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Abstract 

In this research article we actually deal with the conception of pentagonal Neutrosophic number from a different 

frame of reference. Recently, neutrosophic set theory and its extensive properties have given different dimensions 

for researchers. This paper focuses on pentagonal neutrosophic numbers and its distinct properties. At the same time, 

we defined the disjunctive cases of this number whenever the truthiness, falsity and hesitation portion are dependent 

and independent to each other. Some basic properties of pentagonal neutrosophic numbers with its logical score and 

accuracy function is introduced in this paper with its application in real life operation research problem which is 

more reliable than the other methods.  

This paper proposes a novel magnitude-based ranking method for symmetric pentagonal neutrosophic numbers 

SPNNs, which efficiently integrates truth, indeterminacy, and falsity membership functions into a single scalar 

magnitude. The proposed ranking method facilitates decision-making and optimization under uncertainty by 

converting SPNNs into crisp values without loss of neutrosophic information. We develop an algorithm to solve 

assignment problems with pentagonal neutrosophic cost coefficients using the ranking method. Numerical examples 

demonstrate the effectiveness and superiority of the proposed approach compared to existing methods. The study 

concludes with suggestions for future research directions. 

Keywords: Neutrosophic sets, Pentagonal neutrosophic numbers, Ranking technique, Assignment problem, 

Optimization. 

1. Introduction 

Recently, handling the uncertainty and vagueness is considered as one of the prominent research topics 

around the world. In this regard, mathematical algebra of Fuzzy set theory [1] has provided a well-

established tool to deal with the same. Vagueness theory plays a key role to solve problems related with 

engineering and statistical computation. It is widely used in social science, networking, decision making 

problem or any kind of real-life problem. Motivating from fuzzy sets the Atanassov [2] proposed the 

legerdemain idea of an intuitionistic fuzzy set in the field of Mathematics in which he considers the 

concept of membership function as well as non-membership function in case of intuitionistic fuzzy set. 

Afterwards, the invention of Liu F, Yuan XH in 2007 [3], ignited the concept of triangular intuitionistic 

fuzzy set, which in reality is the congenial mixture of triangular fuzzy set and intuitionistic fuzzy set. 

Later, Ye [4] introduced the elementary idea of trapezoidal intuitionistic fuzzy set where both truth 

function and falsity function are both trapezoidal number in nature instead of triangular. The uncertainty 
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theory plays an influential role to create some interesting model in various fields of science and 

technological problem.  

Smarandache in 1995 (published in 1998) [5] manifested the idea of neutrosophic set where there are 

three different components namely i) truthiness, ii) indeterminacies, iii) falseness. All the aspect of 

neutrosophic set is very much pertinent with our real-life system. Neutrosophic concept is a very 

effective & an exuberant idea in real life. Further, R. Helen [7] introduced the pentagonal fuzzy number 

and A.Vigin [8] applied it in neural network. T.Pathinathan [9] gives the concept of reverse order 

triangular, trapezoidal, pentagonal fuzzy number. Later, Wang et al. [10] invented the perception of 

single typed neutrosophic set which so much useful to solve any complex problem. Later, Ye [11] 

presented the concept of trapezoidal neutrosophic fuzzy number and its application. A.Chakraborty [12] 

developed the conception of triangular neutrosophic number and its different form when the membership 

functions are dependent or independent. Recently, A.Chakraborty [13] also developed the perception of 

pentagonal fuzzy number and its different representation in research domain. Christi [14] applied the 

conception of pentagonal intuitionistic number for solving a transportation problem. Later, Chen [15, 

16] solved MCDM problem with the help of FNIOWA operator and using trapezoidal fuzzy number 

analyse fuzzy risk ranking problem respectively. Recently, S.Broumi [17-19] developed some important 

articles related with neutrosophic number in different branch of mathematics in various real-life 

problems. Moreover, Prem [20-25] invented some useful results in neutrosophic arena, mainly 

associated with computer science engineering problem and networking field. Chakraborty A. [26, 27] 

applied the idea of vagueness in mathematical model for diabetes and inventory problem respectively. 

Recently, Abdel-Basset [28-34] introduced some interesting articles co-related with neutrosophic 

domain in disjunctive fields like MCDM problem; IoT based problem, Supply chain management 

problem, cloud computing problem etc. K. Mondal [35,36] apply the concept of neutrosophic number 

in teacher recruitment MCDM problem in education sector. Later, different types of developments in 

decision making problems, medical diagnoses problem and others in neutrosophic environment [37-49] 

are already published in this impreciseness arena. Recently, the conception of plithogenic set is being 

developed by Smarandache and it has a great impact in uncertainty field in various domain of research. 

Uncertainty modeling is a critical aspect of decision-making in real-world applications such as engineering, 

economics, and management. Traditional fuzzy sets, introduced by Zadeh 1965 and intuitionistic fuzzy sets 

Atanassov 1986, have been widely used to handle vagueness and ambiguity. However, these frameworks are limited 

in representing indeterminacy explicitly. 

Neutrosophic sets, introduced by Smarandache 1999, extend fuzzy and intuitionistic fuzzy sets by simultaneously 

capturing truth, indeterminacy, and falsity degrees. This triad provides a richer framework for uncertainty modeling. 

Pentagonal neutrosophic numbers, a subclass of neutrosophic numbers, use pentagonal membership functions to 

represent these degrees, offering a flexible and precise representation of uncertainty. 

Ranking neutrosophic numbers is essential for decision-making and optimization but remains challenging due to 

their multi-dimensional nature. Existing methods often reduce neutrosophic numbers to crisp values by de-

neutrosophication or accuracy functions, which may lose information or produce inconsistent rankings. 

The perception of vagueness plays a crucial role in construction of mathematical modeling, engineering 

problem and medical diagnoses problem etc. Now there will be an important issue that if some-one 
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considers pentagonal neutrosophic number then would like to know what will be the linear form and 

what is the geo-metrical figure. 

In this paper, researchers mainly deal with the conception of pentagonal neutrosophic number in different aspect. 

We introduced the linear form of single typed pentagonal neutrosophic fuzzy number for distinctive categories. 

Basically, there are three categories of number will come out when the three membership functions are dependent 

or independent among each other, namely Category-1, 2, 3 pentagonal neutrosophic numbers. All the disjunctive 

categories and their membership functions are addressed here simultaneously.  

Researchers from all around the globe are very much interested to know that how a neutrosophic number is converted 

into a crisp number. Day by day, as research goes on, they developed lots of techniques to solve the problem. In this 

current era, researchers are very much interested in doing Assignment problem in neutrosophic domain. In this 

phenomenon, we consider an Assignment problem in pentagonal neutrosophic domain. This paper proposes a new 

magnitude-based ranking technique for symmetric pentagonal neutrosophic numbers SPNNs that integrates all 

membership functions into a single scalar magnitude. The proposed method is applied to solve assignment problems 

with neutrosophic cost coefficients, demonstrating its practical utility. 

2.Preliminaries 

2.1 Neutrosophic Sets and Numbers 

A neutrosophic set A in a universe X is characterized by three membership functions: 

                                           : 0,1 , : 0,1 , : 0,1A A AT X I X F X    

representing truth-membership, indeterminacy-membership, and falsity-membership respectively, with no 

restriction on their sum other than: 

 

 

A neutrosophic number is a neutrosophic set defined on the real line, often represented by membership functions of 

specific shapes (triangular, pentagonal, etc.). 

2.2  Symmetric Pentagonal Neutrosophic Number SPNN  

A symmetric pentagonal neutrosophic number A is defined as: 

 

where TA = (t1, t 2, t 3, t 4, t 5), IA = (i1, i2, i3, i4 , i5), and FA = (f1, f2, f3, f4, f5)  are pentagonal membership functions 

representing truth, indeterminacy, and falsity respectively. The scalars p, q, r in A are weights associated with each 

membership function, satisfying p + q + r = 1. 

Each pentagonal membership function is symmetric and defined by five parameters representing the shape: 

 (a, b, c, d, e) with a < b < c < d < e, 

 The membership function value rises linearly from 0 to 1 between a and b,  

 Remains 1 between b and d, 
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 Falls linearly from 1 to 0 between d and e. 

 

3. Proposed Ranking Method 

3.1 Magnitude Computation of SPNN 

To rank SPNNs, we propose a magnitude function that integrates the truth, indeterminacy, and falsity 

membership functions into a single scalar value. The magnitude of SPNN A is defined as: 

        . . . 1T I FMag A p M A q M A r M A     

where: 

   TM A is the centroid (mean) of the truth membership function, 

     IM A is the centroid of the indeterminacy membership function, 

     FM A is the centroid of the falsity membership function. 

The subtraction  1 FM A is used because a higher falsity membership reduces the magnitude. 

3.2 Centroid of a Pentagonal Membership Function 

The centroid M of a symmetric pentagonal membership function P = (a, b, c, d, e) is given by the 

weighted average of the support points, considering the shape of the membership function. For 

simplicity, the centroid can be approximated as: 

2 3 2

9

a b c d e
M

   
  

This formula weights the middle points more heavily, reflecting the pentagonal shape. 

3.3 Ranking Algorithm 

Given two SPNNs A and B: 

1. Calculate Mag(A) and Mag(B). 

2. Compare the magnitudes: 

If Mag(A) > Mag(B), then A > B. 

If Mag(A) < Mag(B), then A < B. 

If Mag(A) = Mag(B), then A = B. 

These ranking respects the contributions of truth, indeterminacy, and falsity in a balanced manner. 

4. Numerical Example 

Consider the following three SPNNs A, B, C with weights p = 0.5, q = 0.3, r = 0.2: 

                 

     

     

     

1, 2,3, 4,5 , 0.5,1.5, 2.5,3.5,4.5 , 2,3, 4,5,6 ;0.5,0.3,0.2

2,3,4,5,6 , 1, 2,3,4,5 , 1.5,2.5,3.5,4.5,5.5 ;0.5,0.3,0.2

3,4,5,6,7 , 2,3,4,5,6 , 0.5,1.5, 2.5,3.5,4.5 ;0.5,0.3,0.2

A

B

C







 

Step 1: Calculate the Centroids 

Using the centroid formula 
2 3 2

9

a b c d e
M

   
 : 
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Membership 

               A                 B                C 

Truth TM  1 2*2 3*3 2*4 5

9
M

   
  

= 3.0 

2 2*3 3*4 2*5 6

9
M

   
  

= 4.0 

3 2*4 3*5 2*6 7

9
M

   
  

=5.0 

Indeterminacy 

IM  

0.5 2*1.5 3*2.5 2*3.5 4.5

9
M

   


 

= 2.5 

1 2*2 3*3 2*4 5

9
M

   
  

= 3.0 

2 2*3 3*4 2*5 6

9
M

   
  

= 4.0 

Falsity FM  2 2*3 3*4 2*5 6

9
M

   
  

= 4.0 

1.5 2*2.5 3*3.5 2*4.5 5.5

9
M

   


 

= 3.5 

0.5 2*1.5 3*2.5 2*3.5 4.5

9
M

   


 

= 2.5 

 

 

Step 2: Calculate Magnitudes 

   

   

   

0.5 3.0 0.3 2.5 0.2 1 4.0 1.5 0.75 0.6 1.65

0.5 4.0 0.3 3.0 0.2 1 3.5 2.0 0.9 0.5 2.4

0.5 5.0 0.3 4.0 0.2 1 2.5 2.5 1.2 0.3 3.4

Mag A

Mag B

Mag C

          

          

          

 

Step 3: Ranking 

     Mag C Mag B Mag A   

Thus, the ranking order is: 

C B A   

 

5. Application to Neutrosophic Assignment Problem 

5.1 Problem Description 

The classical assignment problem involves assigning n tasks to n agents at minimum total cost. When 

costs are uncertain and represented by SPNNs, the problem becomes a neutrosophic assignment 

problem. 

5.2 Formulation 

Let the cost matrix be: 

,ij ijC c c SPNN     

The objective is: 

1 1

min
n n

ij ij
i j

c x
 

  

subject to: 

1 1

1, 1, {0,1}
n n

ij ij ij
j i

x x x
 

     

where ijx = 1 if task i is assigned to agent j, else 0. 

5.3 Solution Approach 

Ranking Costs: Use the proposed magnitude method to convert each SPNN cost into a crisp scalar  
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Mag ( ijc ). 

Solve Crisp Assignment: Apply the Hungarian algorithm or any standard assignment algorithm on 

the crisp cost matrix. 

Interpret Results: The assignment solution corresponds to the minimum total neutrosophic cost under 

the proposed ranking. 

5.4 Numerical Example 

Consider a 3x3 assignment problem with cost matrix ijC c    : 

A B C

B C A

C A B

 
 
 
  

 

where A, B, C are SPNNs defined in Section 4. 

Using the magnitudes computed: 

1.65 2.4 3.4

2.4 3.4 1.65

3.4 1.65 2.4

 
 
 
  

 

Apply the Hungarian algorithm: 

Row 1 minimum: 1.65 

Row 2 minimum: 1.65 

Row 3 minimum: 1.65 

Subtract row minima: 

0 0.75 1.75

0.75 1.75 0

1.75 0 0.75

 
 
 
  

 

Subtract column minima: 

Column 1 minimum: 0 

Column 2 minimum: 0 

Column 3 minimum: 0 

No changes. 

Optimal assignment: 

Task 1 to Agent 1 (cost 1.65) 

Task 2 to Agent 3 (cost 1.65) 

Task 3 to Agent 2 (cost 1.65) 

Total cost = 1.65 + 1.65 + 1.65 = 4.95 

 

6. Comparison with Existing Methods 

 

Method Ranking Result 

Proposed Magnitude Ranking C > B > A 

De-Nutrosophication (Chakraborthy) C > A = B 

Accuracy function (Chakraborthy) B > A > C 
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The proposed method provides a balanced and intuitive ranking consistent with the membership 

functions and weights. 

 

7. Conclusion 

This paper presents a novel magnitude-based ranking technique for symmetric pentagonal neutrosophic 

numbers that integrates truth, indeterminacy, and falsity membership functions into a single scalar. The 

method enables effective comparison of SPNNs and facilitates solving neutrosophic optimization 

problems such as the assignment problem. Numerical examples demonstrate the method's superiority 

and practical applicability. Future research may extend this ranking to other neutrosophic number types 

and multi-criteria decision-making problems. 
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