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Abstract

The exponential growth of data-intensive applications, especially in artificial intelligence (AI)
and machine learning (ML), has pushed conventional computing architectures—CPUs and
GPUs—to their limits in terms of power efficiency, parallelism, and scalability. Neuromorphic
chips, inspired by the human brain's structure and function, promise to overcome these
limitations by enabling event-driven computation, massive parallelism, and ultra-low energy
consumption. Continuous comparative framework that highlights performance power, and
programmability metrics relative to traditional processors. Each neuromorphic system
embodies divergent trade-offs. For instance, TrueNorth's 4,096-core fabric excels in extreme
low power for inference but requires an explicit mapping of neural topologies. Intel’s Loihi
balances programmability and efficiency through on-chip learning but is constrained by fixed
memory hierarchies. BrainChip’s Akida, leveraging a unified memory and custom instruction
set, targets real-time sensor fusion in low-footprint environments. By quantifying these metrics,
we identify specific problem classes that merit a transition to neuromorphic computing,
including spatiotemporal signal processing, anomaly detection in sensor networks, and
continual learning in resource-constrained devices.

Beyond hardware, also surveyed the software models that translate conventional neural
networks into spiking representations. Case studies illustrate the accelerated inference times
and reduced energy footprints achieved on neuromorphic processors for real-world vision,
speech, and robotic control tasks. Finally, we discuss the anticipated scalability of
neuromorphic systems, arguing that future heterogeneous deployments will integrate these
chips within mixed architectures to offload specific workloads, thereby extending the
performance and efficiency spectrum of computing infrastructure beyond the limits of
traditional CPUs and GPUs.
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1. Introduction

Over decades, the landscape of computing architectures has determined the pace of innovation,
influencing everything from climate modelling to the latest AI breakthroughs. Central
Processing Units have long provided the backbone of computing, well-suited to the orderly,
stepwise logic of most programs. Yet as data volumes surged, particularly in fields like
machine learning and simulations of complex phenomena, the industry turned to Graphics
Processing Units, whose thousands of cores could tackle multiple data elements
simultaneously. Together, the CPU and GPU, still arranged around the classic von Neumann
principle of memory and processing separation, have met the challenges of ever-more
demanding workloads without breaking stride.

However, the fast-growing amount of data and the increasing complexity of the Al models
have shown the limits of traditional hardware. Even though CPUs and GPUs are powerful, they
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have some natural problems like poor energy use, limited ability to do many tasks at once, and
memory bandwidth issues from the von Neumann architecture, often called the "von Neumann
bottleneck. As making smaller transistors becomes harder and Moore's Law slows down, these
issues have gotten worse, especially in areas that need real-time, low-power, and event-based
processing, like edge Al, autonomous robots, and IoT devices.

Neuromorphic computing has become a big change to solve these problems by looking at how
the human brain works. Unlike regular processors, which separate memory and computation,
neuromorphic chips combine these parts, copying how biological neurons work in parallel and
distributed ways. This lets neuromorphic systems be very energy-efficient and highly
responsive. Spiking Neural Networks (SNNs), which use sudden spikes to send information
instead of continuous signals, are central to neuromorphic designs, allowing for asynchronous
and event-based computing.Interest in neuromorphic computing has led to new hardware like
IBM's TrueNorth, Intel's Loihi, BrainChip's Akida, and SpiNNaker.These chips are built to
handle Al tasks more efficiently than traditional CPUs and GPUs. They not only use much less
power but also open up new opportunities for brain-inspired computing, like neuromorphic
vision sensors and advanced robotics.This paper gives a full look at the shift from CPUs and
GPUs to neuromorphic chips.It starts with a review of the history of computing, showing how
it moved from doing one task at a time to doing many tasks at once. Then, it explores the
shortcomings of current CPUs and GPUs and why they can't keep up with modern Al needs.
The main part of the paper explains neuromorphic architecture, its design ideas, major
examples, and performance benefits. Finally, it covers possible uses, challenges, and future
steps in neuromorphic computing, showing why this change is important for the next big step
in computing, IMARC Group(2025), Transparency Market Research(2025), SNS
Insider(2023)[1-3].

2. Literature Review

Neuromorphic computing, which is inspired by the structure and function of the human brain,
has made big progress lately, especially with the use of photonic technologies and new designs.
The following review covers important findings from recent research. Biasi et al.(2023) [4],
look into the potential of photonic neural networks (PNNs) made using integrated silicon
microresonators. Their work points out the benefits of using photonic systems, such as faster
processing, the ability to handle multiple tasks at once, and lower power use compared to
traditional electronic systems. The authors show experimental results of photonic neuron-like
behavior and talk about how silicon photonics can be scaled up for neuromorphic computing.
They also suggest that using photonics could help solve the problem of slow electronic
connections, making it a great option for fast Al hardware. Li et al.(2023)[5], give a detailed
overview of how photonics can be used in neuromorphic computing. They focus on the basics,
the types of devices used, and future possibilities. The paper describes various photonic devices
like microring resonators, Mach-Zehnder interferometers, and phase-change materials that can
imitate the behavior of synapses and neurons. They also discuss how combining photonic and
electronic systems can help with issues like energy use and bandwidth. This review shows that
photonics could be a big part of creating next-gen neuromorphic processors that work better
than the traditional von Neumann architecture. Greatorex et al.(2024)[6], introduce TEXEL, a
neuromorphic processor that can learn directly on the chip, which makes it suitable for use with
next-gen technologies beyond standard CMOS. Unlike traditional Al accelerators, TEXEL
allows learning inside the hardware, which cuts down on delays and energy use. The authors
talk about the principles of combining device design with circuit design and highlight how
TEXEL works well with new devices like memristors and spintronic elements. This study helps
in building highly adaptable and energy-efficient neuromorphic systems that are similar to how
the brain works. Le D et al. (2025)[7], review the memory wall problem in neuromorphic
computing, which is a major issue that limits the performance of hardware accelerators. The
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paper explains the main causes of this problem, like the extra time and resources needed to
move data between memory and processing parts. The authors assess new memory
technologies such as RRAM, PCM, and FeFET, as well as memory-focused computing
approaches that aim to fix this bottleneck. Their review shows the importance of designing
systems where memory and computation are closely linked, as well as using 3D integration to
improve overall performance.

2.1 Summary and Research Gap

Overall, these works show that the future of high-performance and energy-efficient Al
hardware lies in combining photonics, new memory technologies, and neuromorphic designs.
Biasi S, et al.(2023) and Li R, et al. (2023) [4-5], Photonic approaches offer speed and better
data handling, Greatorex H, et al. (2024)[6], systems like TEXEL, show the ability to adapt on
the chip, and memory-focused solutions, Le D, et al.(2025)[7], tackle the memory wall
challenge. However, there is still a lack of a unified system that smoothly combines these
parts—photonic neuromorphic cores, learning mechanisms that can adapt, and efficient
memory systems. This is a big area for future research.

3. Limitations of CPUs and GPUs

-

CPU GPU NEUROMORPHIC
CHIP
Figure 1: CPU-GPU-Neuromorphic Chip
As in Fig.1, Central Processing Units (CPUs) and Graphics Processing Units (GPUs) have been
the main tools in modern computing for a long time. CPUs are designed to handle a wide variety
of tasks one after another, while GPUs are built to handle many tasks at the same time. This
makes GPUs especially good for demanding jobs like machine learning and big simulations.
However, even with these improvements, both types of processors still have important limits
that make it hard for them to keep up with the more complex, data-heavy, and energy-conscious
tasks that are coming in the future, Intel(2025), BrainChip (2025),[8-9].
3.1 The Von Neumann Bottleneck
Both CPUs and GPUs use the von Neumann architecture, which keeps memory and the
processing part separate. Because of this, data has to keep moving back and forth between
memory and the processor. As tasks that need a lot of data become more common, this constant
movement of data creates a performance slowdown. Moving data so often not only makes
computations slower but also uses a lot of energy. This problem gets worse in Al and deep
learning, where huge amounts of data must be handled quickly. Even with better memory
solutions like High Bandwidth Memory (HBM), the energy and time needed to move data
remain a big challenge.
3.2 Power Consumption and Thermal Constraints
CPUs and GPUs now use more power because they need faster speeds, more processing units,
and bigger memory systems. Top-tier GPUs can use hundreds of watts, creating a lot of heat
and needing advanced cooling systems. This high power use makes them not good for edge
devices, self-driving cars, and other uses where saving energy and quick performance are
important. As the parts on chips get smaller, problems like wasted electricity and heat
management get worse, making the usual ways of improving chip performance less effective.
3.3 Diminishing Returns of Parallelism
GPUs have changed how we do parallel computing by providing thousands of cores that can
work at the same time. However, their performance is still limited by how fast data can be
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moved in and out of memory and the extra work needed to handle multiple tasks at once. Not
every program can be easily made to work with GPUs, and trying to force these programs to
use GPU power often doesn’t work well. Also, as neural networks get more complicated, just
adding more GPU cores isn’t enough to handle the demands of training and running these
models on a large scale.

3.4 Latency in Real-Time Processing

Real-time uses like robots, self-driving cars, and edge Al need super fast responses. Regular
CPU and GPU setups, which are made for handling big batches of tasks, don't work well for
these needs. The time it takes to move data between the parts that do the work and the storage,
along with the extra energy used when cores are sitting idle, makes these setups not great for
tasks that react to events and need quick, smart responses.

3.5 Inefficiency for Sparse and Unstructured Data

Al tasks, especially ones that involve understanding human language, handling sensory
information, or working with graph-based learning, usually deal with data that is spread out
and not uniform. CPUs and GPUs are best at handling dense and organized calculations, like
multiplying matrices. But when they have to process sparse data, they end up using more
resources than needed. Neuromorphic chips, on the other hand, only process the active parts of
data, which makes them more efficient for these kinds of Al tasks.

3.6 Physical Scaling Limits

The end of Dennard scaling and the slowdown of Moore's Law have made it harder to boost
CPU and GPU performance by just making transistors smaller. Chip makers have tried using
multi-core designs and better lithography, but the improvements from these methods are only
small. To keep moving forward, we need to completely rethink how computer hardware is
built, not just keep making the same designs smaller. The above issues show why we need new
ways of computing, Theis TN, Wong HSP(2017)[20].

Neuromorphic computing helps with many of these problems by copying how the brain
works—processing information in a way that's driven by events and happens in parallel. This
makes it much more energy-efficient and flexible, Innatera(2025),KAIST(2024) ,Mead
C(1990),Davies M, et al.(2018), Merolla PA, et al. (2014),15.Akopyan F, et al. (2015),[10-15].
4. Neuromorphic Computing Architecture

4.1 Principles of Neuromorphic Computing

Neuromorphic computing builds on Spiking Neural Networks (SNNs), which replicates
biological neuron functioning more faithfully than standard Artificial Neural Networks
(ANNs). Neurons in SNNs exchange discrete spikes—short electrical impulses—and
computing happens exclusively during spike emission. Because the processing is triggered by
the sparsity of spikes, the approach cuts power dramatically; dormant neurons stay silent, in
contrast to GPUs that push uniform layer calculations whether the data is active or not.

A foundational design idea is merging memory with computation to sidestep the von Neumann
bottleneck. Neuromorphic chips assign each artificial neuron its own local store for synaptic
weights, mirroring the way living neurons hold their connections. By keeping memory and
processing in the same place, these chips can run countless operations at once while keeping
delays to an absolute minimum.

Asynchronous operation is another core trait. Where CPUs and GPUs depend on a single
ticking clock to coordinate work, neuromorphic circuits lack any such master timing signal.
Neurons update their states only when they receive pertinent input, enabling them to proceed
on their own schedules and respond to changes as soon as they matter, Furber SB, et al,
(2014)[16].

4.2 Hardware Design and Architecture
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Figure 2. Spiking Neural Network
As shown in Fig.2 and Fig.3, at the core Neuromorphic chips use spiking neural networks
(SNNs) which are more energy efficient and computationally powerful network. Whereas
ANNSs have structured layers, process information using fixed continuous values. SNNs using
discrete, time-dependent spikes for information and processing work similar to biological
neural systems.. Each of these cores has artificial neurons and synapses. These cores are
connected using communication methods that imitate how nerves work in the brain.
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Synhpse Neuron
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Figure 3. Basic Unit of Neuromorphic Chip

The major components are:- Artificial Neurons: These create signals, or spikes, when they
receive enough input, just like real neurons fire when they get enough signals. Artificial
Synapses: These store information about connections and help the system learn by changing
the strength of connections, similar to how learning happens in the brain through mechanisms
like Spike-Timing Dependent Plasticity (STDP).- Crossbar Arrays: These are special structures
that help store and process information efficiently. They often use new types of technology like
memristors to do this.- Event-Driven Interconnects: These are ways the system sends signals
between cores, but they only send data when needed, which helps save energy.The main goal
of neuromorphic chips is to process information in a way that is efficient, parallel, and
adaptable, rather than focusing on how fast they can perform basic calculations, Sebastian A et
al.(2020)[17].

4. 3 Leading Neuromorphic Chips

Many research projects and companies have made big progress in neuromorphic computing,
creating impressive chips:IBM TrueNorth :This chip was introduced in 2014 and is one of the
first large-scale neuromorphic processors.It has 1 million programmable neurons and 256
million synapses spread across 4,096 cores. TrueNorth works based on events, not continuous
processing, and uses around 70 mW of power during regular tasks—much less than traditional
GPUs doing similar jobs. It is especially good for vision and pattern recognition tasks that need
very little power. Intel Loihi :Released in 2018, Loihi is a big improvement with 128
neuromorphic cores and 130,000 neurons.It supports learning directly on the chip using STDP
and reinforcement learning, which means it can learn without needing external help. Its newer
version, Loihi 2, from 2021, has better programming options, more detailed neuron models,
and improved support for Al tasks that use very little energy.BrainChip Akida:Akida is a
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processor made by BrainChip that is designed for real-time Al tasks on the edge.It can run both
standard Al models like CNNs and spiking neural networks, which helps developers move
from traditional deep learning to neuromorphic computing more easily. Akida is very energy-
efficient and is used in smart sensors, robotics, and internet of things devices, Maass
W.(1997)[18], .SpiNNaker: This platform was developed at the University of Manchester and
is used to simulate large brain models. SpiNNaker can handle up to 1 billion neurons and is
mainly used for neuroscience research, not for commercial Al applications.

4. 4 Advantages Over Conventional Processors

Neuromorphic chips do better than CPUs and GPUs in several ways:Energy Efficiency:
These chips only process what is needed and reduce memory use, which can lower power use
by up to 100 times compared to GPUs for similar tasks.Massive Parallelism: Neurons work at
the same time and on their own, which helps process streams of sensory data in real
time.Adaptability: They can learn and adjust while working on the chip, making them good
for changing environments without needing help from the cloud.Latency: The way these
chips work, based on events, allows for fast responses, which is important for robots, self-
driving systems, and Al at the edge, Shafique M et al.(2018)[19].

S Hybrid Architectures

Even though neuromorphic chips are promising, they are often used together with CPUs and
GPUs in mixed systems. This setup uses the strengths of traditional processors for tasks like
handling big calculations while using neuromorphic parts for efficient, event-driven
processing. Neuromorphic computing’s design and way of working directly fix the issues
with CPUs and GPUs, making it a strong choice for future Al and edge computing systems.

5.1 Comparative Analysis

The shift from CPUs to GPUs and now to neuromorphic chips shows how the needs of
computing tasks have changed. While CPUs and GPUs are good for general use and parallel
work, neuromorphic chips are better at using less energy, handling events, and adapting. A
full comparison of these designs helps understand their strengths, weaknesses, and where
neuromorphic systems are especially useful , Indiveri G, Liu SC.(2015), BrainChip Holdings
(2021)[21-22].

5.2 Performance Benchmarks

CPUs are built for doing one task after another and are fast at handling single tasks. They have
few powerful cores, making them good for general use but less efficient for tasks that need a
lot of parallel processing, like deep learning. GPUs have many simpler cores that are great for
parallel work, especially handling big matrix calculations.For example, modern GPUs like
NVIDIA’s A100 can do trillions of operations per second and are widely used in training deep
neural networks. However, they use a lot of power, often over 250 to 400 watts for top models,
and need advanced cooling systems, NVIDIA. CUDA (2022)[26]. Neuromorphic chips are
very efficient because they process data in a way that responds to events as they happen, instead
of running instructions all the time. For example, IBM’s TrueNorth chip can handle 46 billion
synaptic operations per second per watt, and it uses just 70 milliwatts of power—much less
than GPU systems doing similar tasks. Intel’s Loihi chip is also very efficient, using up to 100
times less energy than GPUs for similar tasks when dealing with sparse data patterns.

Energy efficiency is very important, especially for devices that need to work without being
plugged in or for applications that need to run in real time. CPUs are designed for general use,
but they use a lot of power when they’re not doing anything because they keep running all the
time. GPUs are good for parallel tasks but still use a lot of energy because all their parts are
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always on. Neuromorphic chips are different because they only use power when neurons are
activated by events. For example, Loihi can run speech recognition tasks using less than 20
milliwatts, while GPU-based systems need hundreds of watts. This makes neuromorphic chips
great for devices like drones, sensors, and other battery-powered gadgets. CPUs and GPUs are
limited by the von Neumann architecture, which separates memory and processing, creating a
bottleneck in data transfer. High-performance GPUs use expensive and power-hungry memory
to help, but the problem remains.

Neuromorphic chips avoid this by combining memory and processing in each neuron and
synapse. This reduces the need to move data around and makes processing faster and more
efficient, especially for tasks with event-based data like real-time vision or sensing, Schuman
K, et al.(2017)[25] .

5.3 Applications Vision Processing

IBM TrueNorth can process high-resolution visual data and recognize objects using up to 100
times less power than traditional GPU systems, making it perfect for embedded vision systems.

Edge AI: Intel Loihi has been used in robotics for navigation, where it runs inference with very
low latency and much less energy than NVIDIA Jetson GPUs.

Speech Recognition: BrainChip Akida is efficient for tasks like detecting keywords and
analyzing audio, working well on small devices that can't handle GPU-based Al models,
NVIDIA. CUDA (2022)[26] .

5.4 Limitations of Neuromorphic Chips

Despite their advantages, neuromorphic chips are not yet universal replacements for CPUs or
GPUs. Current neuromorphic platforms are optimized for spiking neural networks and event-
driven workloads but are less effective for dense matrix computations, which remain the
strength of GPUs. Moreover, the lack of standardized programming frameworks and the
relative immaturity of the software ecosystem present challenges for widespread adoption.

6 Summary of Comparison
Table 1 Summary of Comparison CPU GPU and Neuromorphic Chip

SN Feature CpPU GPU Neuromorphic Chip
Processing Type Sequential Parallel (SIMD) Event-driven (SNN)
Energy .
Efficiency Low Moderate Very High
.. . Low-power Al
Best For General-purpose tasks Al training, graphics inference
Latency High for parallel Al Moderate Low
e . . . Extremely high
Scalability Limited High (parallelism) (neurons)

Neuromorphic chips work together with CPUs and GPUs instead of taking their place. They
are especially good at tasks that need fast responses, use less power, and can adapt on the fly.
Putting them into mixed systems is a great idea for the future of computing.

7. Challenges

There are many challenges to overcome, including technical issues, design limitations, and
problems with the overall system and support. In the coming years, neuromorphic chips are
likely to play a big role in areas like smart cities, medical devices, Al cameras that work at the
edge, and even space missions. They are light and use very little power, which makes them
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perfect for situations where power is limited and reliability is key.These chips do more than
just speed things up—they help create new kinds of technology that traditional processors can't
handle.Because they respond quickly, adjust on the fly, and use minimal energy, they open up
possibilities for inventions that wouldn't be possible with regular computer chips, Amir A, et
al.(2017), LeCun Y, et al.(2015)[23-24] .

7.1 Software Ecosystem and Programming Complexity

One of the biggest problems for neuromorphic chips is that there isn't a well-developed
software environment yet. Most traditional Al tools, like TensorFlow and PyTorch, are made
for dense matrix-based neural networks and don't naturally work with Spiking Neural Networks
(SNNs). This makes it hard for developers to switch from regular deep learning models to
systems that work with event-driven, spike-based processing.

To fix this, some companies like Intel and BrainChip have created special software
development kits, such as Intel's NxSDK for Loihi.

But these tools are still in early stages and don't have the same wide range of libraries or strong
community support as tools used for CPU and GPU-based Al. Also, training SNNs is tough
because spike events aren't differentiable, which makes it hard to use backpropagation—the
key technique in modern deep learning. Going forward, the focus should be on creating hybrid
frameworks that work smoothly with existing Al systems while allowing efficient use on
neuromorphic hardware.

7.2 Hardware Scalability and Manufacturing Challenges

One of the main issues with neuromorphic chips is that there isn't a good software environment
yet. Most common Al tools, like TensorFlow and PyTorch, are built for neural networks that
use dense matrices and don't really work well with Spiking Neural Networks (SNNs). This
makes it difficult for developers to move from regular deep learning models to systems that
use event-driven, spike-based processing.

To help with this, some companies like Intel and BrainChip have made special software
development kits, such as Intel's NxSDK for Loihi.

However, these tools are still in the early stages and don't have the same variety of libraries or
strong community support as tools used for CPU and GPU-based AL

Also, training SNNss is hard because spike events aren't differentiable, which makes it hard to
use backpropagation—a key method in modern deep learning. Looking ahead, the focus should
be on making hybrid frameworks that work well with existing Al systems while also being
efficient for neuromorphic hardware, Market Research Future(2023-24)[28].

7.3 Benchmarking and Standardization

Unlike CPUs and GPUs, which have well-defined benchmarks (e.g., FLOPS, TOPS, SPEC
scores), neuromorphic performance is difficult to measure using conventional metrics. Event-
driven processing and adaptive learning mechanisms do not translate well to traditional
performance indicators. A lack of standardized benchmarks makes it challenging to compare
neuromorphic chips to GPUs or even to one another. Establishing domain-specific
benchmarks—for vision, speech, or robotics—will help accelerate adoption by providing clear
performance indicators.

7.4 Training and Model Conversion

Most current Al models are designed for dense deep neural networks, which do not directly
map to spiking architectures. The process of converting a conventional deep learning model
(e.g., a CNN) to an SNN often involves accuracy loss, performance trade-offs, and retraining.
Techniques such as ANN-to-SNN conversion are still evolving, and a unified methodology for
creating high-performance SNNs is needed. In the future, we may see end-to-end training
methods for SNNs that bypass the conversion step altogether.
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8 Future Directions

The future of neuromorphic computing lies in hybrid architectures that combine the strengths
of CPUs, GPUs, and neuromorphic cores. Such systems would use CPUs for control logic,
GPUs for high-throughput matrix operations, and neuromorphic chips for event-driven
inference and low-power real-time tasks.

Advances in 3D integration, chiplet architectures, and photonic neuromorphic processors are
expected to push the boundaries of scalability and energy efficiency. Moreover, quantum
neuromorphic computing—an intersection of neuromorphic and quantum paradigms—may
emerge as a groundbreaking field, blending probabilistic computation with brain-inspired
architectures.

Another promising direction is co-design, where hardware and software are developed together
to maximize performance. For example, neuromorphic chips could be paired with custom SNN
training algorithms optimized for specific applications, such as real-time robotics or edge Al.
However, ongoing research and development suggest that hybrid architectures combining
CPUs, GPUs, and neuromorphic cores will define the future of computing. This co-existence
will allow neuromorphic systems to complement traditional processors by handling event-
driven and low-power inference tasks, while CPUs and GPUs continue to manage dense,
compute-heavy workloads, VentureBeat (2024-25),. Market Research Future(2023—
24), VentureBeat (2024-25)[27-28].

9. Conclusion

The evolution of computing architectures—from CPUs to GPUs, and now toward
neuromorphic chips—represents a fundamental paradigm shift in the way we approach
computation. CPUs have long been the foundation of general-purpose computing, excelling in
sequential task execution. GPUs extended this capability by introducing massive parallelism,
enabling breakthroughs in artificial intelligence, scientific computing, and data-intensive
applications. However, the growing complexity of modern Al workloads, conventional
architectures are reaching their practical limits. Neuromorphic systems can process Al
workloads, , at a fraction of the power consumption of GPUs—making them ideal for edge
computing, robotics, and autonomous systems.
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