises five main layers: the

Frontend Layer, Client-Side Security, Backend Layer,

Database Layer, and Server Layer (Nginx). Each of these

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 6 2025

PAGE NO: 8

layers plays a crucial role in the overall functioning of the

application.

Frontend Layer

It serves as the user's entry point into the system. It

includes the login/signup functionality and message

composition interface. It also provides the User Interface

(UI) components through which users interact with

various features, such as creating, editing, or viewing

messages.

Client-Side Security

This layer ensures the safety and privacy of data before it

reaches the server. It employs AES encryption to secure

messages on the client end and uses SSL/TLS protocols

for secure data transmission, protecting the system from

man-in-the-middle attacks and unauthorized access

during data transfer.

Backend Layer

It handles the core logic of the application. It exposes

API endpoints to interact with the frontend and

includes various services such as message delivery,

user authentication, and message verification.

Additionally, backend security mechanisms are

implemented to ensure safe processing and

communication between components.

Database Layer

It is responsible for storing and managing persistent

data. It consists of three main tables: the User Table (for

storing user details), the Message Table (for saving

composed messages), and the Recipient Management

Table (for handling message recipients). This

structured storage allows efficient data retrieval and

management.

Server Layer

It implemented using Nginx, supports reverse proxy

functions, enforces firewall rules for added protection,

and provides load balancing to manage high traffic

efficiently. It also supports HTTPS to further secure

communication between clients and servers.

Together, these layers form a robust, secure, and

scalable architecture for an application that handles

sensitive user interactions and data transmission.

V. IMPLEMENTATION

1)Class Descriptions

• User : Represents the user of the application.

It handles user registration, login, and

interaction with the system.

• Attributes: userID: String, Unique identifier

for the user. name: String, User’s full name.

email: String, User’s email address. aadhar:

Aadhar object, User’s Aadhar information.

• Methods: register(): Registers a new user,

takes personal details and Aadhar info, and

stores them in the system. login():

Authenticates the user based on credentials.

inputMessages(): Allows the user to enter

their last messages. saveMessages(): Saves

the entered messages in the system’s

database.

2)Aadhar : Represents the Aadhar credentials of a user.

• Attributes: aadharNumber: String, Aadhar

number. status: String, Status of the Aadhar

(active or deactivated).

• Methods: deactivate(): Deactivates the user’s

Aadhar credentials once the user is

confirmed dead.

3)Message : Represents a single message the user

wants to send to a recipient.

• I)Attributes: messageID: String, Unique

identifier for the message. content: String,

The content of the last message. sender: User,

The user who created the message. recipient:

Recipient, The person who will receive the

message.

• II)Methods: setContent(String content): Sets

the content of the message.

setRecipient(Recipient recipient): Assigns a

recipient to the message.

4)Recipient : Represents an individual recipient who

will receive the user’s last message.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 6 2025

PAGE NO: 9

• Attributes: recipientID: String, Unique

identifier for the recipient. name: String,

Recipient’s name. contactInfo: String,

Contact information (e.g., phone number,

email). II)Methods: setContactInfo(String

info): Sets the recipient’s contact

information.

5)Death Certificate System

An external system that verifies the user’s death and

deactivates their Aadhar credentials.

• Methods: issueDeathCertificate(User

 user): Issues a death certificate for the

user once death is confirmed.

deactivateAadhar(User user): Deactivates

the user’s Aadhar credentials.

6)Message Service :

Handles the functionality of saving and forwarding

messages.

• Methods: saveMessages(User user,

List¡Message messages): Saves a list of

messages for the user.

forwardMessages(User user): Forwards the

user’s saved messages to their designated

recipients.

7)Method Descriptions

• User.register() Description: Registers a new

user by collecting per sonal details and

Aadhar information. Parameters: name:

String, User’s full name. email: String,

User’s email. aadharNumber: String, Aadhar

number. Returns: Boolean, true if registration

is successful, otherwise false.

• User.login() Description: Allows the user to

log in by validating credentials. Parameters:

email: String, User’s email address.

password: String, User’s password. Returns:

Boolean, true if login is successful, otherwise

false.

• MessageService.saveMessages()

Description: Saves the list of last messages

entered by the user. Parameters: user: User

object, The user for whom the messages are

being saved. messages: List¡Message¿, List

of messages entered by the user. Returns:

void.

• DeathCertificateSystem.issueDeathCertifica

te() Description: Verifies the user’s death and

issues a death certificate. Parameters: user:

User object, The user whose death certificate

is to be issued. Returns: void.

• Aadhar.deactivate() Description: Deactivates

the user’s Aadhar after their death is

confirmed. Parameters: None. Returns: void.

VI. RESULTS

The first image showcases the launch or splash screen

of The Last Echo. This screen is the visual starting point

of the application, displaying the name and branding of

the project. It is designed with a calm, minimalistic

aesthetic to reflect the emotional depth of the app’s

purpose — helping people send their final words to

loved ones after their passing. This screen creates the

first impression, encouraging a sense of trust and

purpose right from the beginning.

Beyond aesthetics, this loading screen can also act as a

preparation point for system operations. While this

screen is visible to the user, background services such

as Aadhaar validation checks, database connectivity, or

auto-login sessions can be initialized. It sets the stage

for a smooth and thoughtful user journey, offering a

clear transition into the more personal and functional

parts of the app.

The second image displays the recipient list screen,

which is a key part of the message-scheduling process.

This page allows users to add, view, or manage the

people they want to send their last messages to. It serves

as an organized contact list, showing names and

possibly quick status indicators for each saved

recipient. This interface gives the user control and

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 6 2025

PAGE NO: 10

clarity over who will receive their stored messages,

ensuring personalization and trust.

This section also functions as a gateway to the message

composition screen for each recipient. Users can tap on

any saved contact to proceed to writing a personal note

or farewell. The clean layout helps users focus on what

really matters — selecting meaningful recipients

without unnecessary complexity. This organized list

ensures that users can update or edit contacts at any time

before the messages are triggered.

The third image captures the core emotional feature of

the app — composing a final message. On this screen,

the user writes their heartfelt goodbye or important

message addressed to a specific person. The design is

kept simple to help users focus entirely on their words

without distraction. After the message is typed, it's

encrypted and saved to the secure database, ready for

automated delivery.

This page is arguably the most meaningful part of the

app, as it bridges the present with the future. It ensures

that, even after someone is no longer alive, their

thoughts and feelings can still reach their loved ones.

The backend logic ensures that messages stay protected

and private, only being triggered when Aadhaar

deactivation is detected — making this page the

emotional and technical centrepiece of The Last Echo.

VIII. CONCLUSION

The Last Echo represents a powerful and innovative

solution for posthumous communication, providing users

with the ability to securely convey their final messages to

loved ones. By integrating a user-friendly Android

interface, a robust backend developed with Spring Boot,

and a secure database architecture using PostgreSQL, the

project ensures seamless operation and data privacy. The

use of Aadhaar for authentication and automated message

delivery upon deactivation adds a unique and reliable

feature to the application, offering a compassionate

service backed by cutting-edge technology. With key

components like encryption and database linkage fully

integrated, The Last Echo is on track to deliver a user-

friendly and dependable platform, providing peace of

mind to users knowing their last words will reach their

loved ones with care and precision.

Future Scope

1. AI-Powered Message Assistance

o Integration of Natural Language

Processing (NLP) to help users

compose meaningful messages.

o Sentiment analysis to adjust tone based

on the recipient’s relationship (e.g.,

spouse, child, friend).

2. Global Identity System Integration

o Expansion beyond Aadhaar to include

international identity systems. o

Facilitates global scalability and legal

compliance.

3. Legal Document Automation

o Secure posthumous delivery of

documents such as wills, power of

attorney, and digital asset keys.

o Implementation of blockchain for

document verification and

timestamping.

4. Multimedia Messaging Support

o Addition of voice and video messages

to enhance emotional impact. o

Encrypted storage and secure playback

features for recipients.

5. Integration with Public Services

o Partnerships with government death

registries, hospitals, and funeral

services.

o Automates Aadhaar deactivation

monitoring and message triggering

process.

6. Digital Legacy Management

o Features for social media management

after death, such as:

▪ Scheduled posts

▪ Account deactivation

7. Grief Support and Emotional Wellness Tools

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 6 2025

PAGE NO: 11

o Integration of resources for grief

counseling and mental health support

for recipients.

o Periodic remembrance messages or

emotional support prompts.

8. Advanced Privacy and Consent Controls

o Fine-grained controls for message

scheduling, recipient permissions, and

revocation rights. o Options for backup

custodians or legal

guardians to manage settings.

X. REFERENCES

1. G. Stringhini and O. Thonnard, ”The EpxDialysis

digital Auto Mes sage Forwarding Platform ”,

Proceedings of the 2015 International Conference on

Detection of Intrusions and Malware and

Vulnerability Assessment, pp. 78-97, 2015.

2. Muller, M. Brinkmann, D. Poddebniak, S. Schinzel

and J. Schwenk, ” Text messaging to improve

retention in hypertension ”, Proceedings of the 2020

IEEE Conference on Communications , pp. 1-9,

2020. C.

3. C. Stransky, O. Wiese, V. Roth, Y. Acar and S. Fahl,

” Automated Messaging After Vehicle Crash ”,

Proceedings of the 2022 IEEE

4. Symposium on Security and Privacy, 2022.

5. W. Mayer, A. Zauner, M. Schmiedecker and M.

Huber, ” Automatically sends a pre-set emergency

message if a wearable health device detects abnormal

vital signs ”, Proceedings of the 2016 International

Conference on Availability Reliability and Security,

pp. 10-20, 2016.

6. H. Hu, P. Peng and G. Wang, ”Auto Message

Forwarding To wards Understanding the Adoption of

Anti-Spoofing Protocols in Email Systems”,

Proceedings of the 2018 IEEE Cybersecurity

Development, pp. 94-101, 201

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 6 2025

PAGE NO: 12

