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Abstract: This study presents the design, implementation, and evaluation of a Smart
Irrigation System (SIS) that integrates Wireless Sensor Networks (WSNs) with Machine
Learning (ML) to optimize water use efficiency in agriculture. Conducted over two crop
seasons in a semi-arid region of Maharashtra, India, the research employed real-time
environmental data from a multi-sensor WSN—including soil moisture, temperature,
humidity, light intensity, and rainfall—captured every 30 minutes. A Random Forest
Regression model was trained to forecast short-term soil moisture levels and guide dynamic
irrigation scheduling. The system achieved a high predictive accuracy (R? = 0.912) with
minimal error (RMSE = 1.83%), demonstrating the reliability of data-driven irrigation
control. The SIS reduced average daily water usage by 28.7%, improved grain yield by
10.8%, and enhanced water productivity by over 50%, compared to traditional irrigation
methods. Additionally, energy consumption related to pump usage was lowered by 28.4%,
affirming the system’s efficiency in both water and energy domains. Operational metrics
indicated system robustness with 97.4% sensor uptime and minimal data packet loss. This
research addresses a critical literature gap by validating a full-cycle, field-based SIS under
real-world conditions, and offers a scalable, cost-effective model for sustainable agriculture.
The findings have significant implications for smallholder farming, climate resilience, and
digital agriculture policy.
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1. Introduction

Water scarcity remains a pressing challenge for global agriculture, especially in arid and
semi-arid regions where irrigation consumes over 70% of freshwater resources globally
(Mekonnen et al., 2019). Traditional irrigation methods often result in water wastage due to
manual scheduling and uniform application irrespective of crop or soil condition. Precision
irrigation, enhanced through digital technologies, presents a promising alternative.
Specifically, Smart Irrigation Systems (SIS) incorporating Wireless Sensor Networks
(WSNs) and Machine Learning (ML) have emerged as transformative tools for optimizing
irrigation by enabling real-time monitoring, data analytics, and automated decision-making
(Goap et al., 2018).

WSNs collect field-level data including soil moisture, humidity, temperature, and weather
forecasts, while ML algorithms interpret these datasets to make predictive or prescriptive
decisions about irrigation scheduling. This combination is reshaping the landscape of
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agricultural water management. Recent studies have demonstrated water savings between
20% and 40% using SIS compared to manual or timer-based irrigation (Ndunagu et al.,
2022). Furthermore, when implemented at scale, such technologies not only improve water
use efficiency (WUE) but also enhance crop yield, reduce labor input, and optimize energy
consumption through intelligent pump scheduling (Sami et al., 2022).The integration of IoT-
based sensors with ML models has shown substantial promise in making agriculture data-
driven and environmentally sustainable. Tace et al. (2022) proposed an intelligent irrigation
model using ML and IoT components that dynamically adjusts water supply based on soil
and climatic variations. Meanwhile, Kirtana et al. (2018) incorporated Zigbee-based sensor
networks for reliable communication in field deployments. These innovations signify a
paradigm shift in irrigation technology from static control systems to dynamic, data-
responsive frameworks that react to micro-level environmental changes.

Although the growing body of literature showcases various attempts to build and deploy SIS,
significant limitations persist. Most research efforts remain confined to controlled
environments such as greenhouses or small-scale test beds, limiting real-world applicability
and scalability. Many models are trained on limited datasets, lacking multi-seasonal or multi-
regional diversity. For instance, Janani and Jebakumar (2019) focused on ML algorithms to
optimize irrigation, but their implementation lacked spatial scalability and real-time
adaptability.Moreover, current literature often addresses WSN and ML components in
isolation rather than as an integrated, cohesive system. Raghuvanshi et al. (2022) discussed
WSN deployment for smart farming but focused primarily on risk mitigation and intrusion
detection. Similarly, Singh et al. (2019) emphasized soil moisture prediction using ML but
did not account for network reliability or energy efficiency of the sensors. This fragmented
approach undermines the holistic potential of smart irrigation systems.

Another gap lies in the lack of comparative, longitudinal field studies that assess not only the
water efficiency but also energy usage, system robustness, and maintenance feasibility over
time. The robustness of ML models under fluctuating environmental conditions and real-
world network disruptions remains underexplored. These gaps emphasize the need for an
integrated, field-level validation of smart irrigation systems incorporating both WSN and ML
in resource-constrained agricultural settings.Despite technological advances in smart
agriculture, there exists a tangible void in the development and empirical validation of
integrated SIS that are both scalable and adaptable to diverse field conditions. Most existing
systems either emphasize sensor deployment without predictive intelligence or apply ML
models without real-time sensor integration. This paper addresses this deficiency by
developing and validating a fully integrated Smart Irrigation System leveraging WSNs and
ML for optimized water use efficiency under semi-arid conditions.

The overarching aim of this research is to design, implement, and validate a Smart Irrigation
System that utilizes a hybrid of WSN and ML to enhance irrigation efficiency in real-time
farming environments. The specific objectives are:

1. To deploy a real-time, multi-sensor WSN architecture for soil and environmental data
collection.

2. To train and validate supervised ML algorithms (such as Random Forest and Artificial
Neural Networks) on sensor and weather data to forecast irrigation needs accurately.

3. To assess the system’s impact on water consumption, crop yield, and energy usage
compared to traditional methods.
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4. To analyze the robustness and scalability of the system across variable environmental
and operational conditions.

The potential contributions of this study are multifaceted. From an academic perspective, it
bridges the gap between WSN deployment and ML application in smart irrigation by offering
a unified, empirically validated framework. From a technological standpoint, it proposes a
cost-effective, scalable model that could be adapted by smallholder farmers with limited
technical expertise or infrastructure.In practical terms, the outcomes of this study can inform
policy and practice in sustainable water resource management, contributing to environmental
conservation and agricultural productivity. The integration of predictive analytics with IoT
infrastructures supports proactive irrigation strategies, minimizing resource waste and
environmental impact. Finally, the research aligns with broader global objectives such as the
United Nations Sustainable Development Goals (SDGs), particularly SDG 2 (Zero Hunger)
and SDG 6 (Clean Water and Sanitation), by fostering innovations that enhance food security
and water sustainability.

2. Literature Review

2.1. Review of Scholarly Works

This section organizes and critically analyzes prior studies on smart irrigation systems,
structured thematically to align with our research objectives: (i) integration of machine
learning with sensor-based irrigation systems, (ii) energy-efficient wireless sensor networks
(WSNs) for real-time monitoring, (iii) predictive water demand modeling, and (iv) system-
level deployment and decision support in agricultural environments.

Theme 1: Machine Learning Integration with Sensor-Based Irrigation

Several studies explored how ML algorithms enhance sensor-based irrigation through real-
time prediction and automation. Mekonnen et al. (2019) investigated the application of
supervised learning models in wireless sensor networks for precision agriculture. They used
soil moisture and temperature sensors connected to WSNs and applied regression algorithms
to forecast irrigation needs. Their findings showed up to 35% improvement in water
efficiency, highlighting ML's role in refining irrigation scheduling.

Sami et al. (2022) proposed a deep learning-based sensor model integrated with WSN for
field deployment across multiple regions in Sindh, Pakistan. Their model included
convolutional neural networks (CNNs) trained on sensor datasets to autonomously identify
optimal irrigation cycles. The results achieved over 91% prediction accuracy for soil moisture
levels, demonstrating the feasibility of Al-driven irrigation under diverse climatic conditions.

Tace et al. (2022) implemented an intelligent irrigation model using supervised ML
algorithms like decision trees and support vector machines (SVM), combined with
environmental sensors. Their approach successfully reduced water usage by 28.6%,
validating ML’s potential to dynamically adapt to real-time soil and weather conditions.

Theme 2: Design and Optimization of Wireless Sensor Networks for Irrigation

The second group of studies focused on the structure and sustainability of sensor networks
essential for field deployment. Ndunagu et al. (2022) designed a wireless sensor network for
a smart irrigation system in sub-Saharan conditions using Arduino-based microcontrollers
and LoRa technology. They used Microsoft Excel and Jupyter Notebook to process over
5,700 sensor readings, achieving consistent reliability and minimal data packet loss during
peak humidity cycles.
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Ding and Du (2024) emphasized the importance of system autonomy in WSNs through the
use of deep reinforcement learning. Their study optimized irrigation scheduling and network
communication frequency based on environmental context, achieving a 20.2% extension in
node battery life and a 14.9% increase in irrigation precision. This contribution directly aligns
with our study’s goal to validate system robustness over extended agricultural seasons.

Gonzélez-Briones (2018) also addressed the energy-efficiency aspect, proposing a hybrid
WSN-ML framework combining unsupervised and supervised learning to adapt irrigation
schemes in rural environments. The framework utilized clustering algorithms to reduce
transmission redundancy, thereby conserving energy and increasing sensor lifespan by 18%.

Theme 3: Predictive Irrigation Modeling and Water Management

The third theme emphasizes the forecasting capabilities of ML models in predicting water
requirements. Gloria et al. (2021) proposed a sustainable irrigation system that incorporated
real-time sensor readings and ensemble learning techniques. The study developed a Random
Forest-based model trained on 36,000 readings over 90 days, achieving a water prediction
error below 1.9%. Their contribution shows the value of ensemble ML models in minimizing
prediction errors in field conditions.

Goldstein et al. (2018) conducted an interpretative ML study to derive irrigation patterns
from sensor data and agronomist insights. Using feature importance analysis, they discovered
that latent environmental variables like wind speed and radiation intensity, often ignored in
rule-based systems, significantly influenced soil moisture dynamics. Their findings reinforce
the necessity of incorporating weather-API-based inputs to improve ML model reliability.

Padmanaban and Kannan (2021) developed a groundwater forecasting model using long
short-term memory (LSTM) neural networks to anticipate subterranean water availability and
adjust irrigation schedules accordingly. Their results showed 85% model reliability in
predicting irrigation viability under fluctuating aquifer conditions, offering a proactive
approach to sustainable water use.

Theme 4: Full-System Deployment and Automation in Agricultural Environments

Addressing end-to-end automation, Vij et al. (2020) examined ML- and IoT-based irrigation
systems leveraging open-source weather databases and sensor feedback to initiate
autonomous irrigation. Their results recorded a 30.6% reduction in total irrigation water
applied and improved yield per hectare by 11.3%, confirming that decision-driven
automation can enhance both water savings and productivity.

Tace et al. (2022) extended this system-level perspective by introducing fault-tolerant edge
computing for irrigation logic. They integrated redundancy protocols to reduce data loss and
ensure decision continuity during network failures. Such designs are essential in ensuring
reliability in remote rural deployments, a consideration vital for our study's focus on
scalability.

Despite considerable progress in smart irrigation, a key gap persists in the field-level
implementation and empirical validation of unified systems that integrate both WSN and
machine learning for irrigation optimization. Most studies either emphasize controlled lab
conditions or focus on isolated components—either the sensor network or the algorithmic
modeling. This segmented approach undermines the holistic utility of smart irrigation
frameworks, especially in semi-arid and resource-constrained agricultural zones.Our research
fills this void by designing, deploying, and testing a fully integrated SIS model that spans
from sensor deployment to ML-based water forecasting. The significance lies in its potential
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to contribute actionable insights for policy-makers, agri-tech developers, and smallholder
farmers, bridging the gap between conceptual innovation and practical, sustainable water use
strategies in precision agriculture.

3. Materials and Methods

3.1 Research Design

This study adopted a quantitative, applied experimental research design focusing on the field
deployment of a Smart Irrigation System (SIS) integrating Wireless Sensor Networks (WSN)
and Machine Learning (ML) in a controlled agricultural setting. The primary goal was to
monitor, predict, and optimize irrigation schedules through real-time data collection and
predictive modeling. A single crop field measuring 1.5 acres, located in the Yavatmal district
of Maharashtra, India, was selected as the experimental site due to its semi-arid climatic
characteristics and water stress challenges.

The methodology was developed to fill the literature gaps related to the lack of integrated,
scalable, field-level testing of WSN-ML based systems. The approach ensured empirical
rigor in validating the water use efficiency, energy savings, and forecasting accuracy of the
proposed model.

3.2 Data Collection System and Tools

Data for the study were collected using a multi-sensor WSN setup deployed uniformly across
the selected agricultural plot. Sensors captured key environmental and soil parameters at 30-
minute intervals throughout two cropping cycles (Kharif and Rabi seasons, October 2022 to
May 2023). The following components were utilized in the data acquisition process:

Table 1: Sensor Configuration and Data Acquisition Tools

Component | Model/Specification Function | Frequency | Placement Output
Type of Reading Format
Soil Capacitive v1.2 Measures Every 30 | 10 sensors, Voltage
Moisture (Analog, 3.3-5V) volumetric minutes 30 cm deep (0-3V)
Sensor water
content
Ambient DHT22 Records Every 30 | 5 locations, °C
Temperature field-level minutes 1.5m
temperature height
Relative DHT22 Captures air | Every 30 | Alongside % RH
Humidity moisture minutes | temperature
content unit
Soil DS18B20 Measures Every 30 Same °C
Temperature (Waterproof) soil thermal | minutes | locations as
profile moisture
Light BH1750 Captures Every 30 2 per Lux
Intensity daylight minutes hectare
input
Weather OpenWeatherMap Collects Hourly API-based | JSON/CSV
rainfall,
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Data API (Hourly API) solar cloud sync
radiation &
wind

All sensors were connected to Arduino Uno microcontrollers with LoRaWAN modules,
enabling long-range, low-power data transmission to a local Raspberry Pi-based gateway,
which stored data in a structured CSV format and relayed it to a centralized Firebase database
for ML processing. Power to the sensor units was provided by 5V solar panels with 4400mAh
Li-ion battery backups to ensure uninterrupted operation.

3.3 Dataset Overview

The total dataset included over 180,000 data points, consisting of real-time values for five
environmental variables and supplemented by hourly weather inputs over two crop seasons.
Data cleaning was performed to eliminate sensor anomalies such as spikes or dropouts using
a 3-sigma filtering technique, resulting in 168,235 usable observations.

Table 2: Dataset Characteristics Summary

Parameter Category No. of Data Points | Missing Data (%) | Range (min—-max)
Soil Moisture (%) 33,647 1.3 4.8-33.9
Soil Temperature (°C) 33,658 0.9 18.2-37.1
Humidity (% RH) 33,629 0.7 32-97
Ambient Temperature (°C) 33,612 1.0 19.5-41.2
Light Intensity (Lux) 33,689 0.4 106 — 45,000

3.4 Machine Learning Model Development

The study utilized Random Forest Regression (RFR) as the primary Machine Learning
algorithm for predicting optimal irrigation timing and volume. RFR was selected due to its
robust performance in nonlinear, multidimensional regression problems and resistance to
overfitting.

Table 3: ML Model and Configuration Details

Parameter Description

ML Algorithm Used Random Forest Regressor (Scikit-learn v0.24)

Target Variable Soil moisture forecast for next 3 hours

Input Variables Soil temp, air temp, humidity, rainfall, light
Training Data Split 70% training, 15% validation, 15% test

No. of Trees 100 decision trees
Evaluation Metrics R2 Score, RMSE, MAE
Forecast Horizon 3 hours (short-term prediction window)

Hyperparameter tuning was conducted using GridSearchCV with five-fold cross-validation to
optimize the number of estimators and maximum tree depth.
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3.5 Data Analysis Tool

All data processing and analysis were performed using IBM SPSS Statistics v28. Descriptive
analytics (mean, SD, coefficient of variation) were computed for environmental variables,
and multiple regression diagnostics were conducted to assess the contribution of each input to
soil moisture predictions. Results of ML predictions were imported to SPSS for comparative
analysis of model output versus observed values under traditional irrigation and ML-

controlled scenarios.

Table 4: Summary of Analytical Scope and Tool

Aspect Analyzed Tool Variables Outcome Output Metric
Used Variable

Descriptive Soil moisture, — Mean, SD, CV

Environment Stats temp, humidity
Correlation All 5 sensor Soil moisture | Pearson r, p-values

Analysis SPSS variables
Regression Impact V28 ML-predicted vs Water usage R?, F-test, RMSE
Study actual moisture (liters/day)
Energy Savings Pump activation Energy % difference

Comparison records (kWh/day) (traditional vs ML)

This rigorous, real-world method filled the research gap identified in Section 1 by ensuring
full-cycle implementation of a hybrid WSN-ML framework and evaluating its actual impact
across both biophysical and operational parameters. The use of a single, high-fidelity, sensor-
based dataset enabled control and transparency in assessing model reliability and field
feasibility.

4. Results and Analysis

4.1 Descriptive Profile of Environmental Variables

Table I: Descriptive Statistics for Sensor Variables across Two Cropping Seasons

Variable M SD Min Max CV (%)
Soil Moisture (%) 18.67 5.21 4.8 33.9 27.9
Soil Temperature (°C) 26.84 3.77 18.2 37.1 14.1
Air Temperature (°C) 29.43 4.08 19.5 41.2 13.9
Relative Humidity (% RH) 61.55 13.92 32 97 22.6
Light Intensity (Lux) 11 986 8267 106 45 000 68.9
Interpretation.

The descriptive analysis revealed considerable heterogeneity among environmental inputs.
Soil moisture averaged 18.67 %, indicating moderately dry field conditions for a semi-arid
zone. The coefficient of variation (CV) of 27.9 % suggests pronounced intra-seasonal
fluctuations, underlining the need for dynamic irrigation scheduling. Soil temperature’s
narrow CV of 14.1 % reflects greater thermal stability at 30 cm depth, whereas air
temperature varied similarly (13.9 %). Relative humidity displayed moderate dispersion (22.6
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%), signifying variable evaporative demand across diurnal cycles. Light intensity showed the
highest dispersion (68.9 %), driven by rapid cloud cover changes during late monsoon spells.
Collectively, these patterns justify a predictive approach that can accommodate sharp,
asynchronous changes in micro-climate drivers affecting plant water demand.

4.2 Pearson Correlations among Predictors and Target Variable

Table 2: Zero-Order Correlations between Environmental Variables and Soil Moisture

Predictor r p
Soil Temperature —0.63 <.001
Air Temperature —0.51 <.001
Relative Humidity +0.44 <.001
Light Intensity —0.39 <.001
Rainfall (mm h™)* +0.58 <.001

*Rainfall sourced via OpenWeatherMap API.

Interpretation.
Correlation analysis confirmed theoretically consistent relationships. Soil temperature
exhibited the strongest negative association with soil moisture (» = —0.63), indicating

accelerated moisture depletion at elevated subsurface temperatures. Air temperature also
showed a significant negative link (» = —0.51), reinforcing the role of atmospheric heat load
on evapotranspiration. Relative humidity correlated positively (» = 0.44), suggesting that
higher ambient moisture slows soil water loss. Incident light intensity held a moderate
negative correlation (r = —0.39), as increased solar radiation drives evaporative demand.
Rainfall showed the expected positive correlation (» = 0.58). All relationships were highly
significant (p< .001), validating their inclusion as predictor variables in the Random Forest
model and supporting the premise that multivariate, nonlinear interactions govern soil
moisture dynamics in the study setting.

4.3 Random Forest Model Performance

Table 3: Evaluation Metrics for Soil-Moisture Forecasts (Test Set, n = 25 236)

Metric Value
R? 0.912
Root Mean Square Error (RMSE, %) 1.83
Mean Absolute Error (MAE, %) 1.37
Bias (Forecast — Observed, %) —-0.05

Interpretation.

The Random Forest Regressor delivered strong predictive accuracy, explaining 91.2 % of the
variance in three-hour-ahead soil moisture values. An RMSE of 1.83 % and MAE of 1.37 %
indicate narrow average deviations, well below agronomic decision thresholds (~3 %). The
negligible bias (—0.05 %) suggests virtually no systematic over- or under-prediction. These
outcomes outperform similar field studies that reported R? values around 0.80 and RMSE >
2.5 % using support-vector or k-nearest neighbor models under comparable climates. The
high fidelity of short-range forecasts supports confident, data-driven irrigation triggers, a
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critical step toward maximizing water use efficiency while preventing water stress or
saturation-related yield losses.

4.4 Comparative Water-Use Outcomes

Table 4: Daily Irrigation Water Applied under Conventional vs. SIS Control (Mean of 196
Days)

Season Method M (L ha™ SD | Min | Max % Reduction vs.
day™) Conventional
Kharif | Conventional 5720 611 4 6 —
680 | 545
SIS (WSN + 4 063 544 | 3 4 28.9
ML) 210 | 892
Rabi Conventional 4815 533 3 5 —
956 | 602
SIS (WSN + 3442 497 | 2 4 28.5
ML) 784 | 126
Interpretation.

Across 196 observation days, the SIS reduced mean daily irrigation volumes by roughly 29 %
in both seasons. In Kharif, conventional farmers applied 5 720 L ha™ day' on average,
versus 4 063 L ha™! day ! under SIS management. Similar proportional savings were observed
in Rabi (4 815 L vs. 3 442 L). Standard deviations were proportionately lower in SIS
conditions, indicating more consistent application aligned with crop water demand forecasts.
Minimum-to-maximum ranges narrowed by ~20 %, reflecting precise control and avoidance
of excessive irrigation events common with manual scheduling. The water savings align with,
yet slightly exceed, the 25-27 % range cited in the broader literature for comparable WSN-
ML interventions, underscoring the benefits of fine-tuned, short-horizon forecasting and
localized sensor calibration.

4.5 Energy Consumption of Pump Operations
Table 5: Pump Energy Use under Conventional and SIS Regimes

Metric Conventional | SIS Control | Difference | % Change
Average Daily Runtime (min) 58.4 42.7 —-15.7 -26.9
Mean Energy (kWh ha™ day™!) 3.28 2.35 -0.93 -28.4
Peak Load (kW) 1.89 1.57 —0.32 -16.9
Number of Starts per Day 3.6 2.8 -0.8 -22.2
Interpretation.

Energy metrics paralleled water-use gains. Average pump runtime fell from 58.4 to 42.7
minutes per hectare per day, translating to a 28.4 % reduction in electrical consumption. The
decline in start—stop cycles (—22.2 %) is particularly important: frequent starts elevate motor
wear and peak-demand charges. Lower peak loads (-16.9 %) suggest smoother energy
profiles, beneficial where rural feeders suffer voltage variability. The cumulative effect
equates to an annual saving of ~340 kWh ha'—roughly I3 400 at prevailing tariffs—
demonstrating the system’s economic as well as environmental advantages. These findings
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substantiate SIS as a dual-resource conservation tool, consistent with sustainability objectives
for water-energy nexus management in agriculture.

4.6 Predictor Importance within the Random-Forest Ensemble

Table 6: Normalized Variable Importance Scores (n = 100 Trees)

Rank Predictor Mean Decrease in Impurity Relative Weight (%)
1 Rainfall 0.214 28.7
2 Soil Temperature 0.189 25.3
3 Air Temperature 0.142 19.1
4 Relative Humidity 0.109 14.6
5 Light Intensity 0.094 12.3
Interpretation.

Variable-importance diagnostics highlight rainfall as the dominant explanatory factor,
accounting for 28.7 % of total split reductions in impurity. This accords with the strong
positive correlation observed earlier and validates the model’s ability to weight episodic
precipitation events appropriately. Subsurface and ambient temperatures jointly contribute
44.4 %, revealing the sensitivity of near-surface moisture flux to thermal drivers. Relative
humidity and light intensity, though lower in rank, still supply meaningful incremental
information by capturing evaporative demand nuances. The ordered hierarchy underscores
the multifactorial nature of soil-water dynamics and supports the premise that integrating
weather-API data with in-situ sensing is essential for robust, short-range forecasting. These
results also provide agronomists with insight on which variables merit priority when sensor
budgets or bandwidth limit the number of monitored parameters.

4.7 Agronomic Outcomes: Yield and Water Productivity

Table 7: Grain Yield and Water Use Efficiency (WUE) under Conventional vs. SIS
Management

Metric Conventional SIS (WSN + Difference | % Change
ML)
Grain Yield (t ha™) 3.42 3.79 +0.37 +10.8
Seasonal Water Applied (m? 1 062 769 —293 -27.6
ha™)
Water Productivity (kg m) 3.22 4.93 +1.71 +53.1
Harvest Index (%) 42.1 44.8 +2.7 +6.4
Interpretation.

Beyond resource metrics, SIS deployment translated into tangible agronomic gains. Average
grain yield improved by 0.37 t ha'—an uplift of 10.8 % that farmers attributed to reduced
water stress during critical flowering stages. Seasonal irrigation volume fell from 1 062 to
769 m? ha’!, consistent with daily savings documented earlier. Consequently, water
productivity leapt by 53.1 %, reaching 4.93 kg grain per cubic metre of water—well above
regional benchmarks of ~3.5 kg m™ for the same crop. The modest rise in harvest index (2.7
percentage points) hints at improved partitioning toward economic yield under optimized
moisture regimes. These findings reinforce the premise that smart irrigation not only
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conserves water but also enhances production outcomes, augmenting farm profitability and
resilience in water-scarce contexts.

4.8 System Robustness and Network Reliability
Table 8: Operational Health of WSN Infrastructure over 241-Day Monitoring Window

Indicator Mean | SD | Min | Max | Threshold Status
Sensor Uptime (%) 97.4 2.1 | 91.1 | 99.8 >95 Pass
Packet Loss Rate (%) 1.8 0.7 0.5 3.9 <5 Pass
Gateway Downtime (h month™) 0.62 | 0.31 | 0.00 | 1.25 <2 Pass
Battery Voltage Drop (%) 11.3 4.2 34 | 19.6 <25 Pass
Interpretation.

The WSN demonstrated high operational stability, with average sensor uptime of 97.4 %—
comfortably exceeding the 95 % reliability benchmark for agronomic DSS applications.
Packet loss averaged 1.8 %, largely occurring during sporadic LoRa interference windows at
peak humidity, yet remained well under the 5 % tolerance ceiling. Gateway outages were
negligible (0.62 h per month), attributable mainly to scheduled firmware updates rather than
hardware faults. Solar-battery discharge never exceeded 20 %, affirming the adequacy of the
5 V/4 400 mAh power subsystem under semi-arid insolation profiles. Collectively, these
diagnostics verify that the SIS architecture is technically resilient and capable of sustaining
continuous data flows essential for dependable ML inference, directly addressing prevailing
concerns in the literature about long-term sensor drift and network fragility in remote farming
environments.

5. Discussion

5.1 Integration of Environmental Variables and Model Predictive Accuracy

The results from Section 4 demonstrate that the smart irrigation system (SIS) implemented
through wireless sensor networks (WSNs) and Random Forest Regression (RFR) achieved
high predictive accuracy for short-term soil moisture forecasts. The R? value of 0.912, with
an RMSE of just 1.83%, substantiates the robustness of the chosen model and validates its
use in agricultural decision-making. These findings are in strong agreement with the study
conducted by Gléria et al. (2021), where an ensemble model showed similar predictive
potential in real-time applications. The minimal forecast bias and mean absolute error
indicate that the system was finely tuned to respond to short-term environmental fluctuations,
a crucial requirement in semi-arid farming contexts.

In the literature review, Tace et al. (2022) emphasized the role of decision-tree-based models
in water-saving strategies. Our findings, particularly in terms of model sensitivity to key
predictors such as rainfall and soil temperature, expand on this by quantifying their
contribution within the Random Forest structure. Rainfall’s relative importance of 28.7%
aligns with its strong correlation coefficient (r = 0.58) and reinforces its weight in any
predictive framework. Thus, the predictive modeling component of this study directly
addresses the literature gap identified in Section 2.2—namely, the need for integrated, field-
validated forecasting systems that account for real-world climatic dynamics.
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5.2 Efficacy of Water Use and Energy Optimization

The SIS demonstrated significant reductions in water and energy usage compared to
conventional irrigation methods. Daily irrigation volumes decreased by 28.9% in Kharif and
28.5% in Rabi, which is consistent with water-saving rates reported by Sami et al. (2022) and
Ndunagu et al. (2022), who noted a 25-30% reduction in similar deployments. The drop in
seasonal water applied (from 1 062 to 769 m® ha™') and increase in water productivity by
53.1% provide empirical validation for claims made by Goldstein et al. (2018) that smart
systems can substantially enhance agronomic efficiency.

Energy consumption metrics further support the dual resource-efficiency of SIS. A 28.4%
reduction in mean daily pump energy usage and a 22.2% decrease in pump start-stop cycles
signify not only operational savings but also improvements in system longevity and grid load
distribution. These outcomes align with Ding and Du (2024), who stressed energy
conservation through intelligent control systems. Our study adds quantitative depth by linking
these reductions directly to algorithm-triggered irrigation schedules, substantiating the
environmental and economic advantages of smart farming technologies.

5.3 Agronomic Impact and Yield Enhancement

Grain yield improvements under SIS (10.8% increase) reflect a more stable and moisture-
appropriate growing environment, especially during flowering and grain-filling phases. These
gains echo findings by Vij et al. (2020), who documented similar improvements in
productivity through automated irrigation logic. Additionally, the increase in harvest index
from 42.1% to 44.8% suggests more efficient biomass partitioning—a probable result of
reduced abiotic stress.

This empirical yield enhancement directly addresses the practical needs of smallholder
farmers and reinforces the potential of SIS as not merely a water-saving intervention but a
crop-improving strategy. These agronomic results validate the broader thesis that
technological solutions must simultaneously address productivity and sustainability, thereby
fulfilling the dual mandate emphasized by Gonzalez-Briones (2018) for deploying
knowledge-based rural agriculture frameworks.

5.4 Multivariate and Contextual Sensitivity of ML Models

The correlation matrix and variable importance scores emphasize the need for contextualized
models that can weigh predictors appropriately. For example, while rainfall emerged as the
dominant variable, soil temperature and air temperature together accounted for nearly 45% of
model sensitivity. This supports the argument made by Goldstein et al. (2018) about the
undervaluation of thermal variables in conventional irrigation models and validates the use of
a multi-sensor input matrix.

This finding further deepens the argument that SIS must integrate both in-situ data and cloud-
based weather inputs for optimal performance. Our model’s hybrid architecture—combining
real-time sensors and weather API inputs—demonstrates a practical resolution to the data
integration challenge identified by Mekonnen et al. (2019), who had advocated for predictive
systems that do not rely solely on single-source datasets.

5.5 System Reliability and Network Stability

One of the critical challenges in WSN-based irrigation systems is maintaining operational
stability over extended periods in field conditions. Our system recorded a 97.4% average
sensor uptime over 241 days, and a packet loss rate well below 2%. This reliability not only
meets but exceeds benchmarks proposed by Padmanaban and Kannan (2021) for autonomous
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irrigation infrastructure. Furthermore, minimal gateway downtime (0.62 h/month) and
acceptable battery discharge rates affirm the technical feasibility of long-term deployment,
especially in semi-arid or resource-scarce contexts.

These system performance indicators directly address the often-overlooked literature gap
concerning infrastructure resilience. Unlike lab-based or greenhouse experiments, our
findings reflect real-world conditions—intermittent cloud cover, variable solar charging, and
ambient temperature extremes. Therefore, this component of our study provides unique and
much-needed evidence for practitioners and researchers focusing on large-scale SIS
deployment.

5.6 Bridging the Literature Gap: Unified SIS Implementation

A recurring issue in the reviewed literature is the fragmentation between sensor-network
studies and machine learning applications. While some works, like those of Sami et al. (2022)
or Gloéria et al. (2021), successfully demonstrated either model performance or hardware
reliability, few provided a comprehensive framework that spans from data acquisition to field
validation.

This research bridges that divide by providing an end-to-end empirical demonstration of a
SIS—from data acquisition, model training, and prediction to irrigation control and impact
assessment. By capturing over 180,000 field-level data points and validating the ML model
under field conditions, the study provides a unified structure that can serve as a blueprint for
future implementations. This is in line with the call by Tace et al. (2022) for scalable,
validated, and interpretable systems that can move from academic pilot to rural application.

5.7 Implications for Policy, Practice, and Further Research

From a policy perspective, the demonstrated reductions in water and energy use position SIS
as a strong candidate for inclusion in agricultural subsidy and sustainability programs. Given
India’s increasing focus on water conservation under schemes like ‘Per Drop More Crop,’
technologies validated by this study can support evidence-based scaling initiatives.

In practice, the findings reinforce the importance of investing in local sensor calibration,
reliable data transmission, and user training. The economic value—through increased yield
and energy savings—offers a compelling case for adoption among small and medium-scale
farmers.

As for future research, the model can be expanded to include evapotranspiration indices, real-
time NDVI data from satellite imagery, and adaptive control through reinforcement learning.
Additionally, longitudinal trials across agro-climatic zones would further validate system
adaptability and enhance generalizability.

Ultimately, this study offers a data-rich, empirically grounded demonstration of how SIS can
advance sustainable agriculture, directly contributing to Sustainable Development Goals
(SDGs) on clean water (SDG 6), sustainable agriculture (SDG 2), and climate resilience
(SDG 13).

6. Conclusion

This research demonstrated the feasibility, efficiency, and broader potential of an integrated

Smart Irrigation System (SIS) that combines wireless sensor networks (WSN) with machine

learning (ML) to improve water use efficiency in agriculture. Through the deployment of a

real-time, multi-sensor monitoring network and predictive modeling using Random Forest

Regression, the system achieved accurate short-range soil moisture forecasts and significantly
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optimized irrigation schedules. The empirical results from the two cropping seasons showed
not only substantial reductions in water usage—averaging nearly 29% across seasons—but
also corresponding improvements in energy efficiency and crop yield. These findings
contribute to a growing body of evidence supporting the viability of intelligent, data-driven
irrigation frameworks for real-world agricultural applications.

Importantly, this study bridged a critical gap in the existing literature by implementing a full-
cycle, field-based SIS that functioned autonomously and reliably over an extended period.
The robustness of the system, validated through operational metrics such as sensor uptime
and battery performance, underscores the practicality of deploying such solutions in semi-arid
and resource-constrained environments. Furthermore, the predictive accuracy and
interpretability of the machine learning model provide a strong foundation for its integration
into broader agricultural decision support systems.

Beyond technical outcomes, the broader implications of this work extend to sustainability and
policy. By reducing dependence on groundwater and minimizing energy consumption, the
SIS supports key environmental goals, such as conservation of finite water resources and
climate-smart agriculture. Its potential scalability, given its reliance on low-cost components
and open-source platforms, makes it an attractive option for smallholder and marginal
farmers across developing regions. This opens the door for government and institutional
support in embedding smart irrigation practices within national water resource management
frameworks.

Future research can build upon this work by incorporating additional data sources, such as
satellite imagery and evapotranspiration indices, to enhance spatial coverage and prediction
depth. Furthermore, the integration of reinforcement learning and adaptive feedback control
could further refine irrigation logic under dynamically changing climatic conditions.
Expanding the deployment across diverse agro-climatic zones will also be essential to test the
generalizability and resilience of the model. Ultimately, this study establishes a replicable and
scalable model for intelligent irrigation, aligning with the evolving intersection of digital
agriculture, sustainability, and precision farming.
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