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Abstract: This study presents the design, implementation, and evaluation of a Smart 
Irrigation System (SIS) that integrates Wireless Sensor Networks (WSNs) with Machine 
Learning (ML) to optimize water use efficiency in agriculture. Conducted over two crop 
seasons in a semi-arid region of Maharashtra, India, the research employed real-time 
environmental data from a multi-sensor WSN—including soil moisture, temperature, 
humidity, light intensity, and rainfall—captured every 30 minutes. A Random Forest 
Regression model was trained to forecast short-term soil moisture levels and guide dynamic 
irrigation scheduling. The system achieved a high predictive accuracy (R² = 0.912) with 
minimal error (RMSE = 1.83%), demonstrating the reliability of data-driven irrigation 
control. The SIS reduced average daily water usage by 28.7%, improved grain yield by 
10.8%, and enhanced water productivity by over 50%, compared to traditional irrigation 
methods. Additionally, energy consumption related to pump usage was lowered by 28.4%, 
affirming the system’s efficiency in both water and energy domains. Operational metrics 
indicated system robustness with 97.4% sensor uptime and minimal data packet loss. This 
research addresses a critical literature gap by validating a full-cycle, field-based SIS under 
real-world conditions, and offers a scalable, cost-effective model for sustainable agriculture. 
The findings have significant implications for smallholder farming, climate resilience, and 
digital agriculture policy. 

Keywords: Smart irrigation, wireless sensor networks, machine learning, water use 
efficiency, predictive agriculture, energy conservation 

1. Introduction 

Water scarcity remains a pressing challenge for global agriculture, especially in arid and 
semi-arid regions where irrigation consumes over 70% of freshwater resources globally 
(Mekonnen et al., 2019). Traditional irrigation methods often result in water wastage due to 
manual scheduling and uniform application irrespective of crop or soil condition. Precision 
irrigation, enhanced through digital technologies, presents a promising alternative. 
Specifically, Smart Irrigation Systems (SIS) incorporating Wireless Sensor Networks 
(WSNs) and Machine Learning (ML) have emerged as transformative tools for optimizing 
irrigation by enabling real-time monitoring, data analytics, and automated decision-making 
(Goap et al., 2018). 

WSNs collect field-level data including soil moisture, humidity, temperature, and weather 
forecasts, while ML algorithms interpret these datasets to make predictive or prescriptive 
decisions about irrigation scheduling. This combination is reshaping the landscape of 
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agricultural water management. Recent studies have demonstrated water savings between 
20% and 40% using SIS compared to manual or timer-based irrigation (Ndunagu et al., 
2022). Furthermore, when implemented at scale, such technologies not only improve water 
use efficiency (WUE) but also enhance crop yield, reduce labor input, and optimize energy 
consumption through intelligent pump scheduling (Sami et al., 2022).The integration of IoT-
based sensors with ML models has shown substantial promise in making agriculture data-
driven and environmentally sustainable. Tace et al. (2022) proposed an intelligent irrigation 
model using ML and IoT components that dynamically adjusts water supply based on soil 
and climatic variations. Meanwhile, Kirtana et al. (2018) incorporated Zigbee-based sensor 
networks for reliable communication in field deployments. These innovations signify a 
paradigm shift in irrigation technology from static control systems to dynamic, data-
responsive frameworks that react to micro-level environmental changes. 

Although the growing body of literature showcases various attempts to build and deploy SIS, 
significant limitations persist. Most research efforts remain confined to controlled 
environments such as greenhouses or small-scale test beds, limiting real-world applicability 
and scalability. Many models are trained on limited datasets, lacking multi-seasonal or multi-
regional diversity. For instance, Janani and Jebakumar (2019) focused on ML algorithms to 
optimize irrigation, but their implementation lacked spatial scalability and real-time 
adaptability.Moreover, current literature often addresses WSN and ML components in 
isolation rather than as an integrated, cohesive system. Raghuvanshi et al. (2022) discussed 
WSN deployment for smart farming but focused primarily on risk mitigation and intrusion 
detection. Similarly, Singh et al. (2019) emphasized soil moisture prediction using ML but 
did not account for network reliability or energy efficiency of the sensors. This fragmented 
approach undermines the holistic potential of smart irrigation systems. 

Another gap lies in the lack of comparative, longitudinal field studies that assess not only the 
water efficiency but also energy usage, system robustness, and maintenance feasibility over 
time. The robustness of ML models under fluctuating environmental conditions and real-
world network disruptions remains underexplored. These gaps emphasize the need for an 
integrated, field-level validation of smart irrigation systems incorporating both WSN and ML 
in resource-constrained agricultural settings.Despite technological advances in smart 
agriculture, there exists a tangible void in the development and empirical validation of 
integrated SIS that are both scalable and adaptable to diverse field conditions. Most existing 
systems either emphasize sensor deployment without predictive intelligence or apply ML 
models without real-time sensor integration. This paper addresses this deficiency by 
developing and validating a fully integrated Smart Irrigation System leveraging WSNs and 
ML for optimized water use efficiency under semi-arid conditions. 

The overarching aim of this research is to design, implement, and validate a Smart Irrigation 
System that utilizes a hybrid of WSN and ML to enhance irrigation efficiency in real-time 
farming environments. The specific objectives are: 

1. To deploy a real-time, multi-sensor WSN architecture for soil and environmental data 
collection. 

2. To train and validate supervised ML algorithms (such as Random Forest and Artificial 
Neural Networks) on sensor and weather data to forecast irrigation needs accurately. 

3. To assess the system’s impact on water consumption, crop yield, and energy usage 
compared to traditional methods. 

COMPUTER RESEARCH AND DEVELOPMENT  (ISSN NO:1000-1239)  VOLUME 25 ISSUE 10 2025

PAGE NO: 166



4. To analyze the robustness and scalability of the system across variable environmental 
and operational conditions. 

The potential contributions of this study are multifaceted. From an academic perspective, it 
bridges the gap between WSN deployment and ML application in smart irrigation by offering 
a unified, empirically validated framework. From a technological standpoint, it proposes a 
cost-effective, scalable model that could be adapted by smallholder farmers with limited 
technical expertise or infrastructure.In practical terms, the outcomes of this study can inform 
policy and practice in sustainable water resource management, contributing to environmental 
conservation and agricultural productivity. The integration of predictive analytics with IoT 
infrastructures supports proactive irrigation strategies, minimizing resource waste and 
environmental impact. Finally, the research aligns with broader global objectives such as the 
United Nations Sustainable Development Goals (SDGs), particularly SDG 2 (Zero Hunger) 
and SDG 6 (Clean Water and Sanitation), by fostering innovations that enhance food security 
and water sustainability. 

2. Literature Review 

2.1. Review of Scholarly Works 

This section organizes and critically analyzes prior studies on smart irrigation systems, 
structured thematically to align with our research objectives: (i) integration of machine 
learning with sensor-based irrigation systems, (ii) energy-efficient wireless sensor networks 
(WSNs) for real-time monitoring, (iii) predictive water demand modeling, and (iv) system-
level deployment and decision support in agricultural environments. 

Theme 1: Machine Learning Integration with Sensor-Based Irrigation 

Several studies explored how ML algorithms enhance sensor-based irrigation through real-
time prediction and automation. Mekonnen et al. (2019) investigated the application of 
supervised learning models in wireless sensor networks for precision agriculture. They used 
soil moisture and temperature sensors connected to WSNs and applied regression algorithms 
to forecast irrigation needs. Their findings showed up to 35% improvement in water 
efficiency, highlighting ML's role in refining irrigation scheduling. 

Sami et al. (2022) proposed a deep learning-based sensor model integrated with WSN for 
field deployment across multiple regions in Sindh, Pakistan. Their model included 
convolutional neural networks (CNNs) trained on sensor datasets to autonomously identify 
optimal irrigation cycles. The results achieved over 91% prediction accuracy for soil moisture 
levels, demonstrating the feasibility of AI-driven irrigation under diverse climatic conditions. 

Tace et al. (2022) implemented an intelligent irrigation model using supervised ML 
algorithms like decision trees and support vector machines (SVM), combined with 
environmental sensors. Their approach successfully reduced water usage by 28.6%, 
validating ML’s potential to dynamically adapt to real-time soil and weather conditions. 

Theme 2: Design and Optimization of Wireless Sensor Networks for Irrigation 

The second group of studies focused on the structure and sustainability of sensor networks 
essential for field deployment. Ndunagu et al. (2022) designed a wireless sensor network for 
a smart irrigation system in sub-Saharan conditions using Arduino-based microcontrollers 
and LoRa technology. They used Microsoft Excel and Jupyter Notebook to process over 
5,700 sensor readings, achieving consistent reliability and minimal data packet loss during 
peak humidity cycles. 
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Ding and Du (2024) emphasized the importance of system autonomy in WSNs through the 
use of deep reinforcement learning. Their study optimized irrigation scheduling and network 
communication frequency based on environmental context, achieving a 20.2% extension in 
node battery life and a 14.9% increase in irrigation precision. This contribution directly aligns 
with our study’s goal to validate system robustness over extended agricultural seasons. 

González-Briones (2018) also addressed the energy-efficiency aspect, proposing a hybrid 
WSN-ML framework combining unsupervised and supervised learning to adapt irrigation 
schemes in rural environments. The framework utilized clustering algorithms to reduce 
transmission redundancy, thereby conserving energy and increasing sensor lifespan by 18%. 

Theme 3: Predictive Irrigation Modeling and Water Management 

The third theme emphasizes the forecasting capabilities of ML models in predicting water 
requirements. Glória et al. (2021) proposed a sustainable irrigation system that incorporated 
real-time sensor readings and ensemble learning techniques. The study developed a Random 
Forest-based model trained on 36,000 readings over 90 days, achieving a water prediction 
error below 1.9%. Their contribution shows the value of ensemble ML models in minimizing 
prediction errors in field conditions. 

Goldstein et al. (2018) conducted an interpretative ML study to derive irrigation patterns 
from sensor data and agronomist insights. Using feature importance analysis, they discovered 
that latent environmental variables like wind speed and radiation intensity, often ignored in 
rule-based systems, significantly influenced soil moisture dynamics. Their findings reinforce 
the necessity of incorporating weather-API-based inputs to improve ML model reliability. 

Padmanaban and Kannan (2021) developed a groundwater forecasting model using long 
short-term memory (LSTM) neural networks to anticipate subterranean water availability and 
adjust irrigation schedules accordingly. Their results showed 85% model reliability in 
predicting irrigation viability under fluctuating aquifer conditions, offering a proactive 
approach to sustainable water use. 

Theme 4: Full-System Deployment and Automation in Agricultural Environments 

Addressing end-to-end automation, Vij et al. (2020) examined ML- and IoT-based irrigation 
systems leveraging open-source weather databases and sensor feedback to initiate 
autonomous irrigation. Their results recorded a 30.6% reduction in total irrigation water 
applied and improved yield per hectare by 11.3%, confirming that decision-driven 
automation can enhance both water savings and productivity. 

Tace et al. (2022) extended this system-level perspective by introducing fault-tolerant edge 
computing for irrigation logic. They integrated redundancy protocols to reduce data loss and 
ensure decision continuity during network failures. Such designs are essential in ensuring 
reliability in remote rural deployments, a consideration vital for our study's focus on 
scalability. 

Despite considerable progress in smart irrigation, a key gap persists in the field-level 
implementation and empirical validation of unified systems that integrate both WSN and 
machine learning for irrigation optimization. Most studies either emphasize controlled lab 
conditions or focus on isolated components—either the sensor network or the algorithmic 
modeling. This segmented approach undermines the holistic utility of smart irrigation 
frameworks, especially in semi-arid and resource-constrained agricultural zones.Our research 
fills this void by designing, deploying, and testing a fully integrated SIS model that spans 
from sensor deployment to ML-based water forecasting. The significance lies in its potential 
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to contribute actionable insights for policy-makers, agri-tech developers, and smallholder 
farmers, bridging the gap between conceptual innovation and practical, sustainable water use 
strategies in precision agriculture. 

3. Materials and Methods 

3.1 Research Design 

This study adopted a quantitative, applied experimental research design focusing on the field 
deployment of a Smart Irrigation System (SIS) integrating Wireless Sensor Networks (WSN) 
and Machine Learning (ML) in a controlled agricultural setting. The primary goal was to 
monitor, predict, and optimize irrigation schedules through real-time data collection and 
predictive modeling. A single crop field measuring 1.5 acres, located in the Yavatmal district 
of Maharashtra, India, was selected as the experimental site due to its semi-arid climatic 
characteristics and water stress challenges. 

The methodology was developed to fill the literature gaps related to the lack of integrated, 
scalable, field-level testing of WSN-ML based systems. The approach ensured empirical 
rigor in validating the water use efficiency, energy savings, and forecasting accuracy of the 
proposed model. 

3.2 Data Collection System and Tools 

Data for the study were collected using a multi-sensor WSN setup deployed uniformly across 
the selected agricultural plot. Sensors captured key environmental and soil parameters at 30-
minute intervals throughout two cropping cycles (Kharif and Rabi seasons, October 2022 to 
May 2023). The following components were utilized in the data acquisition process: 

Table 1: Sensor Configuration and Data Acquisition Tools 

Component 
Type 

Model/Specification Function Frequency 
of Reading 

Placement Output 
Format 

Soil 
Moisture 
Sensor 

Capacitive v1.2 
(Analog, 3.3–5V) 

Measures 
volumetric 

water 
content 

Every 30 
minutes 

10 sensors, 
30 cm deep 

Voltage 
(0–3V) 

Ambient 
Temperature 

DHT22 Records 
field-level 

temperature 

Every 30 
minutes 

5 locations, 
1.5 m 
height 

°C 

Relative 
Humidity 

DHT22 Captures air 
moisture 
content 

Every 30 
minutes 

Alongside 
temperature 

unit 

% RH 

Soil 
Temperature 

DS18B20 
(Waterproof) 

Measures 
soil thermal 

profile 

Every 30 
minutes 

Same 
locations as 

moisture 

°C 

Light 
Intensity 

BH1750 Captures 
daylight 

input 

Every 30 
minutes 

2 per 
hectare 

Lux 

Weather OpenWeatherMap Collects 
rainfall, 

Hourly API-based JSON/CSV 
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Data API (Hourly API) solar 
radiation & 

wind 

cloud sync 

All sensors were connected to Arduino Uno microcontrollers with LoRaWAN modules, 
enabling long-range, low-power data transmission to a local Raspberry Pi-based gateway, 
which stored data in a structured CSV format and relayed it to a centralized Firebase database 
for ML processing. Power to the sensor units was provided by 5V solar panels with 4400mAh 
Li-ion battery backups to ensure uninterrupted operation. 

3.3 Dataset Overview 

The total dataset included over 180,000 data points, consisting of real-time values for five 
environmental variables and supplemented by hourly weather inputs over two crop seasons. 
Data cleaning was performed to eliminate sensor anomalies such as spikes or dropouts using 
a 3-sigma filtering technique, resulting in 168,235 usable observations. 

Table 2: Dataset Characteristics Summary 

Parameter Category No. of Data Points Missing Data (%) Range (min–max) 

Soil Moisture (%) 33,647 1.3 4.8 – 33.9 

Soil Temperature (°C) 33,658 0.9 18.2 – 37.1 

Humidity (% RH) 33,629 0.7 32 – 97 

Ambient Temperature (°C) 33,612 1.0 19.5 – 41.2 

Light Intensity (Lux) 33,689 0.4 106 – 45,000 

3.4 Machine Learning Model Development 

The study utilized Random Forest Regression (RFR) as the primary Machine Learning 
algorithm for predicting optimal irrigation timing and volume. RFR was selected due to its 
robust performance in nonlinear, multidimensional regression problems and resistance to 
overfitting. 

Table 3: ML Model and Configuration Details 

Parameter Description 

ML Algorithm Used Random Forest Regressor (Scikit-learn v0.24) 

Target Variable Soil moisture forecast for next 3 hours 

Input Variables Soil temp, air temp, humidity, rainfall, light 

Training Data Split 70% training, 15% validation, 15% test 

No. of Trees 100 decision trees 

Evaluation Metrics R² Score, RMSE, MAE 

Forecast Horizon 3 hours (short-term prediction window) 

Hyperparameter tuning was conducted using GridSearchCV with five-fold cross-validation to 
optimize the number of estimators and maximum tree depth. 
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3.5 Data Analysis Tool 

All data processing and analysis were performed using IBM SPSS Statistics v28. Descriptive 
analytics (mean, SD, coefficient of variation) were computed for environmental variables, 
and multiple regression diagnostics were conducted to assess the contribution of each input to 
soil moisture predictions. Results of ML predictions were imported to SPSS for comparative 
analysis of model output versus observed values under traditional irrigation and ML-
controlled scenarios. 

Table 4: Summary of Analytical Scope and Tool 

Aspect Analyzed Tool 
Used 

Variables Outcome 
Variable 

Output Metric 

Descriptive 
Environment Stats 

SPSS 
v28 

Soil moisture, 
temp, humidity 

— Mean, SD, CV 

Correlation 
Analysis 

All 5 sensor 
variables 

Soil moisture Pearson r, p-values 

Regression Impact 
Study 

ML-predicted vs 
actual moisture 

Water usage 
(liters/day) 

R², F-test, RMSE 

Energy Savings 
Comparison 

Pump activation 
records 

Energy 
(kWh/day) 

% difference 
(traditional vs ML) 

This rigorous, real-world method filled the research gap identified in Section 1 by ensuring 
full-cycle implementation of a hybrid WSN-ML framework and evaluating its actual impact 
across both biophysical and operational parameters. The use of a single, high-fidelity, sensor-
based dataset enabled control and transparency in assessing model reliability and field 
feasibility.  

4. Results and Analysis 

4.1 Descriptive Profile of Environmental Variables 

Table 1: Descriptive Statistics for Sensor Variables across Two Cropping Seasons 

Variable M SD Min Max CV (%) 

Soil Moisture (%) 18.67 5.21 4.8 33.9 27.9 

Soil Temperature (°C) 26.84 3.77 18.2 37.1 14.1 

Air Temperature (°C) 29.43 4.08 19.5 41.2 13.9 

Relative Humidity (% RH) 61.55 13.92 32 97 22.6 

Light Intensity (Lux) 11 986 8 267 106 45 000 68.9 

Interpretation. 
The descriptive analysis revealed considerable heterogeneity among environmental inputs. 
Soil moisture averaged 18.67 %, indicating moderately dry field conditions for a semi-arid 
zone. The coefficient of variation (CV) of 27.9 % suggests pronounced intra-seasonal 
fluctuations, underlining the need for dynamic irrigation scheduling. Soil temperature’s 
narrow CV of 14.1 % reflects greater thermal stability at 30 cm depth, whereas air 
temperature varied similarly (13.9 %). Relative humidity displayed moderate dispersion (22.6 
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%), signifying variable evaporative demand across diurnal cycles. Light intensity showed the 
highest dispersion (68.9 %), driven by rapid cloud cover changes during late monsoon spells. 
Collectively, these patterns justify a predictive approach that can accommodate sharp, 
asynchronous changes in micro-climate drivers affecting plant water demand. 

4.2 Pearson Correlations among Predictors and Target Variable 

Table 2: Zero-Order Correlations between Environmental Variables and Soil Moisture 

Predictor r p 

Soil Temperature –0.63 < .001 

Air Temperature –0.51 < .001 

Relative Humidity +0.44 < .001 

Light Intensity –0.39 < .001 

Rainfall (mm h⁻¹)* +0.58 < .001 

*Rainfall sourced via OpenWeatherMap API. 

Interpretation. 
Correlation analysis confirmed theoretically consistent relationships. Soil temperature 
exhibited the strongest negative association with soil moisture (r = –0.63), indicating 
accelerated moisture depletion at elevated subsurface temperatures. Air temperature also 
showed a significant negative link (r = –0.51), reinforcing the role of atmospheric heat load 
on evapotranspiration. Relative humidity correlated positively (r = 0.44), suggesting that 
higher ambient moisture slows soil water loss. Incident light intensity held a moderate 
negative correlation (r = –0.39), as increased solar radiation drives evaporative demand. 
Rainfall showed the expected positive correlation (r = 0.58). All relationships were highly 
significant (p< .001), validating their inclusion as predictor variables in the Random Forest 
model and supporting the premise that multivariate, nonlinear interactions govern soil 
moisture dynamics in the study setting. 

4.3 Random Forest Model Performance 

Table 3: Evaluation Metrics for Soil-Moisture Forecasts (Test Set, n = 25 236) 

Metric Value 

R² 0.912 

Root Mean Square Error (RMSE, %) 1.83 

Mean Absolute Error (MAE, %) 1.37 

Bias (Forecast – Observed, %) –0.05 

Interpretation. 
The Random Forest Regressor delivered strong predictive accuracy, explaining 91.2 % of the 
variance in three-hour-ahead soil moisture values. An RMSE of 1.83 % and MAE of 1.37 % 
indicate narrow average deviations, well below agronomic decision thresholds (~3 %). The 
negligible bias (–0.05 %) suggests virtually no systematic over- or under-prediction. These 
outcomes outperform similar field studies that reported R² values around 0.80 and RMSE > 
2.5 % using support-vector or k-nearest neighbor models under comparable climates. The 
high fidelity of short-range forecasts supports confident, data-driven irrigation triggers, a 
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critical step toward maximizing water use efficiency while preventing water stress or 
saturation-related yield losses. 

4.4 Comparative Water-Use Outcomes 

Table 4: Daily Irrigation Water Applied under Conventional vs. SIS Control (Mean of 196 
Days) 

Season Method M (L ha⁻¹ 
day⁻¹) 

SD Min Max % Reduction vs. 
Conventional 

Kharif Conventional 5 720 611 4 
680 

6 
545 

— 

 SIS (WSN + 
ML) 

4 063 544 3 
210 

4 
892 

28.9 

Rabi Conventional 4 815 533 3 
956 

5 
602 

— 

 SIS (WSN + 
ML) 

3 442 497 2 
784 

4 
126 

28.5 

Interpretation. 
Across 196 observation days, the SIS reduced mean daily irrigation volumes by roughly 29 % 
in both seasons. In Kharif, conventional farmers applied 5 720 L ha⁻¹ day⁻¹ on average, 
versus 4 063 L ha⁻¹ day⁻¹ under SIS management. Similar proportional savings were observed 
in Rabi (4 815 L vs. 3 442 L). Standard deviations were proportionately lower in SIS 
conditions, indicating more consistent application aligned with crop water demand forecasts. 
Minimum-to-maximum ranges narrowed by ~20 %, reflecting precise control and avoidance 
of excessive irrigation events common with manual scheduling. The water savings align with, 
yet slightly exceed, the 25-27 % range cited in the broader literature for comparable WSN-
ML interventions, underscoring the benefits of fine-tuned, short-horizon forecasting and 
localized sensor calibration. 

4.5 Energy Consumption of Pump Operations 

Table 5: Pump Energy Use under Conventional and SIS Regimes 

Metric Conventional SIS Control Difference % Change 

Average Daily Runtime (min) 58.4 42.7 –15.7 –26.9 

Mean Energy (kWh ha⁻¹ day⁻¹) 3.28 2.35 –0.93 –28.4 

Peak Load (kW) 1.89 1.57 –0.32 –16.9 

Number of Starts per Day 3.6 2.8 –0.8 –22.2 

Interpretation. 
Energy metrics paralleled water-use gains. Average pump runtime fell from 58.4 to 42.7 
minutes per hectare per day, translating to a 28.4 % reduction in electrical consumption. The 
decline in start–stop cycles (–22.2 %) is particularly important: frequent starts elevate motor 
wear and peak-demand charges. Lower peak loads (–16.9 %) suggest smoother energy 
profiles, beneficial where rural feeders suffer voltage variability. The cumulative effect 
equates to an annual saving of ~340 kWh ha⁻¹—roughly ₹3 400 at prevailing tariffs—
demonstrating the system’s economic as well as environmental advantages. These findings 
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substantiate SIS as a dual-resource conservation tool, consistent with sustainability objectives 
for water-energy nexus management in agriculture. 

4.6 Predictor Importance within the Random-Forest Ensemble 

Table 6: Normalized Variable Importance Scores (n = 100 Trees) 

Rank Predictor Mean Decrease in Impurity Relative Weight (%) 

1 Rainfall 0.214 28.7 

2 Soil Temperature 0.189 25.3 

3 Air Temperature 0.142 19.1 

4 Relative Humidity 0.109 14.6 

5 Light Intensity 0.094 12.3 

Interpretation. 
Variable‐importance diagnostics highlight rainfall as the dominant explanatory factor, 
accounting for 28.7 % of total split reductions in impurity. This accords with the strong 
positive correlation observed earlier and validates the model’s ability to weight episodic 
precipitation events appropriately. Subsurface and ambient temperatures jointly contribute 
44.4 %, revealing the sensitivity of near-surface moisture flux to thermal drivers. Relative 
humidity and light intensity, though lower in rank, still supply meaningful incremental 
information by capturing evaporative demand nuances. The ordered hierarchy underscores 
the multifactorial nature of soil-water dynamics and supports the premise that integrating 
weather-API data with in-situ sensing is essential for robust, short-range forecasting. These 
results also provide agronomists with insight on which variables merit priority when sensor 
budgets or bandwidth limit the number of monitored parameters. 

4.7 Agronomic Outcomes: Yield and Water Productivity 

Table 7: Grain Yield and Water Use Efficiency (WUE) under Conventional vs. SIS 
Management 

Metric Conventional SIS (WSN + 
ML) 

Difference % Change 

Grain Yield (t ha⁻¹) 3.42 3.79 +0.37 +10.8 

Seasonal Water Applied (m³ 
ha⁻¹) 

1 062 769 –293 –27.6 

Water Productivity (kg m⁻³) 3.22 4.93 +1.71 +53.1 

Harvest Index (%) 42.1 44.8 +2.7 +6.4 

Interpretation. 
Beyond resource metrics, SIS deployment translated into tangible agronomic gains. Average 
grain yield improved by 0.37 t ha⁻¹—an uplift of 10.8 % that farmers attributed to reduced 
water stress during critical flowering stages. Seasonal irrigation volume fell from 1 062 to 
769 m³ ha⁻¹, consistent with daily savings documented earlier. Consequently, water 
productivity leapt by 53.1 %, reaching 4.93 kg grain per cubic metre of water—well above 
regional benchmarks of ~3.5 kg m⁻³ for the same crop. The modest rise in harvest index (2.7 
percentage points) hints at improved partitioning toward economic yield under optimized 
moisture regimes. These findings reinforce the premise that smart irrigation not only 
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conserves water but also enhances production outcomes, augmenting farm profitability and 
resilience in water-scarce contexts. 

4.8 System Robustness and Network Reliability 

Table 8: Operational Health of WSN Infrastructure over 241-Day Monitoring Window 

Indicator Mean SD Min Max Threshold Status 

Sensor Uptime (%) 97.4 2.1 91.1 99.8 ≥ 95 Pass 

Packet Loss Rate (%) 1.8 0.7 0.5 3.9 ≤ 5 Pass 

Gateway Downtime (h month⁻¹) 0.62 0.31 0.00 1.25 ≤ 2 Pass 

Battery Voltage Drop (%) 11.3 4.2 3.4 19.6 ≤ 25 Pass 

Interpretation. 
The WSN demonstrated high operational stability, with average sensor uptime of 97.4 %—
comfortably exceeding the 95 % reliability benchmark for agronomic DSS applications. 
Packet loss averaged 1.8 %, largely occurring during sporadic LoRa interference windows at 
peak humidity, yet remained well under the 5 % tolerance ceiling. Gateway outages were 
negligible (0.62 h per month), attributable mainly to scheduled firmware updates rather than 
hardware faults. Solar-battery discharge never exceeded 20 %, affirming the adequacy of the 
5 V/4 400 mAh power subsystem under semi-arid insolation profiles. Collectively, these 
diagnostics verify that the SIS architecture is technically resilient and capable of sustaining 
continuous data flows essential for dependable ML inference, directly addressing prevailing 
concerns in the literature about long-term sensor drift and network fragility in remote farming 
environments. 

5. Discussion 

5.1 Integration of Environmental Variables and Model Predictive Accuracy 

The results from Section 4 demonstrate that the smart irrigation system (SIS) implemented 
through wireless sensor networks (WSNs) and Random Forest Regression (RFR) achieved 
high predictive accuracy for short-term soil moisture forecasts. The R² value of 0.912, with 
an RMSE of just 1.83%, substantiates the robustness of the chosen model and validates its 
use in agricultural decision-making. These findings are in strong agreement with the study 
conducted by Glória et al. (2021), where an ensemble model showed similar predictive 
potential in real-time applications. The minimal forecast bias and mean absolute error 
indicate that the system was finely tuned to respond to short-term environmental fluctuations, 
a crucial requirement in semi-arid farming contexts. 

In the literature review, Tace et al. (2022) emphasized the role of decision-tree-based models 
in water-saving strategies. Our findings, particularly in terms of model sensitivity to key 
predictors such as rainfall and soil temperature, expand on this by quantifying their 
contribution within the Random Forest structure. Rainfall’s relative importance of 28.7% 
aligns with its strong correlation coefficient (r = 0.58) and reinforces its weight in any 
predictive framework. Thus, the predictive modeling component of this study directly 
addresses the literature gap identified in Section 2.2—namely, the need for integrated, field-
validated forecasting systems that account for real-world climatic dynamics. 
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5.2 Efficacy of Water Use and Energy Optimization 

The SIS demonstrated significant reductions in water and energy usage compared to 
conventional irrigation methods. Daily irrigation volumes decreased by 28.9% in Kharif and 
28.5% in Rabi, which is consistent with water-saving rates reported by Sami et al. (2022) and 
Ndunagu et al. (2022), who noted a 25–30% reduction in similar deployments. The drop in 
seasonal water applied (from 1 062 to 769 m³ ha⁻¹) and increase in water productivity by 
53.1% provide empirical validation for claims made by Goldstein et al. (2018) that smart 
systems can substantially enhance agronomic efficiency. 

Energy consumption metrics further support the dual resource-efficiency of SIS. A 28.4% 
reduction in mean daily pump energy usage and a 22.2% decrease in pump start-stop cycles 
signify not only operational savings but also improvements in system longevity and grid load 
distribution. These outcomes align with Ding and Du (2024), who stressed energy 
conservation through intelligent control systems. Our study adds quantitative depth by linking 
these reductions directly to algorithm-triggered irrigation schedules, substantiating the 
environmental and economic advantages of smart farming technologies. 

5.3 Agronomic Impact and Yield Enhancement 

Grain yield improvements under SIS (10.8% increase) reflect a more stable and moisture-
appropriate growing environment, especially during flowering and grain-filling phases. These 
gains echo findings by Vij et al. (2020), who documented similar improvements in 
productivity through automated irrigation logic. Additionally, the increase in harvest index 
from 42.1% to 44.8% suggests more efficient biomass partitioning—a probable result of 
reduced abiotic stress. 

This empirical yield enhancement directly addresses the practical needs of smallholder 
farmers and reinforces the potential of SIS as not merely a water-saving intervention but a 
crop-improving strategy. These agronomic results validate the broader thesis that 
technological solutions must simultaneously address productivity and sustainability, thereby 
fulfilling the dual mandate emphasized by González-Briones (2018) for deploying 
knowledge-based rural agriculture frameworks. 

5.4 Multivariate and Contextual Sensitivity of ML Models 

The correlation matrix and variable importance scores emphasize the need for contextualized 
models that can weigh predictors appropriately. For example, while rainfall emerged as the 
dominant variable, soil temperature and air temperature together accounted for nearly 45% of 
model sensitivity. This supports the argument made by Goldstein et al. (2018) about the 
undervaluation of thermal variables in conventional irrigation models and validates the use of 
a multi-sensor input matrix. 

This finding further deepens the argument that SIS must integrate both in-situ data and cloud-
based weather inputs for optimal performance. Our model’s hybrid architecture—combining 
real-time sensors and weather API inputs—demonstrates a practical resolution to the data 
integration challenge identified by Mekonnen et al. (2019), who had advocated for predictive 
systems that do not rely solely on single-source datasets. 

5.5 System Reliability and Network Stability 

One of the critical challenges in WSN-based irrigation systems is maintaining operational 
stability over extended periods in field conditions. Our system recorded a 97.4% average 
sensor uptime over 241 days, and a packet loss rate well below 2%. This reliability not only 
meets but exceeds benchmarks proposed by Padmanaban and Kannan (2021) for autonomous 
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irrigation infrastructure. Furthermore, minimal gateway downtime (0.62 h/month) and 
acceptable battery discharge rates affirm the technical feasibility of long-term deployment, 
especially in semi-arid or resource-scarce contexts. 

These system performance indicators directly address the often-overlooked literature gap 
concerning infrastructure resilience. Unlike lab-based or greenhouse experiments, our 
findings reflect real-world conditions—intermittent cloud cover, variable solar charging, and 
ambient temperature extremes. Therefore, this component of our study provides unique and 
much-needed evidence for practitioners and researchers focusing on large-scale SIS 
deployment. 

5.6 Bridging the Literature Gap: Unified SIS Implementation 

A recurring issue in the reviewed literature is the fragmentation between sensor-network 
studies and machine learning applications. While some works, like those of Sami et al. (2022) 
or Glória et al. (2021), successfully demonstrated either model performance or hardware 
reliability, few provided a comprehensive framework that spans from data acquisition to field 
validation. 

This research bridges that divide by providing an end-to-end empirical demonstration of a 
SIS—from data acquisition, model training, and prediction to irrigation control and impact 
assessment. By capturing over 180,000 field-level data points and validating the ML model 
under field conditions, the study provides a unified structure that can serve as a blueprint for 
future implementations. This is in line with the call by Tace et al. (2022) for scalable, 
validated, and interpretable systems that can move from academic pilot to rural application. 

5.7 Implications for Policy, Practice, and Further Research 

From a policy perspective, the demonstrated reductions in water and energy use position SIS 
as a strong candidate for inclusion in agricultural subsidy and sustainability programs. Given 
India’s increasing focus on water conservation under schemes like ‘Per Drop More Crop,’ 
technologies validated by this study can support evidence-based scaling initiatives. 

In practice, the findings reinforce the importance of investing in local sensor calibration, 
reliable data transmission, and user training. The economic value—through increased yield 
and energy savings—offers a compelling case for adoption among small and medium-scale 
farmers. 

As for future research, the model can be expanded to include evapotranspiration indices, real-
time NDVI data from satellite imagery, and adaptive control through reinforcement learning. 
Additionally, longitudinal trials across agro-climatic zones would further validate system 
adaptability and enhance generalizability. 

Ultimately, this study offers a data-rich, empirically grounded demonstration of how SIS can 
advance sustainable agriculture, directly contributing to Sustainable Development Goals 
(SDGs) on clean water (SDG 6), sustainable agriculture (SDG 2), and climate resilience 
(SDG 13). 

6. Conclusion 

This research demonstrated the feasibility, efficiency, and broader potential of an integrated 
Smart Irrigation System (SIS) that combines wireless sensor networks (WSN) with machine 
learning (ML) to improve water use efficiency in agriculture. Through the deployment of a 
real-time, multi-sensor monitoring network and predictive modeling using Random Forest 
Regression, the system achieved accurate short-range soil moisture forecasts and significantly 
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optimized irrigation schedules. The empirical results from the two cropping seasons showed 
not only substantial reductions in water usage—averaging nearly 29% across seasons—but 
also corresponding improvements in energy efficiency and crop yield. These findings 
contribute to a growing body of evidence supporting the viability of intelligent, data-driven 
irrigation frameworks for real-world agricultural applications. 

Importantly, this study bridged a critical gap in the existing literature by implementing a full-
cycle, field-based SIS that functioned autonomously and reliably over an extended period. 
The robustness of the system, validated through operational metrics such as sensor uptime 
and battery performance, underscores the practicality of deploying such solutions in semi-arid 
and resource-constrained environments. Furthermore, the predictive accuracy and 
interpretability of the machine learning model provide a strong foundation for its integration 
into broader agricultural decision support systems. 

Beyond technical outcomes, the broader implications of this work extend to sustainability and 
policy. By reducing dependence on groundwater and minimizing energy consumption, the 
SIS supports key environmental goals, such as conservation of finite water resources and 
climate-smart agriculture. Its potential scalability, given its reliance on low-cost components 
and open-source platforms, makes it an attractive option for smallholder and marginal 
farmers across developing regions. This opens the door for government and institutional 
support in embedding smart irrigation practices within national water resource management 
frameworks. 

Future research can build upon this work by incorporating additional data sources, such as 
satellite imagery and evapotranspiration indices, to enhance spatial coverage and prediction 
depth. Furthermore, the integration of reinforcement learning and adaptive feedback control 
could further refine irrigation logic under dynamically changing climatic conditions. 
Expanding the deployment across diverse agro-climatic zones will also be essential to test the 
generalizability and resilience of the model. Ultimately, this study establishes a replicable and 
scalable model for intelligent irrigation, aligning with the evolving intersection of digital 
agriculture, sustainability, and precision farming. 
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