
Method of Synthesis to Identify Threshold Logic Functions

Anup Kumar Biswas

Department of Computer Science and Engineering

Kalyani Govt. Engineering College, Kalyani,

Nadia-741235, West Bengal, India

e-mail: akbcse456@gmail.com

Abstract: Creation of a threshold function (TF) and identification of TF is the main thing in this work. Really, linear

threshold function determines if a Boolean function is represented with the help of a threshold logic gate (LTG) or not.

An efficient and effective algorithm for TF identification that we have proposed, by making the system keeping the

irredundant inequalities and adjusting the minimum weight assignment. This proposed algorithm accepts the order of

Chow parameters and the system of inequalities taken from a function for the purpose of assigning minimum variable

weights and optimal threshold value. Our proposed algorithm becomes first heuristic algorithm not using integer linear

programming (ILP) which has the capability to identify all threshold functions having 0 to 5 variables. This is the first

non-ILP-based approach that can identify all the eight-input TFs. The results we have got experimentally demonstrated

that our proposed process is more effective in comparison with all the present non-ILP-based approaches. The LTGs

estimated by the proposed process are optimal about 100% cases. For TFs having 9–15 input variables, the proposed

approach is able to identify 105 randomly generated TFs as well in a reasonable CPU time. As the average execution time

is less than 0.001sec per function, the proposed algorithm is scalable. Furthermore, since the method assigns the minimum

weights, as a result it provides us circuits with minimum area.

Keywords: Threshold value, TLG, weight assignments. Logic synthesis, single gate

I. INTRODUCTION

Electronic goods of Low cost, low power consumption, high operating speed, and high integration density are
economically requisite in the field of business, engineering, science and technology in the present era.

MOS based transistor has a limit of scaling which inspires us to investigate the alternatives to VLSI circuit design. Some
nano-devices technologies like single electron transistor (SET), resonant tunneling devices (RTD), quantum cellular
automata (QCA), spintronics and tunneling phase logic (TPL) [1] are the potential candidates that can be the alternative
of VLSI circuit design. These technologies show their particularities to implement the digital circuits design. In these
emerging technologies, threshold logic gates (TLGs) are checked and found it suitable to such emerging technologies [2,
5, 6]. A number of implementations regarding TLGs is proposed for both new nano-metric technologies [3, 4] and CMOS.

Boolean functions synthesis using TLG is a process by which a design flow diagram is constructed on the basis of
threshold logic. To perpetrate this step, lion’s share methods analyze a system of conditional equations or inequalities
made from the truth table of the required function, by using (ILP) [7].

This method is used to synthesize TLGs [5,6,8]. The ILP gives optimal results, but there has been the drawback of not
being scalable, since whenever the number of variables enhances the number of inequalities to be solved increases
exponentially.

Gowda et al., in [9], proposed one non-ILP method that can justify the condition(s) regarding threshold logic functions

(TLFs) and indentify it, after that they are improved [10]. Palaniswamy et al. proposed and created a new method on the

basis of modified Chow parameters, and this method is improved later in [12]. Here, the main drawbacks, we get, of these

methods are the total number of identified functions as well as the assigned input weights are not always the minimum

possible. As a result, final area/population of RTD circuits [6] is impacted. So the final area of the TLG based circuits

[2,5] is impacted by the non-minimal weights.

One of the prior suggestions to non-ILP based methods in order to identify TLFs was suggested by Gowda et al., [9], and

improved afterwards in [10]. It is really on the basis of min-max factorization tree and functional decomposition.

Our present work does the work of Synthesis and identification of TLF being performed by a non-ILP method. The

proposed algorithm uses both the inequalities generated from the truth table and the Chow parameters to assign the

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 17 ISSUE 1 2017

PAGE NO: 1

Tanoy
Textbox

variable weights in the TLG. To the best of our knowledge, it is the first approach which identifies all functions with up

to five variables, and is also able to identify more functions than the other non-ILP methods. It is demonstrated

experimentally for up to seven variables, presenting reasonable execution time. Another feature is that the minimum input

weights are assigned.

The remaining part of this paper is organized like the following. For clear understanding regarding our work, some

fundamentals with respect to threshold logic and Boolean logic are presented in chapter II. The proposed method is

described in detail in Chapter III. In Chapter IV, results are given; also the efficiency of algorithm is demonstrated.

Conclusion about the whole work is sited in Chapter V.

II. PRELIMINARIES

To develop the concept of our proposed method, we are to introduce fundamentals of threshold logic and its properties.
Unate of logic functions, irredundant sum-of-products (ISOP), cofactors are described. In addition to them, Chow
parameters are explained.

A. Threshold Logic Gate (TLG)

A Boolean function, also called a logic function, can be constructed by using TLG which is a gate that can be explained

in the following way.

Every input variable will have a parameter called specific weight, and the gate will have a threshold value θ. When the
sum of all input variables’ weights is equal to or higher than the value of θ, the TLG’s output is logic 1, otherwise

output is 0.This threshold gate behavior can be expressed in Equation (1) [7]:

……………………………… (1)

Where, 𝑤𝑖 is the weight of each input 𝑥𝑖.Value of 𝑥𝑖 will be either 0 or 1 and θ is the gate threshold value.

Equation (1) can be represented by the Fig. 1.

Fig.1 Threshold logic gate

B. Threshold Logic Function

Threshold logic function (TLF), of course, is a logic function whose output will be 0 or 1 and this function can be
implemented with a single TLG. A TLF is a ‘linearly separable’ function. An n-dimensional function is said to be linearly
separable when a (n-1)-dimensional space must separate all its 0-vertices from all its 1 –vertices. Consider an example 𝑓(𝑥1, 𝑥2,𝑥3) =𝑥1𝑥3 + 𝑥2𝑥̅3 which is linearly separable. A truth Table for this function is shown in Table-1. With the help
of this table, if we draw a three dimensional figure for the points (0,0,0), (0,0,1),…,(1,1,1) and indicate all the points by
a small colors/bubbles, when the values of this function are 1 the bubbles are pointing by green color otherwise the
bubbles are colorless. All the three dimensional green points can be separated from the colorless bubbles by a two
dimensional space as shown in Fig.2. If we construct a compact vector {𝑥1,𝑥2,…,𝑥𝑛 : θ} by using the function’s input
variables and threshold value θ, we can implement TLF by this vector. For instance, the function ƒ(x1, x2,x3)=
(x1⋀x2⋀x3) has a compact vector = {1,1,1:3} and the function ƒ(x1, x2,x3)= (x1 ∨ x2 ∨ x3) has a compact vector =
{1,1,1:1}.

Fig. 2 Space diagram with a hyper plane of

linear threshold logic function

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 17 ISSUE 1 2017

PAGE NO: 2

For a more complex function f(𝑥1,𝑥2,𝑥3,𝑥4,𝑥5,𝑥6,𝑥7) = 𝑥3𝑥6 + 𝑥2𝑥5𝑥7 + 𝑥1𝑥2𝑥3𝑥4 + 𝑥1𝑥2𝑥4𝑥6 + 𝑥3𝑥4𝑥6𝑥7

+ 𝑥2𝑥4𝑥5𝑥6, we will be able to represent it by a LTG whose compact vector is {2, 4, 8, 5, 6, 7, 3 : 15}. For this reason, an

important advantage of threshold logic is to reduce the number of gates used in the circuit, decreasing area [6].

C. Cofactors

Consider a function 𝑓(𝑥1, 𝑥2,. . , 𝑥𝑛) which has input variables (𝑥1, 𝑥2,… , 𝑥𝑛), the cofactor fxi is expressed by the

equation (2) as: 𝑓𝑥𝑖= {𝑓(𝑥1, 𝑥2…,𝑥𝑛) | 𝑥𝑖=p, p∈B, B = (0, 1)}………………. (2)

Positive cofactor with respect to 𝑥𝑖 is defined when k = 1, and negative cofactor is defined with respect to 𝑥𝑖 when k =

0. i.e.;

Positive Cofactor with respect to 𝑥1: 𝑓𝑥1=f(𝟏, x2,. . , xn)

Negative Cofactor with respect to𝑥1: 𝑓𝑥1=f(𝟎, x2,. . , xn)

D. Unateness

If every input variables of a function is either always positive or always negative, then the function is defined as a unate

function.

For example, an OR function of two variables x and y i.e f(x, y) = x ∨ y is unate (since x and y are positive unate)

The function f(x, y) = x⨁y (XOR) is not unate because it changes its behavior depending on the values of both x and y,

not just one of them.
In the context of Boolean algebra and logic, an unate variable is a variable that appears in a sum-of-products (SOP)
expression either only in its positive form (e.g., x) or only in its negative form (e.g., 'x̅'), but not both. If it appears in both
forms, it's considered binate or mixed. A function is considered unate if it's unate in all of its variables.

When all of the variables of a function is unate then the function is called unate. Let U (f , xk) denote the unateness
detection function of an input variable xk at function f, and auxiliary function

E. Logic Functions Representation

An expression is called sum-of-products (SOP) when such expression corresponds to product terms joined by a sum
operation. An irredundant sum-of-products (ISOP) is a SOP where no product term can be deleted or simplified without
changing the logic function. An Unate function will present only a single ISOP [13].

F. Logic Function Classes

Given a set of all functions with up to n variables, they can be grouped in classes of functions. We will be able to group
the Boolean functions by the permutation of inputs (𝑋𝑝𝑒𝑟), negation inputs (𝑋𝑛𝑒𝑔), and/or negation of output (𝑌𝑛𝑒𝑔).

Fig.3 Types of Boolean equivalence used to group functions in classes [14].

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 17 ISSUE 1 2017

PAGE NO: 3

G. Threshold Logic Functions Properties

All TLFs are unate functions, but the reverse is not true, that is not all unate functions are TLF [7]. Therefore, if a
function has binate variables, the function cannot be TLF. A simple example of an unate function is ƒ = (𝑥1𝑥2) ∨ (𝑥3𝑥4),
it is not TLF.

For a logic function bears only complemented variables, we can manipulate the variables in the same manner as the
function containing only non-complemented variable for the purpose of identification if the function is a TLF or not. If
ƒ(x1,x2,…,xn) is TLF, defined by {𝑤1,𝑤2,…, ,𝑤n: T}, then its complement 𝑓′(𝑥1, 𝑥2,. . , 𝑥𝑛) is also TLF, defined by
[−𝑤1,−𝑤2,…,−𝑤n: (1-T)].

If a NOT gate or inverter is in our hand and a function of input variables 𝑥𝑖 [i=1,2…,n] , where inverter is TLF, then

selectively complementing the inputs variables 𝑥𝑖 we will be able to obtain a realization only using TLG that has only

positive weights. This propriety is illustrated in Fig. 3 [7].

Fig. 3 Elementary properties of threshold logic [7]

H. Chow Paramaters

Chow parameters represent a particular set of parameters used to define the relationship among the weights of TLF. Given
a function ƒ(x1,x2,…,xn), we call mi the number of entries and for which the value of xi = 1 we have ƒ(xi) = 1; and ni the
number of entries for which ƒ(xi) = 1 when xi = 0. The Chow parameter 𝑝i of a variable xi is defined by [7]: 𝑝i = 2(mi−ni)…………..(7)

For instance, Fig. 4 shows the Chow parameter computation, considering the function ƒ = x1∧ (x2 ∨ x3).

The correlation between two parameter values 𝑝i and 𝑝j [pi≠pj] for the two input variables (x1, x2) induces the
correlation of the weights wi and wj of the input variables xi and xj, respectively, if pi>pj then wi>wj [7].

Fig. 4 Calculation of Chow parameters value for f.

Parameter Modified by Chow

The input(s) of a TF (Threshold function) correspond(s) to a set of weight(s) in its LTG representation. Hence, there exists

a weight ordering among all inputs of a TF. Muroga [17] proposed the modified Chow’s parameter, which is used to

determine the variable ordering of a TF ‘F’. The formula of modified Chow’s parameter is listed in the following equation: qi(F) = 2 ×pi(F)−p0(F)……………….(8)

where qi(F) represents the parameter of the ith input variable of TF ‘F’ , pi(F) is the number of minterms in the on-set

for which xi= 1, and p0(F) is the number of minterms in the on-set of this function (i.e. how many 1s in the truth table

of ‘F’). By sorting the parameters qi(F) in the descending order for i= 1,2, . . . , n, we can obtain the corresponding variable

ordering of an n-input TF.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 17 ISSUE 1 2017

PAGE NO: 4

For example, given F=x3 + x1x2, its truth table is shownin Fig. 5. The number of minterms for which F =1, p0(F) = 5.

Three of them are with x1= 1, three of them are with x2= 1 and four of them are with x3= 1. So, all the values of three

terms p1(F), p2(F), and p3(F) are 3, 3, and 4, respectively. By (8), we can obtain q1(F) =[2 ×p1(F)−p0(F)]=[2×3−5]=1, q2(F) = 1, and q3(F) = 1. So, we can write ordering of the variables as: w1=w2< w3. 𝑥1 𝑥2 𝑥3 F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

 Fig. 5 Table of (𝑥1𝑥2+ 𝑥3)

III. PROPOSED METHOD

The common strategy we are using to identify TLF is to create a system having inequalities from the truth table, and then
we must solve this system by using ILP. If there is a possible solution, the function is TLF, and the solutions of the system
correspond to the input weights. If the system of inequalities cannot be solved, the function is not TLF, and it requires
more than one TLG to be implemented. Threshold networks will be generated on future work.

 The complete system of inequalities, in the proposed method, is also created using similar course to ILP inequalities
creation algorithms. However, unlike the ILP approach, the inequalities system is not solved. The proposed algorithm
selects some of the inequalities as constraints to compute the input weights. In the next, after assigning the weights, the
consistency of the complete system is verified, in order to check if the weights have been correctly assigned.

As mentioned before in the section II, if a function is not unate, then this function is not TLF. Therefore, first of all the
algorithm performs a test to check whether the function is unate. A -ve unate variable can be changed into a positive
variable if the weight signal is just inverted, and this amount is subtracted from the threshold value. Without any change
of generality, we can consider whether the proposed algorithm is started from a positive unate function.

For the purpose of providing a clear understanding, the algorithm is divided into seven steps, that are given in the
following steps: (1) it gives the Chow parameters computation and defines the ordering of the variable weights; in step
(2), it demonstrates how to generate the inequalities system, in step (3), how to simplify these inequalities; in step (4), it
is explained about the dependence map created between the variables and inequalities; in step (5), the input weight
assignments are presented, in step (6), it shows how the verification that ensures the correct result is performed; finally,
in step (7), the calculation of the threshold value is done. The proposed flow comprising these stages is shown in Fig. 6.

Fig.6 Flow diagram of proposed method Algorithm

Already we have informed above the ordering of Chow parameters which inherently corresponds to the ordering of the

weights of the variables. Ordering of the weights is taken in the ascending order.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 17 ISSUE 1 2017

PAGE NO: 5

Whenever the Chow parameter values of two variables will be of the same values, then weights of the variables will be

also the same. Accordingly, the Chow parameter values are segmented as their Chow parameter values.

For clear understanding, a figure is depicted in Fig. 4, It is shown that the Chow parameters of three
variables x1, x2 and x3 are calculated next to Fig.4 and the values are 6, 2 and 2, respectively. Here, firstly, weight of the
2nd and 3rdvariables x2 and x3 are assigned according to our algorithm. Then the weight of the variable x1is assigned.

B. Step 2: Inequalities System Generation

From the equation F (x1, x2,x3) = 𝑥1(𝑥2 + 𝑥3), it is possible to create 8 conditional equations that include weight variables

as well as threshold value. With an example the process is explained.

Given the function F (x1, x2,x3) = 𝑥1(𝑥2 + 𝑥3), the truth table of this function is shown in Table-6 where the relationship

between weights and threshold value is shown also.

With the help of the Table-6, the truth Table-7 will be created according to the greater value side set and lower value side

set with respect to the threshold value θ.

In Table-7, two sets of sum of weights values are created. When the sum of weights is greater than or equal to threshold θ, we keep these sum in column 1. And in column 3, when the sum of weights is lesser than threshold θ, they are kept.

In column 2 in Table-8 all the 3 summation parts [(w1+ w3), (w1+w2) and (w1+w2+ w3)] are greater than threshold θ; and
the threshold θ is always greater than the 4th column’s value. So, we can rewrite the table-7 in an extended form like
Table-8.

Table 6

Truth table of 𝑥1(𝑥2 + 𝑥3), and input weights

and threshold value relation.

Sl. x1 x2 x3 ƒ θ

1 0 0 0 0 0 < θ

2 0 0 1 0 w3 < θ

3 0 1 0 0 w2 < θ

4 0 1 1 0 w2+w3 < θ

5 1 0 0 0 w1 < θ

6 1 0 1 1 w1+w3 ≥ θ

7 1 1 0 1 w1+w2 ≥ θ

8 1 1 1 1 w1+w2+w3 ≥ θ

Table-7 greater and smaller sets of inequalities

Threshold θ lower value side
Set w1+ w3 > θ > 0 w1+w2 > θ > w3 w1+w2+ w3 > θ > w2

 θ > w2+ w3

 θ > w1

+Table-8
Sl. greater set lesser set
1 w1+ w3 > 0
2 w1+ w3 > w3
3 w1+ w3 > w2

4 𝐰𝟏+ 𝐰𝟑 > 𝐰𝟐+ 𝐰𝟑

5 𝐰𝟏+ 𝐰𝟑 > 𝐰𝟏

6 w1+w2 > 0
7 w1+w2 > w3
8 w1+w2 > w2

9 𝐰𝟏+𝐰𝟐 > 𝐰𝟐+ 𝐰𝟑

10 𝐰𝟏+𝐰𝟐 > 𝐰𝟏

11 w1+w2+ w3 > 0
12 w1+w2+ w3 > w3
13 w1+w2+ w3 > w2

14 w1+w2+ w3 > w2+ w3
15 w1+w2+ w3 > w1

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 17 ISSUE 1 2017

PAGE NO: 6

C. Step 3: Inequalities Simplification

All the relationships shown in Table 7 are not useful. Consider the two relation [(w1+w2)≥ θ] and [(w1+w2+w3)≥ θ],
in these relations the input weights are always positive. But the relation [(w1+w2+w3)≥ θ] has one extra element w3

which is redundant when we compare it with the relation [(w1+w2)≥ θ]. Such type of redundancies are avoided in the
proposed method using the ISOP expression of the function. Considering the example expressed in Table-6, the algorithm
generates the inequalities 4, 5, 9 and 10 only from Table-8 after avoiding the redundancies.

By generating only the irredundant inequalities like 4, 5, 9 and 10 in Table-8, the algorithm will be able to simplify each

of them when necessary. This simplification happens when an element, here weight, is found on both sides of the same

inequality expression. For instance, say the inequality 4 in Table-8, i.e.,[w1+w3]> [w2+w3], the algorithm simply it and

provide the inequality [w1>w2] after removing w3. As all the weights are positive, our algorithm will remove such

inequalities bearing no weight (or ‘0’) in the lesser side.

D. Step 4: Inequalities Selection

For selecting the input variable weights, we must select those inequalities that have simply only a single weight within
the greater side. This weight should be greater than all variable weights within the right side /smaller side. Such technique
is necessary for the step called ‘weights assignment’ discussed in the next step. The selected inequalities 4 and 9 in Table-
8 are chosen and after simplification we have only [w1>w2] and [w1>w3].

From the simplified inequalities, the left-hand input weight is said to be the key of the inequality. The proposed algorithm
delivers a relation among inequalities having the same key. In this situation, the keys for the two inequalities are the same
weight w1 , where the inequalities are [w1>w2] and [w1>w3].

E. Step 5: Weights Assignment

We will assign the input weight wi only on the basis of inequalities selected in the above discussion where all variables
are related. The proposed algorithm willingly generates a temporary variable 𝑘𝑒𝑦 which must manage the weights
assigned to.

At the initial point, this temporary key is assumed to be a minimum integer = 1 and this value is
increased by +1 at each iteration until a good solution is obtained.

 At every instant the algorithm assigns weight for the variables and the inequalities concerned are
checked. If the current assigned value for the key saturates the inequalities involved, this value is
treated as the weight of the variable. If does not satisfies, the value is increased by (+1) and the
inequalities are checked. This process is repeatedly done until a satisfactory limit is obtained. The
same action is performed for each variable.

Flow diagram of weights assignment process is shown in Fig. 7. For the example cited in Table-6,
the assignment is fixed on the two weights w2 and w3. As no constraints are found for these keys
on inequalities, the value ‘1’ is assigned or fixed. Now, we increase the temporary variable to 2
and assign it to w1. For this temporary variable or key 2 we have two inequalities as [w1> 1] and
[w1> 1] for this key value=2 and we put w1 = 2 and we obtain two equal true inequalities [2 > 1]
and [2 > 1]. As all the weights are assigned for obtaining true inequalities, this step ends in. The
weights selected and assigned for the weights in the function F (x1, x2,x3) = 𝑥1(𝑥2 + 𝑥3) are w2=1
, w3=1 and w1=2.

The algorithm used here always creates minimum possible input weights and they are then
assigned. As a result, the TLG implementation is synthesized with the help of minimum circuit
components. The advantage underlying here can be shown using the example. For a given function
ƒ =x1x2+x1x3+ x1x4+ x2x3+ x2x3+x1x5x6 the Palaniswamy’s algorithm [12] informs us it to be
a TLF and assigns the weight [w1w2w3w4w5w6: θ]=[9,8,4,4,1,1: 11], But when using the
proposed algorithm the weights are assigned [w1w2w3w4w5w6: θ]=[7,6,3,3,1,1; 9] and it is the
minimum possible set[16].

Fig. 7. Input weight

assignment flow.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 17 ISSUE 1 2017

PAGE NO: 7

IV. EXPERIMENTAL RESULTS

For the purpose of validating and comparing the proposed algorithm to the existing ones available, 2 experiments are
performed. The first one calculates the efficiency present in the proposed process considering total number of TLF which
are identified. The second experiment calculates the processing time by evaluating the mean time considering for all
identified TLF. The proposed algorithm is developed using Java in this case.

Total number of TLF identified and to be maximized is the target of TLF-identification algorithms. Under the
consideration of total number of TLF identified, the first experiment determines the efficiency. The count of identified
TLF for the variable numbers starting from 2 to 8 has already been established by Muroga [16]. As reference these
evaluated numbers are accepted.

Instead of using linear programming to identify TLF, Gowda et al.[9] have accepted the first method and again improved
it next[10]. Palaniswamy et al.[12] presented an approach that gives better results. After justification, result of
Palaniswamy’s approach has been considered as the basis of reference and comparison when we are developing a
method.

Experiment results are cited in Table-9 for three cases: Moruga[16], Palaniswamy [12] and Our approach. In the second
column in Table-9, integer numbers indicates how many TLFs are created for Moruga [16], against how many numbers
of inputs are there. In column 2, shows the quality of function identified by Palaniswamy [12]. In column 3 it is shown
the number of TLFs identified in the case of our proposed method.

We have observed that for input variable number 1 to 4 all the methods identify each TLF existing. When the variable
number =5, Palaniswamy’s process identifies 84 existing TLFs out of 92, but our proposed method identifies all existing
TLFs. When six variables are considered, Palaniswamy’s process identifies 73.2% of TLF and the proposed method does
90.4% of TLF. When seven variables are taken into consideration, the identified TLFs are 32.6% and 59.4% for the cases
of Palaniswamy’s process and our proposed process respectively. The proposed algorithm can be considered as pioneer
non-ILP algorithm and this can identify all TLFs accurately for all inputs upto 5 (from 1through 5) and provides the
superior results with respect to ‘state-of-the-art algorithm’.

Table-9 Proposed method efficiency

Number of NP classes identified TLF by each method
Input
number

Moruga[16] Palaniswamy [12] Our approach

TLF TLF % TLF %

1 1 1 100 1 100
2 2 2 100 2 100
3 5 5 100 5 100
4 17 17 100 17 100
5 92 84 91.3 92 100
6 994 728 73.2 900 90.4
7 28262 9921 32.6 16804 59.4

The execution time is evaluated, in the second experiment, by calculating the mean time consumed to identify every

TLF. It is clear that our proposed algorithm determines all the numbers of TLFs for all variables from 1 to 7. These
numbers inform that the proposed algorithm is so fast as Palaniswamy’s method is. From the Table-10, it is seen that the

average execution time does not increase exponentially whereas ILP-based algorithms does.

With the increasing of the invariables, solving the conditional equations by linear programming will be more complex
and expensive. From the Fig. 8 we have observe “the scalability for consumed average time per function of the proposed
algorithm” and “the exponentially behavior of the integer linear programming (ILP) algorithm”. The mean execution

Table 10 Execution time per identified TLF

Average time per function for each number of inputs
Inputs 1 2 3 4 5 6 7
Time
Reqd.
(ms)

0.3 0.2 0.3 0.4 0.5 0.4 0.6

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 17 ISSUE 1 2017

PAGE NO: 8

time for each function is measured for all number of variables. The variable number starts from 1 to 16 and the results
acquired are shown in a logarithm scale.

Fig. 8 – Average execution time per function for each number of variables

The graph of execution time for ILP exponentially increased when the input variables goes from 8 towards 16 and reaches
tens of seconds, whereas the proposed algorithm goes only a few milliseconds for the same number of variables.

The ILP method execution time has a marked increases from eight variables, and reaches tens of seconds for sixteen
variables. In the other hand, the proposed algorithm reaches only some milliseconds, for this number of variables.

When we comparing the two curves in Fig. 8, we observe the time difference is close to 4 magnitude orders. Yet our
proposed approach does identify accurately all TLF about the present benchmark and gives enhanced algorithm
efficiency.

V. CONCLUSION

Based on the threshold logic function, threshold logic gate is constructed which helps us to implement a nano-level circuit

requiring a minimum number of components. As a result, the population density of complex circuits will be higher when

comparing with the MOS based circuits. Here a threshold logic function is proposed by a novel algorithm called “non-

ILP algorithm”. The proposed algorithm uses inequalities generated from the truth table, but does not use linear

programming. The input weight assignment uses some of the inequalities as constrains and it is performed in ascending

order, defined by Chow parameters. These weights assigned are always the minimum, since uses a bottom-up approach

to compute the weights, impacting the final area of circuits. From the results we can conclude that our method can strongly

identify all the variables starting from 1 through 5. Although being heuristic, our algorithm identifies more functions than

the other heuristic methods when the number of variables increases. Average execution time per function for each number

of variables is scalable in our case, but not for the case of ILP. Whenever any TLF in implemented by using TLG based

on an emerging technology called single electron threshold gate, the speed of the circuit will be enhanced at least 4 times

with respect to classical CMOS circuit.

VI REFERENCES

[1] “Semiconductor Industries Association Roadmap.” http://public.itrs.net 2011.

[2] Zheng, Y. Novel RTD-based Threshold Logic Design and Verification. Master’s thesis, Virginia Polytechnic Institute and State

University, 2008.

[3] Celinski, P. et al., 2003, “State of the art in CMOS threshold logic VLSI gate implementations and systems”, in Proc. of the

SPIE, pp. 53–64.

[4] Beiu, V., Quintana, J. M. and Avedillo, M. J., Sep. 2003, “VLSI implementations of threshold logic: A comprehensive survey,”

IEEE Trans. Neural Netw., vol. 14, no. 5, pp. 1217–1243.

[5] Avedillo, M. J. and Quintana J.M., 2004, “A threshold logic synthesis tool for RTD circuits,” in Proc. Euromicro Symp. Dig.

Syst. Des., pp. 624–627.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 17 ISSUE 1 2017

PAGE NO: 9

[6] Zhang, R., Gupta, P., Zhong L. and Jha, N.K., 2005, “Threshold network synthesis and optimization and its application to

nanotechnologies,” IEEE Transactions on CAD, vol. 24, no. 1, pp. 107–118.

[7] Muroga S., 1971, “Threshold Logic and Its Applications” New York: Wiley-Inter science.

[8] Subirats, J., Jerez, J. and Franco, L., Nov. 2008, “A new decomposition algorithm for threshold synthesis and generalization of

boolean functions”, IEEE Trans. Circ. Syst. vol. 55, no. 10, pp. 3188–3196.

[9] Gowda, T., Vrudhula, S. and Konjevod, G., 2007, “A non-ilp based threshold logic synthesis methodology”, In Proc. IWLS.

[10] Gowda, T. and Vrudhula S., 2008, “A decomposition based approach for synthesis of multi-level threshold logic circuits”, Proc.

of ASP-DAC, pp. 125-130.

[11] Palaniswamy, A.K., Goparaju, M.K. and Tragoudas, S. 2010 “Scalable identification of threshold logic functions”, in Proc.

GLSVLSI. 269–274.

[12] Palaniswamy, A.K., Goparaju, M. K., and Tragoudas S., Aug 2012, “An Effcient Heuristic to Identify Threshold Logic

Functions”, In ACM Journal on Emerging Technologies in Computing Systems, Vol. 8, No. 3,pp. 19:1–19:17.

[13] Brayton, R.K., McMullen C. , Hachtel G. D. and Vincentelli, A S., “Logic Minimization Algorithms for VLSI Synthesis”,

1984:Kluwer Academic Publishers.

[14] Hinsberger, U. and R. Kolla 1998, "Boolean matching for large libraries", in Proc. Design Automation Conf., pp.206 -211

[15] Avedillo M. J., Quintana J.M., and Rueda, A.: "Threshold Logic" In the "Encyclopedia of Electrical and Electronics

Engineering", John Webster(Ed.) 1999, John Wiley & Sons. vol. 22, pp. 178-190.

[16] Muroga S., Tsuboi T. and Baugh, C. R., 1970, “Enumeration of Threshold Functions of Eight Variables,” IEEE Trans. Comput

vol. C, no. 9, pp. 818–825.

[17] S. Muroga, Threshold Logic and Its Applications. New York, NY, USA: Wiley, 1971.

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 17 ISSUE 1 2017

PAGE NO: 10

