
Solar PV Module Parameter Extraction Using Sand 
Cat Optimization Technique

1 Abstract— This study explores a novel approach leveraging a 
cutting-edge meta-heuristic algorithm called Sand Cat 
Optimization. SCO draws inspiration from the hunting behavior of 
sand cats, mimicking their adeptness at navigating complex search 
spaces. The CEC 2019 benchmark test function's 20 most popular 
iterations serve as the foundation for the algorithm. It is contrasted 
with classical optimization algorithms, This bio-inspired algorithm 
is pitted against a range of established optimization techniques, 
including the conventional Newton-Rapson (NR) method and 
several evolutionary algorithms like Differential Evolution (DE), 
Generalized Opposition-Based Teaching and Learning-Based 
Optimization (GOTLBO), Ranking Teaching-Learning-Based 
Optimization (RTLBO), Gain-Sharing Knowledge-Based 
algorithms (GSK), and Teaching-Learning-Based Artificial Bee 
Colonies (TLABC). The measured and calculated data for SCO 
and the root mean square error values for all four PV models. The 
values for the single diode model (SDM), double diode model 
(DDM), STM6-40/36, and STP6-120/36 is 1.012X10-16 ± 2.17x10-
17, 1.7407X10-16 ± 3.77x10-17, and 2.3626X10-14 ± 1.02x10-16. It 
estimates the unknown parameters (I_Ph, I_D, R_s, R_sh, N_1) of 
a PV module using four well-known PV modules, the SDM/DDM, 
STM6120/36, and the STP6 40/36, under various normal operating 
circumstances. Regarding accuracy, the findings show that the 
suggested SCO algorithm is more efficient than previous 
optimization strategies. Sand cat Optimization (SCO) has the 
lowest root-mean-square error (RMSE), respectively. SCO 
consistently achieves remarkably low root mean square error 
values, indicating its exceptional accuracy in parameter estimation. 
This enhanced accuracy can be attributed to SCO's unique 
exploration and exploitation capabilities, allowing it to navigate the 
complex search space effectively and converge upon the optimal 
parameter set. The study employs Friedman's ranking and 
Wilcoxon tests to solidify the statistical robustness of the findings 
further.  

Index Terms— Sand cat optimization (SCO); Single diode 
model; Swarm intelligence optimization; Metaheuristic algorithm; 

Root Mean Square Error (RMSE). 

I. INTRODUCTION 

Optimisation is crucial in various fields, including 
science, industry, and economics. It helps address complex 
challenges such as vehicle logistics, data source integration, 
vision tracking, constraint task scheduling, and NP-Hard 
problem-solving [1]. Parameter identification in photovoltaic 
models is a significant optimization problem that has garnered 
considerable attention from researchers [2]. Deterministic 
methods, such as curve fitting, iterative five-point methods, and 
analytical five-point methods, are commonly employed for this 
purpose, particularly for dual diode modules [3]. However, 
these methods require high accessibility and may not perform 
optimally under reduced solar radiation conditions. Meta-
heuristic methods, such as Particle Swarm Optimization, have 
emerged as alternative approaches for PV model parameter 
estimation [4]. These methods offer advantages in handling 

 
1 

complex optimization problems and have shown promising 
results. 

Evolutionary algorithms offer efficient solutions for 
non-linear implicit equations [5]. These population-based 
approaches leverage the collective intelligence of the entire 
population to find optimal solutions within a random search 
space [6]. Among EAs, genetic algorithms are widely 
recognized and applied [7]. While numerous metaheuristic 
algorithms exist, each with its strengths and limitations, their 
primary objective in photovoltaic applications is to optimize the 
physical parameters of PV modules [8]. Over the past decade, 
researchers have increasingly focused on developing real-time 
applications using bio-inspired and nature-inspired algorithms. 
 

Metaheuristic approaches offer several advantages in 
optimization, including ease of use, flexibility, reduced 
processing time, and the ability to escape local optima in pursuit 
of global solutions. These characteristics make them 
particularly well-suited for tackling complex optimization 
problems. Inspired by the hunting behavior of sand cats, the 
Sand Cat Optimization algorithm leverages their exceptional 
digging skills and sensitivity to low-frequency sounds. The 
algorithm's two-phase approach, mimicking the sand cat's 
exploration and exploitation phases, enables efficient search 
space exploration while effectively converging towards optimal 
solutions. By optimizing the transition between these phases, 
SCO achieves superior results with fewer parameters and steps. 
Adaptive selection methods enhance the algorithm's 
performance [9]. 

 
The social interaction and movements of birds in 

nature motivated the partial swarm optimization. The algorithm 
searches for options to get the optimal solutions, using particles 
to identify possible solutions. Another method in this group is 
Ant Colony Optimization (ACO) [10]. Firefly Algorithm (FA) 
[11] Grey Wolf Optimization (GWO) [12], and Different 
Variance (DV) [13], Whale Optimization Algorithm (WOA) 
[14], Dragonfly Algorithm (DA) [15], Cuckoo Search (CS)[16], 
Butterfly Optimization Algorithm (BOA)[17] Wind-Driven 
Optimization (WDO) [18] Cat Swarm Optimization (CSO) [19] 
Fruit Fly Optimization Algorithm (FFOA). Inspired by sand cat 
hunting behaviour [20], the proposed algorithm demonstrates 
balanced exploration and exploitation capabilities due to its 
adaptive mechanism. Here are the key takeaways from this 
study: 

1. Sand Cat Optimization is a novel population-based 
algorithm that mimics how sand cats search for and 
hunt prey. 

2. SCO offers advantages over traditional algorithms. It 
requires fewer parameters, effectively avoids local 
optima, and exhibits balanced exploration and 
exploitation. 
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The article also mentions several studies related to parameter 
estimation in photovoltaic models. 

 Studies using various optimization algorithms for 
parameter estimation of a three-diode PV model, 
Analytical and Sunflower Optimization Algorithm, 
Transient Search Optimization, Improved Marine 
Predators' Algorithm 

 Studies focus on specific PV model parameter 
extraction algorithms: the Whale Optimization 
Algorithm, the Coyote Optimization Algorithm for a 
three-diode model [48–49], and Chaos Whale 
Optimization [50–52]. 

This paper's main contribution is as follows. 
 To solve the solar PV parameter extraction problem, a 

new Meta-Heuristic (MH) optimization method (SCO) 
is introduced. 

 For the SDM, DDM, STM6-40/36, and STP-120/36, 
the SCO recommended performance was successfully 
implemented, and it appears that the simulated and 
experimental I-V and P-V curves are exceptionally 
close. 

 Comparisons are made between the results of the SCO 
and other Meta-Heuristic (MH) optimization methods. 

 Considering the lowest Root Mean Square Error 
Objective, the proposed SCO was more desirable. 

II. MODELING OF PV 

Photovoltaic systems harness solar energy and convert 
it into usable electrical energy. This process involves converting 
sunlight into direct and alternating current using an inverter. PV 
systems can be classified into three main types: off-grid, grid-
tied, and hybrid. Off-grid systems operate autonomously from 
the electrical grid and necessitate battery storage for continuous 
power supply. These systems suit televisions, phone signals, 
and street lighting applications. 

On the other hand, grid-tied systems are directly connected to 
the electrical grid, allowing for immediate use or the sale of 
excess energy back to the grid. Hybrid systems combine 
features of both off-grid and grid-tied systems, incorporating 
battery storage alongside grid connectivity. . Each type exhibits 
unique manufacturing processes, materials, costs, and 
performance characteristics. Silicon remains a prevalent 
material in solar cell production due to its wide availability and 
well-studied physical properties. Figure 1. highlights the 
importance of PV parameter extraction in understanding and 
enhancing the performance of photovoltaic systems. This 
technique utilizes mathematical models and optimization 
algorithms to determine the key characteristics of a solar cell or 
module. 
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Figure 1. Block Diagram of PV Parameter Extraction 

. The process extracts the desired parameters by minimizing the 
difference between measured data and the model's predicted 
current-voltage curve. Monocrystalline silicon cells boast the 
highest efficiency (17%–25%) but come at a higher cost due to 
their production process, which uses more silicon. They also 
offer the longest lifespan and require the smallest area for a 
given power output. Polycrystalline silicon cells, while less 
efficient (12%–18%) due to multiple grain boundaries that 
increase recombination, are more cost-effective and simpler to 
manufacture. Amorphous thin-film cells, despite the efficiency 
advantages of crystalline silicon, are becoming increasingly 
affordable to produce.  

Accurately modeling photovoltaic systems based on real-world 
current-voltage data is crucial for maximizing operational 
efficiency. However, external factors like temperature, air 
pressure, and irradiance fluctuations can significantly impact 
PV system performance. Even when manufacturers test 
modules under Standard Test Conditions (STC) 1000 W/m² 
irradiance, 25°C temperature, and 1.5 AM air mass - real-world 
efficiency may differ. This study extracts unknown parameters 
from the solar cell module by minimizing the difference 
between measured and predicted currents. This approach 
utilizes the root mean square error (RMSE), also known as root 
mean square deviation (RMSD), a statistical measure similar to 
standard deviation (SD), to quantify the model's accuracy. 

A. Single Diode (DD) Model  
 
The SD model is the most popular model for describing the 

electrical behaviour of a photovoltaic (PV) cell or model. This 
model simplifies the complicated physical behavior of the PV 
cell to a similar electrical circuit. The various parts of the 
single-diode model are as follows: Diode (D) series resistance 
(R_s), Shunt resistance (R_sh), and Current source (I_ph). 
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Figure 2. Single diode PV Model 

                                       (1) 
 

 -  (2) 

Where  and E Represents the photo-generated 
current, diode current, reverse saturation diode current, and 
shunt resistor current, respectively. The identity factor of a 
diode is represented with n, and the series resistance is 

described with  and  Represents the junction thermal 
voltage. The Boltzmann constant, defined as k, is 1.3806503 
1023 J/K. The electron charge, q, equals 1.60217646 1019 C, 

and the temperature, T, is expressed in Kelvin. The  and Re 
are the output voltage current and voltage, respectively. These 
represent measured data that the manufacturer has previously 
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determined, as well as the values of q, k, and T. Therefore, five 

unknown parameters ( , , , , and ) It needs to be 
calculated and optimized. Determining the parameters is 
difficult since they significantly affect the efficiency and 
reliability of the solar cell. 

B. Double Diode (DD) Model  

The double-diode model provides a more accurate 
representation of photovoltaic cell electrical behavior than the 
single-diode model, particularly under changing light and 
temperature conditions. This enhanced accuracy stems from 
incorporating an additional diode, accounting for recombination 
losses occurring within the depletion region and the bulk of the 
semiconductor material. 

PracticalCellIdeal Cell

 

Figure 3. Equivalent double-diode PV Model circuit 

IL  (3) 
 

Where is the First diode's current, and  is the second   
Diode current 

 

ID1=I01( )                         (4) 

ID2=I02 ( )                        (5) 

n1 and n2 are the first diode current, and ID2 is 
the second diode current. 

                                                                                  
(6) 

DD Model I-V curve with enhanced accuracy and 
parameter sensitivity. The DD model advanced analysis of 
PV Cell performance, particularly for high-precision 
applications, represents the first and second diodes' reverse 
saturation currents as  and Respectively, the ideal 
factors of the two diodes are and as follows: From 

equation 6, the seven unknown parameters, including , 

, , , , , and Of the PV systems. 
 

C. Triple Diode (TD) Model 
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Figure 4. Equivalent Triple-diode modeling circuits 

Figure 4 represents the schematic design of the TD model, 
which consists of a current source, a parallel pair of diodes, 
shunt resistance, and series resistance. The output current of the 
TD model is as follows, and equation 7 shows the output 
current of the TD model mathematically. 
 

 
 

                      (7) 
 
The first, second, and third diodes' reverse saturation currents 

are represented as  , , and  Respectively, the 

ideality factors of the three diodes are   and . Equation 

7 includes the nine unknown parameters.    Of the PV 
system. 
 
D. N-number of diode model 

 

The equivalent circuit of the Photovoltaic (PV) module model is 
more complex because it includes more solar cells 
interconnected in series and parallels, as illustrated in Fig. 5. 
 

 

 

 
(8) 

 

From Equation 8, the five unknown parameters are  , 

  The number of solar cells linked in series is denoted 

by , whereas the number of solar cells connected in parallel is 

denoted by . 

 

Ideal cell
Practical cell

  
Figure 5. Equivalent N no of diode Model circuit 
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E. Objective Function  

 
The root Mean Squared error (RMSE) is a commonly 

used objective function in regression analysis to measure the 
difference between predicted and observed values. It is the 
average squared difference between the predicted and 
observed values. 

Mathematically, it is expressed as. 

RMSE= Root Mean Square Error 
N= No of measured data 
X=Vector Solution 
f (  

                                                      (10) 

, , , , and  

(11) 
, ,  ,n2 , and     

 

                           
(12)  

, , n1 , and  

III. SAND CAT OPTIMIZATION 

A. Nature's Sand Cats: Inspiration   
Sand cats are Felis. It inhabits stony and sandy deserts 

like the Sahara in Central Asia, the Arabian Peninsula, and 
Africa. Sand cats and domestic cats are physically different. 
Sand cats have sandy, pale grey hands and feet. Sand cats are 
45–57 cm long. This method helps sand cats find subsurface 
parasites and rodents, as presented in Figure. 6. Sand and 
domestic cats have the same effect on the ear pinna flange. Sand 
cats have longer middle ear canals than domestic cats, creating 
more airspace. Sand cats may also identify noises by arrival 
time. Sand cats have a five-fold larger tympanic membrane than 
domestic cats, which affects their acoustic input admittance. 
Bone chains and middle ear cavities also increase acoustic input 
admittance. Scientific research shows that the sand cat's 
extraordinary emission frequency is below 2 kHz. Sand cats are 
8 decibels more sensitive than domestic cats to this frequency. 
If its prey is underground, the curious sand cat may dig swiftly. 
Sand cats forage by searching and attacking. 
 

 
c. Hunting prey 

Figure 6. Behaviour of Sand cats  
 

   Additionally, a mechanism for fulfilling the exploration and 
exploitation stages and establishing optimal balance is given in 
the algorithm SCO. Sand and domestic cats have the same 
effect on the ear pinna flange. Sand cats have longer middle ear 
canals than domestic cats, creating more airspace. 

Sand Cat Optimization draws inspiration from sand cats' 
hunting behaviors, specifically their exceptional ability to detect 
and capture prey. These solitary felines are remarkably adept at 
sensing low-frequency disturbances, allowing them to locate 
prey above and below ground. This unique skill inspired the 
development of the SCO algorithm. While sand cats are solitary 
creatures, the algorithm models them as a collective "herd" to 
leverage the principles of swarm intelligence for optimization. 
The number of "sand cats" within the algorithm can be adjusted 
to address minimization and maximization problems effectively. 
The problem must first be clearly defined to implement the 
SCO algorithm, then initializing the "sand cat" population. Each 
"sand cat" then explores the solution space, guided by low-
frequency disturbance detection and swarm intelligence 
principles, to converge toward an optimal solution. 

B. Exploration 

As shown in Figure. 7, a sand cat is a 〖1X〗_d array 
that solves a d-dimensional optimal problem. A floating-point 
number (x_1, x_2..., x_d) represents each variable value. Each x 
must be between the lower and upper borders (ꓯx_iϵ [lower, 
upper]). A candidate matrix containing the sand cat population 
according to the problem size Pop X N_d (pop=1..., n) is 
constructed before the SCO algorithm begins. The fitness 
function also determines each sand cat's fitness cost. The SCO 
uses this function to seek the optimal values for the problem's 
important parameters. A function will receive value from each 
sand cat. After an iteration, the sand cat with the lowest cost in 
the most recent iteration is selected as the best candidate for the 
best solution, and the other sand cats attempt to migrate towards 
it in the following iteration. The most favorable answer in each 
iteration may indicate the cat closest to its prey. A similar 
method efficiently uses memory by not keeping the solution for 

    RMSE (X)=  
(9) 

                           

a. Living           b. Searching behaviour 
for prey 
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that. If a better solution is found in the subsequent rounds, 
iteration in memory is performed. 

 

Figure 7. SCO's initialization and definition phase operational technique 
 

 =   -           

x                      (15) 

 
Equation 14. The Early reductions from two to zero indicate 
the overall sensitivity range. In addition,  the sensitivity range 
for each cat is shown. While the controls transition in these 

 phases,  They are used for exploration or exploitation actions. 
Iteration is the number of iterations that can be made, and  
c represents the current iteration. 
 

 (t+1) =  (16))

Based on the position of the best candidate ( ), current 

position ( ), and sensitivity range ( Each search agent 
(sand cat) alters its location and other factors. Sand cat 
optimization can find other ideal prey spots—equation 16. 
The program may use this Equation to locate new local 
optima in the search space. The obtained position is in the 
middle of the current and prey locations. This is done using 
randomness rather than precision. Randomization helps the 
algorithm search agents, which simplifies and lowers running 
costs. 

=  (17) 
 

 (t+1) +.        (18) 

As previously said, sand cats utilize their hearing to locate 
their prey. The space between the dunes distance between 

the optimal location of the sand cat ( ) (best solution) 

and its current situation ( ) is computed using Equation. 
17 to represent the attacking phase of SCO 
mathematically. Since the sensitivity range of sand cats is 
supposed to be circular, the movement direction is 
likewise determined by a random angle on the circle. Of 
course, additional factors stated in Equation 18 are also 
relevant when determining the movement's direction. 
 

 
     (19) 

 

(t+1)=  
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Figure 8. Prey attack (exploitation) versus prey search (explore- ratio) 
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Figure 9. Flow chart for SCO algorithm 
 
 
Figure 9 represents the fundamental principle of operation of 
the SCO method, which is to find the possible optimal solution 
from a random search space seeking prey and attacking them. 
Based on the problem, the algorithm's objective can be the 
minimum and maximum of an appropriate cost function. Based 
on this flowchart and the following steps, the optimal control 
parameter for the non-linear unstable system can be determined. 
 

 x -                      (14) 
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Algorithm 1 Sand cat Optimization for Pseudocode

// Initialize  of the population

Initialize the population of solution

Calculate the fitness function of each individual in the population

Initialize the r, rG, R

While (t≤maximum iteration)

    For each individual  search agent

// Update positions based on exploration and exploitation strategies

            Get a random angle based on the roulette wheel selection 
(0o≤θ≤3600)

        If (abs(R) ≤)

                New_ position = exploration _strategy

            ELSE

                // Exploitation phase

                new_position = exploitation_strategy

            END IF

                     // Bound check: Ensure the new position is within the search space

                           new_position = bound_check(new_position)

            // Evaluate the fitness of the new position

                        new_fitness = evaluate_fitness(new_position)

            // Update the position if the new position is better

                         IF (new_fitness is better than current fitness), then

                          Update position and fitness of individual i

            END IF

        END FOR

                 // Select the best solutions (elitism or other selection strategies)

                     best_solutions = select_best_solutions(population)

                 // Optionally, perform additional operations (e.g., mutation)

                     population = additional_operations(population)

      END WHILE

                  // Output the best solution found

                       best_solution = get_best_solution(population)

             Update the search agent position based on the eq.15 

         Else

               Update the search agent position based on the Eq.14  . 

        End

return best_solution

     End

       t=t++

 End

 

ALGORITHM 1: Pseudocode for SCO 

IV. PARAMETER RANGE OF THE PV SYSTEMS 

Table 1 presents the lower bound𝑠 (L.B) and upper bounds 

(U.B) of each parameter (i.e., , , n, , and Or each 
Solar PV model, which is widely found in most of the 
previous studies [85] 
 
 
 
 

TABLE 1 VARIOUS PV MODEL'S PARAMETER RANGES 
 

 
The SD model is measured at 33°C and 1000 W/m2 irradiance 
using 57 mm-diameter standard silicon RTC French cells. The 
STM6-40/36 module's 36 monocrystalline silicon cells are 
coupled in a series and operate at 51°C with 1000 W/m2 
irradiation. The 36 monocrystalline silicon cells of the STP6-
120/36 module are linked in a series and operated at 55°C under 
1000 W/m2 irradiation. 

TABLE 2 VARIOUS TRADITIONAL ALGORITHM PARAMETER SETTINGS 
 

Algorithm Parameter settings 

SCO NP = 26, kr = 0.9, kf = 0.5, K = 5 

GSK NP = 30, kr = 0.9, kf = 0.5, K = 10, 

DE NP = 30, F = 0.5, CR = 0.9 

GOTLBO NP = 50, Jr = 1.00 

ITLBO NP = 50 

RTLBO NP = 40 

TLBO NP = 30, TF = round (1 + rand (0,1)) 

 
Table 2 shows the search space for these model parameters. 
Additionally, there are six sophisticated artificial differential 
evolutions. (DE) Optimization methods and six fundamental 
metaheuristic algorithms are compared to the GSK algorithm 
(Storm and Price, 1997), teaching and learning-based 
optimization [72-74]. (TLBO) (Rao et al., 2011), grew 
oppositional educating and learning-based optimization 
(GOTLBO) (Chen et al., 2019), enhanced teaching and 
learning-based optimization (ITLBO) [75-78], ranking teaching 
and learning-based enhancement [79-82] (RTLBO) (Xiong et 
al., 2018a), and (TLABC) (Chen et al., 2018), improved whale 
IWOA (Xiong et al., 2018b) and In MATLAB 2021 b, each 
algorithm runs 30 times simultaneously.  
Table 2, taken from each algorithm's original literature, shows 
the parameter settings for those algorithms [83],[84]. For 
different models, we set various Max_ values. The SDM's 
maximum is 50000, while the other PV models' maximums are 
30000 and five parameters, respectively. The following sub-
section presents the comparison of various solar SD models 
(PW-201, STM6 40/36, and STP6-120/36) in terms of error, 
and also the Convergent curve, absolute current error (ACE), 
absolute power error (APE), I-V, and P-V curves of several 
solar SD models. 

 

A. Comparison of general SD /DD Model with STM6 
40/36 and STP6 120/36. 

In this section, the comparison of various SD models is 
presented by taking the lower bounds LBs and upper bounds 
UBs value ranges of standard SD model parameters as a 
reference and are presented in Table 2 and. Here  , , 

Parameters 
STM6-40/36 STP6-120/36 SD/DD Model 

L.B U. B L.B U. B L.B U. B 

(A) 0 2 0 8 0 1 

(A) 0 50 0 50 0 1 

(Ω) 0 0.36 0 0.36 0 0.5 

(Ω) 0 1000 0 1500 0 100 

 
1 60 1 50 1 2 
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, Are the unknown parameters of the standard SD model, 
and Table 3 depicts the estimated and measured values of 
power and current of the STM6 40/36 solar model along with 

the ACE, APE RMS error calculation, of where  &  and  

& Are the measured and estimated current and power, 
respectively? Figure 10 depicts error curves ACE and APE, and 
the convergence curves P-V and I-V depict the features of the 
STM6 40/36 solar model's measured and predicted value. 
 

B. STM6 40/36 Solar Model 
 

 

=0.069643 

=0.0278 

 
 

 
(a)                                          (b) 

Figure 10 (a) ACE and (b) APE curve for STM6 40/36 model 
 

 
(a)                                          (b) 

 

(c) 
Figure. 11(a). Convergence curve, (b) I-V curve, (c) P-V curve for measured 

and estimated values of STM6 40/36 model  
Figure 11 Represents the convergence curve is a key tool for 
analyzing the performance of sand cat optimization algorithms. 
The chart progress of the optimization process typically shows 
the cost.  
 
On the Y-axis and the number of iterations (optimization steps) 
on the X-axis. In general, the convergence curve for the SCO 
algorithm is used to decrease cost function value and rate of 
decrease compared with other algorithms. 

 
C. STP6 120/36 Solar Model 

Table 4 depicts the estimated and measured values of power 
and current of the STP6 120/36 solar model along with the 
ACE and APE RMS error calculation of where  &  and  

& The measured and estimated current and power depict 
error curves ACE and APE and convergence curve, P-V, and I-
V characteristics for measured and calculated values of STP6 
120/36 solar models. 
 

=0.271318        

=3.868108 
 

          
(a)                                                (b) 

Figure 12. (a) ACE and (b)APE curve for STP6 120/36 Solar model 
 

(a)                       (b)                         (c) 
Figure 13. (a) Convergence curve (b) I-V curve (c) P-V curve for 

measured and estimated values of STP6 120/36 solar model 

Figure 13 (a) Convergence Curve specifically for the STP6 
120/36 solar model optimized with SCO. In general, SCO to 
solar panel model parameter identification includes 
decreasing cost function value and rate of decrease compared 
with other algorithms. The Convergence curve shows how 
the optimization algorithm progresses toward finding the 
optimal set of parameters for the chosen SD model DD 
Model in the case of STP6 120/36. On the X-axis, typically 
see the number of iterations or function evaluations. In the Y-
axis, you might see an error metric (e.g., Root Mean Square 
Error RMSE) between the measured I-V curve and the I-V 
curve predicted by the model with the current parameter set. 
A good convergence curve with minimal error and a close 
match between the measured and estimated curves in both I-
V and P-V plots indicate successful parameter extraction. 

 
D. Robustness of the SCO algorithm  
a) SD/DD model 

The SCO algorithm performs both approaches compared to 
the following popular algorithm. In objective functions, the 
SCO algorithm has shown outstanding performance. 
Similar values are given by the parameters determined 
using both methods. The current RMSE, determined using 
several STM6 40/36 panels, is 0.003303327. The RMSE is 
a current error, and STP6 120/36 is a solar panel at 
735.7177. According to Friedman's test, the first approach's 
parameter estimation is superior to that of the second and 
third techniques. The comparison of various solar SD 
models (Standard SD model) is carried out in error terms 
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like (AC, AP, and RMS errors). Table 3 represents the 
comparison. 

TABLE 3 COMPARISON OF DIFFERENT PANELS WITH SD/DD MODEL 

REFERENCE MODEL 
 
 
 

 

b) STM6-40/36 model 

 The performance of both approaches, such as the SCO 
algorithm, is compared with the following modules. In 
objective functions, the SCO algorithm has shown outstanding 
performance. Similar values are given by the parameters 
determined using both methods. The current RMSE, 
determined using several STM64036 panels, is 0.00081. It is 
considered that the RMSE is a current error, and STP612036 is 
a solar panel at 482.286, which is given in Table 4. The 
Friedman test reveals that the first approach's parameter 
estimate is superior to the second and third strategies 
 
TABLE 4 COMPARISON OF DIFFERENT PANELS WITH STM6-40/36 MODEL 

 
c) STP6-120/36 model 

Friedman's test reveals that the first approach's parameter 
estimate outperformed the second and third techniques. The 
current RMSE, determined using several STM6 40/36 panels, is 
0.000612, which is considered a current error. PWP201 is 
0.02912, and STP6 120/36 is a solar panel at 0.007906. 
According to the Friedman test, the estimation parameter of the 
first approach is superior to that of the second and third 
techniques, as shown in Table 5. 
Table 5 Different panels with STP6-120/36 model comparison 

 

V.  DISCUSSION 

The SCO algorithm has performed exceptionally well 
in objective functions. The parameters obtained by the two 
approaches provide similar results. The current RMSE 
error with all four comparisons is displayed in Figure 14. 
The description compares the root mean squared error 
(RMSE) of three different solar panel models: STM6-
40/36, STP120/36, and a single diode model. The main 
focus is likely on the RMS values for each model. 
Generally, a lower RMSE signifies a better fit between the 
solar panel model's predicted and actual power output. The 
STM6-40/36 panel has the lowest RMSE among the three, 
suggesting it offers the most accurate predictions 
compared to exact measurements. The RMS values depend 
on the operating conditions, particularly irradiance 
(sunlight intensity) and temperature levels, and they 

represent an average across different situations. RMSE is a 
crucial metric, but factors like efficiency and each 
implementation might also be important. The choice of 
model would depend on the overall application 
requirements. 

 
Figure 14. Compare all three modules with different panels 

Each module is similar to a solar panel, but Figure 14 shows 
each has a different assessment. This method compares the 
performance of the SD, DD, STM6-40/36 model, and STP6-
120/36 models under identical test conditions. The data 
collects performance metrics such as efficiency, power 
output, and degradation rates for each model and panel.  
 

A. Individual absolute error (IAE) 
a)  IAE results for single diode module 

    Then, from Table 8, we choose five algorithms—GSK, 
DE,    GOTLBO, RTLBO, and TLABC—with better RMSE 
values to compare with SCO. The calculated current data is 
obtained using these algorithms' retrieved parameters. By 
comparing the observed current with the estimated current of 
each method, the respective individual absolute error (IAE) 
values are determined and presented in Figure. 15. The 
method's IAE value is lower than those of other algorithms, 
suggesting that the algorithm has a greater SDM parameter 
extraction accuracy. 

IL=SCO

 

Figure 15. IAE results for the single-diode model 
 

b) IAE results for the STM6-40/36 module 
Then, we chose five algorithms—GSK, DE, GOTLBO, 

RTLBO, and TLABC—from Table 9 that have better 
RMSE values than SCO. These algorithms collect the 
parameters to create the calculated current data. Comparing 
the observed current with the estimated current of each 
method yields the relevant individual absolute error (IAE) 
values presented in Figure. 16. The algorithm's IAE value is 
lower than other algorithms, suggesting that it extracts 
parameters from the STM6-40/36 module more precisely. 
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Figure 16. IAE results for the STM6/36 module 

S.NO Various Errors  STM6 40/36  STP6 120/36  

1 AB error  0.069642896 128.1574 
2 RMS error 0.003303327 735.7177 
3 AP error 0.027816571 1683.844 

S.NO Various Errors  STM6 40/36  STP6 120/36  

1 AB error  0.11933 103.5047 
2 RMS error 

0.000801 483.286 
3 AP error 

0.047615 1350.737 

S.NO Various Errors  STM6 40/36  STP6 120/36  

1 AB error  0.09671 0.370941 
2 RMS error 0.000612 0.007906 
3 AP error 0.0448 5.211632 
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c) IAE results for the STP6-120/36  
 
Then, we choose five algorithms—GSK, DE, GOTLBO, 
RTLBO, and TLABC—from Table 10 that have better 
RMSE values to compare with SCO. It contains the 
computed current data produced using the parameters that 
these methods extracted. Comparing the observed current 
with the estimated current of each method yields the relevant 
individual absolute error (IAE) values presented in Fig 13. 
The algorithm's IAE value is lower than other methods, 
demonstrating greater parameter extraction accuracy on the 
STP6-120/36 module. 
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Figure 17. IAE results for the stp6-120/36 module 

B. Parameter Calculations 
 

Then, we choose five algorithms—GSK, DE, GOTLBO, 
RTLBO, and TLABC, respectively—with superior RMSE 
values than SCO. The algorithm's IAE value is lower than 
other algorithms, suggesting that it extracts parameters from 
the single diode module (SDM), PWP201 module, STP6-
120/3 6 module, and STM6-40/36 module with more 
precision. The STP6-40/36 schematic below is growing better 
than other modules, as presented in Figure. 15. Increasing the 
number of iterations results in more precise output. 
 

 
 

Figure 18. IAE results for SCO with other modules 
 
Friedman's ranking test was also used to evaluate the 
competency and reliability of the deployed method. The CSO 
has the highest ranking, followed by the SDM, STM6-40/36, 
and STP6 120/36 modules. The STM6-40/36 is ranked top. 
 
Friedman's ranking tests when you have multiple 
independent groups and want to compare the medians of 
those groups. Wilcoxon's signed-rank test, also known as the 
Wilcoxon matching-pairs signed-rank test, is a non-
parametric statistical hypothesis test used to compare two 
related samples— 
Wilcoxon's signed-rank test when you have paired data and 
want to compare the medians of those pairs. 

 

C. Comparison between different parameter extraction 
algorithms  
a). Single diode model 
When we use the available methods to obtain the SDM's 
parameters, the unknown parameters obtained are listed in 
Table 6. As demonstrated in Figure 19, the SDM rarely changes 
when parameter values obtained in various ways are applied. 
 

TABLE 6 ESTIMATED PARAMETERS FOR SDM WITH SCO  
Algorithm Parameter   

  Iph (A) (µA) Rs (Ω) Rsh(Ω) N 

SCO 0.76025 0.32029 0.0360 53.00463 1.48393 

GSK 0.7608 0.3231 0.0364 53.7227 1.4812 

DE 0.7608 0.3231 0.0364 53.7185 1.4812 

GOTLBO 0.7608 0.342 0.0362 53.8599 1.487 

ITLBO 0.7608 0.323 0.0364 53.7187 1.4812 

RTLBO 0.7608 0.3423 0.0361 55.3065 1.4871 

TLABC 0.7608 0.3231 0.0364 53.7164 1.4812 

 

 
Figure 19. Parameters for SDM with Unknown Parameters 

b). STP6-120/36 module 

When we apply the algorithms mentioned to the parameter 
extraction of the SDM, the unknown extracted parameters of 
these algorithms are shown in Table 7. It can be seen that the 
parameter values extracted by these algorithms differ little in 
the STP6-120/36 module, as shown in Figure.  
TABLE 7 ESTIMATED PARAMETERS FOR STP6-120/36 MODULE WITH 

SCO 
Algorithm Parameter   

  Iph (A) (µA) Rs (Ω) Rsh(Ω) N 

SCO 7.46 2.24 0.0026 22.5 1.2675 

GSK 7.4725 2.335 0.0046 22.2199 1.2601 

DE 7.4708 2.5614 0.0046 28.8094 1.2657 

GOTLBO 7.4563 2.2559 0.0045 22.4749 1.2566 

ITLBO 7.4725 2.335 0.0046 22.2199 1.2601 

RTLBO 7.4728 2.3167 0.0046 21.6438 1.2594 

TLABC 7.5611 3.4715 0..0049 23.6694 1.2698 

 
Figure 20. STP6-120/36 module with SCO 
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c). STM6-40/36 module 
 

We have applied the techniques above to the SDM parameter 
extraction, and the unknown extracted parameters appear in 
Table 8. As shown in Fig. 17, the parameter values obtained by 
these methods varied only slightly in the STP6-40/36 module. 
 

TABLE 8 ESTIMATED PARAMETERS FOR STM6-40/36 MODULE WITH SCO 
Algorithm Parameter   

  Iph (A) (µA) Rs (Ω) Rsh(Ω) N 

SCO 1.6629 2.3566 0.00245 16.546 1.53 

GSK 1.6635 1.924 0.004 16.5546 1.5315 

GOTLBO 1.6631 2.3475 0.0031 17.4323 1.5536 

ITLBO 1.6639 1.761 0.0042 15.942 1.5217 

RTLBO 1.6639 1.7024 0.0043 15.8288 1.518 

BSA 1.6601 1.2069 0.0043 15.9283 1.5203 

TLABC 1.7 1.6338 0.005 15.4001 1.5002 

 

 
Figure 21. STM6-40/36 module with SCO 

 d). Comparison 
 

Then, compared to SCO, we choose five algorithms: GSK, 
DE, GOTLBO, RTLBO, and TLABC. The technique's IAE 
value is less than that of other algorithms, indicating that the 
algorithm has a higher degree of precision of parameter 
extraction on the single diode module (SDM), STP6-120/3 6 
module, and STM6-40/36 module. Fig 18 depicts the STP6-
40/36 module outperforming the others. As the number of 
iterations rises, the outcome becomes more accurate. 

 
Figure 22. STM6-40/36 module with SCO 

 
Friedman's scoring test can also be utilized to determine the 
ability and dependability of the adopted strategy. CSO has the 
highest ranking, followed by SDM/DDM, STM6-40/36, and 
STP6-120/36 modules. The STM6-40/36 is ranked top, as 
illustrated in Table 14 
 
D. RMSE values of different algorithms 

a). single diode model 
 
SDM verifies the algorithm's performance by calculating the 
number of RMSE values (standard deviation, minimum, and 
maximum mean). Table 15 shows the experimental results of 
the six optimization strategies stated previously. In the event 
of a Max FE value of 30,000, it is worth noting that SCO has 
the smallest standard deviation (2.17E-04). The least 
significant RMSE (9.835E-04). In the parameter extraction of 
the single diode model, the SCO Algorithm is more 
competitive. In the early stages, it can be noticed that DE has 
a faster convergence speed than other algorithms. However, it 
quickly gets into the local optima. The SCO ultimately 
converges to the lowest RMSE value. Who demonstrates that 
the SCO algorithm improves the SDM's convergence 
performance

 
TABLE 9 RANKED THE ALGORITHMS BASED ON FRIEDMAN'S RANK FOR SD/DD MODEL STM6-40/36, STP6-120/36, AND MODULES. 

R.T.C France Solar cell (SD/DDM) R.T.C France Solar cell (STM6-120/36) R.T.C France Solar cell (STM6-40/36)  

Rank Algorithm Friedman's rank Algorithm Friedman's rank Algorithm Friedman's rank 

1 CSO 1.835 CSO 1.7577 CSO 1.9908 

2 GSK 6.8254 GSK 3.5595 GSK 3.2481 

3 TLABC 7.0045 TLABC 6.6454 RTLBO 7.4800 

4 DE 8.1431 RTLBO 7.9825 TLABC 7.4994 

5 RTLBO 8.2552 GOTLBO 8.1024 DE 8.508 

6 GOTLBO 9.9989 DE 8.7891 GOTLBO 8.7603 

 
TABLE 10 COMPARISON OF RMSE VALUES WITH DIFFERENT ALGORITHMS 

FOR A SINGLE DIODE MODEL  
 
 
.  
 
 
 
 
 
 
 

 
 
b). STM6-40/36 module 
TABLE 11 COMPARISON OF RMSE VALUES WITH DIFFERENT ALGORITHMS 

FOR STM6-40/36 MODULE 

Algorithm 
 

RMSE       
   Best Worst Mean Std 

SCO 
 

1.7398E-03 3.603E-03 1.7407E-03   3.77E−04 

GSK 
 

1.7298E-03 1.7298E-03 1.7398E-03 6.25E−18 

DE 
 

1.7738E-03 3.0774E-03 2.1503E-03 2.89E−04 

GOTLBO 
 

1.8467E-03 3.3823E-03 2.7718E-03 3.41E−04 

Algorithm RMSE       

  Best Worst Mean Std 

SCO 9.835E−04 1.856E-03 1.0120E-03 2.17E-04 

GSK 9.8602E−04 9.8602E−04 9.8602E−04 2.18E−17 

DE 9.8602E−04 1.3410E−03 1.0096E−03 6.72E−05 

GOTLBO 9.8760E−04 1.7095E−03 1.0949E−03 1.36E−04 

 ITLBO 9.8760E−04 9.8602E−04 9.8602E−04 4.57E−17 

RTLBO 9.8604E−04 1.0808E−03 1.0057E−03 3.06E−05 

TLABC 9.8602E−04 1.0481E−03 9.9811E−04 1.76E−05 
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 ITLBO 
 

1.7298E-03 1.9172E-03 1.7407E-03 3.47E−05 

RTLBO 
 

1.7298E-03 2.9934E-03 1.9041E-03 2.2900E-09 

TLABC 
 

1.7298E-03 2.4355E-03 2.0021E-03 2.04E−04 

Computing several RMSE values (standard deviation, minimum, 
and maximum mean) confirms the STM6-40/36's performance 
technique. Table 16 shows the experimental outcomes of the six 
optimization strategies stated previously. In the event of a Max 
FE value of 30,000, SCO has the lowest standard deviation 
(3.77E-04). 1.7398E-03 is the lowest RMSE value. The SCO 
algorithm is superior in the parameter extraction of the single-
diode model. DE has a faster convergence speed in the early 
stages than other algorithms. However, it swiftly slips into the 
local optima. The SCO ultimately converges to a lower RMSE 
value. This shows that the SCO algorithm outperforms the 
STM6-40/36 regarding convergence performance. 
c). STP6-120/36 module 

The technique's performance in STP6-120/36 is 
validated by calculating various RMSE values (standard 
deviation, minimum, and maximum mean). Table 17 displays the 
experimental results of the six optimization strategies stated 
above. In this instance of the Max FEs value of 30,000, it is 
worth noting that SCO has the smallest standard deviation 
(1.023E-04) and the least RMSE value (1.683E-02). The SCO 
Algorithm is more competitive in the parameter extraction of the 
single-diode model. It can be determined that DE has a faster 
convergence speed than other algorithms in its infancy. 
However, it quickly enters local optima. SCO ultimately 
converges on the lowest RMSE value. 

 
As seen in Fig. 19, the SCO algorithm has higher 

convergence performance in the STP6-120/36 model gathering 
performance using established methods. For sand cat 
optimization algorithm to extract parameters for each model for 
simulation and data collection for each model. The best and the 
worst menace highest rank and worst menace lowest rank and 
mean rank menace average rank and standard deviation for 
computing. All compare the STM6-40/36 model, which performs 
better than others. 
 
TABLE 12 COMPARISON OF RMSE VALUES WITH DIFFERENT ALGORITHMS 

FOR STP6-120/36MODULE  

Algorithm  RMSE       

   Best Worst Mean std 

SCO  1.683E−02 1.68301E−02 2.36266E−02 1.02E−04 

GSK  1.6601E−02 1.6601E−02 1.6601E−02 1.44E−16 

DE  1.665E−02 3.4221E−02 2.228E−02 5.1E−03 

GOTLBO  1.663E−02 3.0365E−02 2.151E−02 3.4E−03 

 ITLBO  1.661E−02 2.533E−02 1.7081E−02 1.77E−03 

RTLBO  1.667E−02 2.079E−02 1.7031E−02 8.16E−04 

TLABC  1.6701E−02 1.8988E−02 1.7271E−02 5.70E−04 

 

 

Figure 23. Ranking of SCO with another module 
d) Comparison  

Six better algorithms were chosen for comparison based on 
the RMSE values of the methods above in each PV module. We 
chose DE, GSK, DE, GOTLBO, RTLBO, ITLBO, and TLABC 
for the STM6-40/36 and STP6-120/36 modules. The computed 
current data acquired by these techniques is displayed in Tables 
15, 16, and 17. The CSO Algorithm was successfully developed 
and implemented for parameter extraction of the Photowatt-
PWP201 module for PV module designs, which has 36 
polysilicon cells connected in series and irradiated to 1000 Wm2 
of radiation at 45 °C. Under 1000W/m2 irradiance at 51 °C, The 
STM6-40/36 module's 36 monocrystalline silicon cells are 
interconnected in the series. Under 1000 W/m2 irradiance at 550 

C, the STP6-120/36 module's 36 monocrystalline silicon cells are 
linked in series. 

For each algorithm's average execution time, The STMP6-
40/36 Module and STP6 120/6 Module take significantly less 
time than the SMD module. Friedman's ranking test results are 
shown in Fig. 19. The average CPU time/sec best ranking 
obtained by the CSO, followed by the SMD module, is 3.14 s, 
indicating they are the most efficient in terms of computational 
speed STMP6-40/36 Module is 3.15 s slightly slower STP6 
120/6 Module 3.176 s is somewhat longer than the other three 
models.  
 

The average value of SCO is 3.15 s, and Fig.20 Represents 
SCO compared to all other five algorithms, i.e., GSK is 11 and 
DE is 31 s, GOTLBO is 32 s, RTLBO is 15 s, TLABC is 15 s, 
according to the Friedman ranking. SCO demonstrates 
significant efficiency compared to most other algorithms. While 
speed is crucial, it's important to consider other factors like 
accuracy and robustness when choosing an algorithm. Specific 
applications and their priorities will determine which algorithms 
are most suitable. The average CPU running time is less in SCO 
compared to the other five algorithms. 
 

 
Figure 24. Comparison of the execution time of different modules.[85] 

 
Figure 25. Ranking of SCO (Sand Cat optimization) and other compared 
algorithms on panel module according to the Friedman Test [85]
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TABLE 13 RESULTS OF THE WILCOXON'S RANK SUM TEST FOR R.T.C FRANCE SOLAR CELL FOR STM6-40/36, STP6-120/36MODEL

  
TABLE 14 RESULTS OF THE WILCOXON'S RANK SUM TEST FOR R.T.C FRANCE SOLAR CELL FOR SD/DD MODEL 

 

Figure 21 demonstrates that the SCO algorithm significantly 
outperforms other algorithms, including Differential Evolution, 
Teaching-Learning-Based Optimization, Real-Time Learning- 
Based Optimization, Gradient-Opposition-Based TLBO, and 
Gaining-Sharing Knowledge-Based Optimization, in terms of 
execution time. This faster performance makes SCO a superior 
choice for applications where computational efficiency is 
critical. Statistical analysis using Wilcoxon's test, as summarized 
in Tables 17 and 18, further supports the superiority of SCO. 
The study reveals that SCO consistently outperforms the other 
metaheuristic algorithms in solving parameter estimation 
problems for five different solar PV cell/module models. 
Specifically, SCO achieves higher R+ values (indicating better 
performance) than R- values across all five models, highlighting 
its consistent advantage over traditional metaheuristic methods. 

VI. CONCLUSION 

In this research investigation, a well-known optimisation 
technique, known as the SCO optimization algorithm, is used to 
obtain the optimum solution for solar PV cells and module 
parameters. SCO was employed to estimate the SD/DD Model, 
STM6 40/36, and STP6 120/36 PV panel module parameters to 
show the performance of the SCO optimization algorithm. The 
calculated and estimated data's I-V characteristics, as well as P-
V characteristics, demonstrated the suggested method's higher 
degree of accuracy. The simulation results test and comparisons 
to other metaheuristics optimisation techniques illustrate the 
method's accuracy and validity in extracting the characteristics 
of a PV cell and module. The SCO handles seven engineering 
design challenges: welded beam, compression springs, pressure 
vessels, piston levels, speed reduction, 3-bar truss, and 
cantilever beam. It observed the benefit of fast convergent and 
consistent results for each test. The approach uses the real world.  

 

 

 

 

 

 

 

information from several solar PV manufacturers (SD/DD 
Model, STM6-40/36, and STP6-120/36). The solar cell 
parameters extraction methods for solar PV system design 
and estimates and extracts unknown PV module parameters 
(I_Ph, I_D, Rs, R_sh, N_1) using such as SD, STM6 
40/36, and STP6 120/36. The SCO was tested with 20 
popular iterations per the CEC 2019 benchmark test 
function and compared to traditional optimization 
algorithms. RMSE values of the SCO algorithm are 
compared with those of other conventional algorithms such 
as GSK, DE, GOTLBO, RTLBO, and TLABC. Based on 
the compared findings, we may conclude that the SCO 
algorithm is an effective and trustworthy way of predicting 
the unknown optimized parameters of the solar PV module 
model under standard operating situations. Compared with 
other algorithms, the I-V and P-V characteristic curves and 
IAE results indicate that SCO can generate the optimized 
value of the estimated parameters for all the solar PV cell 
models. As a result, the close similarity between the 
generated I-V and P-V curves and the measured features 
has validated the SCO's accuracy. The statistical validity of 
the suggested algorithms has been examined using the 
Friedman and Wilcoxon tests. The focus areas include 
examining scalability, bolstering resilience in fluctuating 
situations, utilizing real-time controls, collaborating with 
machine learning, and developing specialized hardware. 
The fundamental SCO algorithm will be upgraded in the 
future to include parameter self-adapting methods to boost 
its performance while solving complex difficulties, as well 
as the MPPT problem action, the ANFSIS issue action and 
the hybrid optimisation technique will be used to find the 
optimal values of unknown parameters and RMS value. 
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