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Abstract 

The exponential growth of data-intensive applications, especially in artificial intelligence (AI) 
and machine learning (ML), has pushed conventional computing architectures—CPUs and 
GPUs—to their limits in terms of power efficiency, parallelism, and scalability. Neuromorphic 
chips, inspired by the human brain's structure and function, promise to overcome these 
limitations by enabling event-driven computation, massive parallelism, and ultra-low energy 
consumption. Continuous comparative framework that highlights performance power, and 
programmability metrics relative to traditional processors. Each neuromorphic system 
embodies divergent trade-offs. For instance, TrueNorth's 4,096-core fabric excels in extreme 
low power for inference but requires an explicit mapping of neural topologies. Intel’s Loihi 
balances programmability and efficiency through on-chip learning but is constrained by fixed 
memory hierarchies. BrainChip’s Akida, leveraging a unified memory and custom instruction 
set, targets real-time sensor fusion in low-footprint environments. By quantifying these metrics, 
we identify specific problem classes that merit a transition to neuromorphic computing, 
including spatiotemporal signal processing, anomaly detection in sensor networks, and 
continual learning in resource-constrained devices. 

Beyond hardware, also surveyed the software models that translate conventional neural 
networks into spiking representations. Case studies illustrate the accelerated inference times 
and reduced energy footprints achieved on neuromorphic processors for real-world vision, 
speech, and robotic control tasks. Finally, we discuss the anticipated scalability of 
neuromorphic systems, arguing that future heterogeneous deployments will integrate these 
chips within mixed architectures to offload specific workloads, thereby extending the 
performance and efficiency spectrum of computing infrastructure beyond the limits of 
traditional CPUs and GPUs. 
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1. Introduction  
Over decades, the landscape of computing architectures has determined the pace of innovation, 
influencing everything from climate modelling to the latest AI breakthroughs. Central 
Processing Units have long provided the backbone of computing, well-suited to the orderly, 
stepwise logic of most programs. Yet as data volumes surged, particularly in fields like 
machine learning and simulations of complex phenomena, the industry turned to Graphics 
Processing Units, whose thousands of cores could tackle multiple data elements 
simultaneously. Together, the CPU and GPU, still arranged around the classic von Neumann 
principle of memory and processing separation, have met the challenges of ever-more 
demanding workloads without breaking stride.  
However, the fast-growing amount of data and the  increasing complexity of  the AI models 
have shown the limits of traditional hardware. Even though CPUs and GPUs are powerful, they 
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have some natural problems like poor energy use, limited ability to do many tasks at once, and 
memory bandwidth issues from the von Neumann architecture, often called the "von Neumann 
bottleneck. As making smaller transistors becomes harder and Moore's Law slows down, these 
issues have gotten worse, especially in areas that need real-time, low-power, and event-based 
processing, like edge AI, autonomous robots, and IoT devices. 
Neuromorphic computing has become a big change to solve these problems by looking at how 
the human brain works. Unlike regular processors, which separate memory and computation, 
neuromorphic chips combine these parts, copying how biological neurons work in parallel and 
distributed ways. This lets neuromorphic systems be very energy-efficient and highly 
responsive. Spiking Neural Networks (SNNs), which use sudden spikes to send information 
instead of continuous signals, are central to neuromorphic designs, allowing for asynchronous 
and event-based computing.Interest in neuromorphic computing has led to new hardware like 
IBM's TrueNorth, Intel's Loihi, BrainChip's Akida, and SpiNNaker.These chips are built to 
handle AI tasks more efficiently than traditional CPUs and GPUs. They not only use much less 
power but also open up new opportunities for brain-inspired computing, like neuromorphic 
vision sensors and advanced robotics.This paper gives a full look at the shift from CPUs and 
GPUs to neuromorphic chips.It starts with a review of the history of computing, showing how 
it moved from doing one task at a time to doing many tasks at once. Then, it explores the 
shortcomings of current CPUs and GPUs and why they can't keep up with modern AI needs. 
The main part of the paper explains neuromorphic architecture, its design ideas, major 
examples, and performance benefits. Finally, it covers possible uses, challenges, and future 
steps in neuromorphic computing, showing why this change is important for the next big step 
in computing, IMARC Group(2025), Transparency Market Research(2025), SNS 
Insider(2023)[1-3]. 
2. Literature Review 
Neuromorphic computing, which is inspired by the structure and function of the human brain, 
has made big progress lately, especially with the use of photonic technologies and new designs. 
The following review covers important findings from recent research. Biasi et al.(2023) [4], 
look into the potential of photonic neural networks (PNNs) made using integrated silicon 
microresonators. Their work points out the benefits of using photonic systems, such as faster 
processing, the ability to handle multiple tasks at once, and lower power use compared to 
traditional electronic systems. The authors show experimental results of photonic neuron-like 
behavior and talk about how silicon photonics can be scaled up for neuromorphic computing. 
They also suggest that using photonics could help solve the problem of slow electronic 
connections, making it a great option for fast AI hardware. Li et al.(2023)[5], give a detailed 
overview of how photonics can be used in neuromorphic computing. They focus on the basics, 
the types of devices used, and future possibilities. The paper describes various photonic devices 
like microring resonators, Mach-Zehnder interferometers, and phase-change materials that can 
imitate the behavior of synapses and neurons. They also discuss how combining photonic and 
electronic systems can help with issues like energy use and bandwidth. This review shows that 
photonics could be a big part of creating next-gen neuromorphic processors that work better 
than the traditional von Neumann architecture. Greatorex et al.(2024)[6], introduce TEXEL, a 
neuromorphic processor that can learn directly on the chip, which makes it suitable for use with 
next-gen technologies beyond standard CMOS. Unlike traditional AI accelerators, TEXEL 
allows learning inside the hardware, which cuts down on delays and energy use. The authors 
talk about the principles of combining device design with circuit design and highlight how 
TEXEL works well with new devices like memristors and spintronic elements. This study helps 
in building highly adaptable and energy-efficient neuromorphic systems that are similar to how 
the brain works. Le D et al. (2025)[7],  review the memory wall problem in neuromorphic 
computing, which is a major issue that limits the performance of hardware accelerators. The 
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paper explains the main causes of this problem, like the extra time and resources needed to 
move data between memory and processing parts. The authors assess new memory 
technologies such as RRAM, PCM, and FeFET, as well as memory-focused computing 
approaches that aim to fix this bottleneck. Their review shows the importance of designing 
systems where memory and computation are closely linked, as well as using 3D integration to 
improve overall performance. 
2.1 Summary and Research Gap 
Overall, these works show that the future of high-performance and energy-efficient AI 
hardware lies in combining photonics, new memory technologies, and neuromorphic designs. 
Biasi S, et al.(2023) and Li R, et al. (2023) [4-5], Photonic approaches offer speed and better 
data handling, Greatorex H, et al. (2024)[6], systems like TEXEL, show the ability to adapt on 
the chip, and memory-focused solutions, Le D, et al.(2025)[7], tackle the memory wall 
challenge. However, there is still a lack of a unified system that smoothly combines these 
parts—photonic neuromorphic cores, learning mechanisms that can adapt, and efficient 
memory systems. This is a big area for future research. 
3. Limitations of CPUs and GPUs 

 
Figure 1: CPU-GPU-Neuromorphic Chip 

As in Fig.1, Central Processing Units (CPUs) and Graphics Processing Units (GPUs) have been 
the main tools in modern computing for a long time. CPUs are designed to handle a wide variety 
of tasks one after another, while GPUs are built to handle many tasks at the same time. This 
makes GPUs especially good for demanding jobs like machine learning and big simulations. 
However, even with these improvements, both types of processors still have important limits 
that make it hard for them to keep up with the more complex, data-heavy, and energy-conscious 
tasks that are coming in the future, Intel(2025), BrainChip (2025),[8-9].  
3.1 The Von Neumann Bottleneck 
Both CPUs and GPUs use the von Neumann architecture, which keeps memory and the 
processing part separate. Because of this, data has to keep moving back and forth between 
memory and the processor. As tasks that need a lot of data become more common, this constant 
movement of data creates a performance slowdown. Moving data so often not only makes 
computations slower but also uses a lot of energy. This problem gets worse in AI and deep 
learning, where huge amounts of data must be handled quickly. Even with better memory 
solutions like High Bandwidth Memory (HBM), the energy and time needed to move data 
remain a big challenge. 
3.2 Power Consumption and Thermal Constraints 
CPUs and GPUs now use more power because they need faster speeds, more processing units, 
and bigger memory systems. Top-tier GPUs can use hundreds of watts, creating a lot of heat 
and needing advanced cooling systems. This high power use makes them not good for edge 
devices, self-driving cars, and other uses where saving energy and quick performance are 
important. As the parts on chips get smaller, problems like wasted electricity and heat 
management get worse, making the usual ways of improving chip performance less effective. 
3.3 Diminishing Returns of Parallelism 
GPUs have changed how we do parallel computing by providing thousands of cores that can 
work at the same time. However, their performance is still limited by how fast data can be 
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moved in and out of memory and the extra work needed to handle multiple tasks at once. Not 
every program can be easily made to work with GPUs, and trying to force these programs to 
use GPU power often doesn’t work well. Also, as neural networks get more complicated, just 
adding more GPU cores isn’t enough to handle the demands of training and running these 
models on a large scale. 
3.4 Latency in Real-Time Processing 
Real-time uses like robots, self-driving cars, and edge AI need super fast responses. Regular 
CPU and GPU setups, which are made for handling big batches of tasks, don't work well for 
these needs. The time it takes to move data between the parts that do the work and the storage, 
along with the extra energy used when cores are sitting idle, makes these setups not great for 
tasks that react to events and need quick, smart responses. 
3.5 Inefficiency for Sparse and Unstructured Data 
AI tasks, especially ones that involve understanding human language, handling sensory 
information, or working with graph-based learning, usually deal with data that is spread out 
and not uniform. CPUs and GPUs are best at handling dense and organized calculations, like 
multiplying matrices. But when they have to process sparse data, they end up using more 
resources than needed. Neuromorphic chips, on the other hand, only process the active parts of 
data, which makes them more efficient for these kinds of AI tasks. 
3.6 Physical Scaling Limits 
The end of Dennard scaling and the slowdown of Moore's Law have made it harder to boost 
CPU and GPU performance by just making transistors smaller. Chip makers have tried using 
multi-core designs and better lithography, but the improvements from these methods are only 
small. To keep moving forward, we need to completely rethink how computer hardware is 
built, not just keep making the same designs smaller. The above issues show why we need new 
ways of computing, Theis TN, Wong HSP(2017)[20]. 
Neuromorphic computing helps with many of these problems by copying how the brain 
works—processing information in a way that's driven by events and happens in parallel. This 
makes it much more energy-efficient and flexible, Innatera(2025),KAIST(2024) ,Mead 
C(1990),Davies M, et al.(2018), Merolla PA, et al. (2014),15.Akopyan F, et al. (2015),[10-15]. 
4. Neuromorphic Computing Architecture 
4.1 Principles of Neuromorphic Computing 
Neuromorphic computing builds on Spiking Neural Networks (SNNs), which replicates 
biological neuron functioning more faithfully than standard Artificial Neural Networks 
(ANNs). Neurons in SNNs exchange discrete spikes—short electrical impulses—and 
computing happens exclusively during spike emission. Because the processing is triggered by 
the sparsity of spikes, the approach cuts power dramatically; dormant neurons stay silent, in 
contrast to GPUs that push uniform layer calculations whether the data is active or not. 
A foundational design idea is merging memory with computation to sidestep the von Neumann 
bottleneck. Neuromorphic chips assign each artificial neuron its own local store for synaptic 
weights, mirroring the way living neurons hold their connections. By keeping memory and 
processing in the same place, these chips can run countless operations at once while keeping 
delays to an absolute minimum. 
Asynchronous operation is another core trait. Where CPUs and GPUs depend on a single 
ticking clock to coordinate work, neuromorphic circuits lack any such master timing signal. 
Neurons update their states only when they receive pertinent input, enabling them to proceed 
on their own schedules and respond to changes as soon as they matter, Furber SB, et al, 
(2014)[16]. 
4.2 Hardware Design and Architecture 

COMPUTER RESEARCH AND DEVELOPMENT  (ISSN NO:1000-1239)  VOLUME 25 ISSUE 10 2025

PAGE NO: 158



 
Figure 2. Spiking Neural Network 

As shown in Fig.2 and Fig.3,  at the core Neuromorphic chips use spiking neural networks 
(SNNs) which are more energy efficient and computationally powerful network. Whereas 
ANNs have structured layers, process information using fixed continuous values. SNNs using 
discrete, time-dependent spikes for information and processing work similar to biological 
neural systems.. Each of these cores has artificial neurons and synapses. These cores are 
connected using communication methods that imitate how nerves work in the brain.  

 

Figure 3. Basic Unit of Neuromorphic Chip 
The major components are:- Artificial Neurons: These create signals, or spikes, when they 
receive enough input, just like real neurons fire when they get enough signals. Artificial 
Synapses: These store information about connections and help the system learn by changing 
the strength of connections, similar to how learning happens in the brain through mechanisms 
like Spike-Timing Dependent Plasticity (STDP).- Crossbar Arrays: These are special structures 
that help store and process information efficiently.They often use new types of technology like 
memristors to do this.- Event-Driven Interconnects: These are ways the system sends signals 
between cores, but they only send data when needed, which helps save energy.The main goal 
of neuromorphic chips is to process information in a way that is efficient, parallel, and 
adaptable, rather than focusing on how fast they can perform basic calculations, Sebastian A et 
al.(2020)[17]. 

4. 3 Leading Neuromorphic Chips 

Many research projects and companies have made big progress in neuromorphic computing, 
creating impressive chips:IBM TrueNorth :This chip was introduced in 2014 and is one of the 
first large-scale neuromorphic processors.It has 1 million programmable neurons and 256 
million synapses spread across 4,096 cores. TrueNorth works based on events, not continuous 
processing, and uses around 70 mW of power during regular tasks—much less than traditional 
GPUs doing similar jobs. It is especially good for vision and pattern recognition tasks that need 
very little power. Intel Loihi :Released in 2018, Loihi is a big improvement with 128 
neuromorphic cores and 130,000 neurons.It supports learning directly on the chip using STDP 
and reinforcement learning, which means it can learn without needing external help. Its newer 
version, Loihi 2, from 2021, has better programming options, more detailed neuron models, 
and improved support for AI tasks that use very little energy.BrainChip Akida:Akida is a 
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processor made by BrainChip that is designed for real-time AI tasks on the edge.It can run both 
standard AI models like CNNs and spiking neural networks, which helps developers move 
from traditional deep learning to neuromorphic computing more easily. Akida is very energy-
efficient and is used in smart sensors, robotics, and internet of things devices, Maass 
W.(1997)[18], .SpiNNaker: This platform was developed at the University of Manchester and 
is used to simulate large brain models. SpiNNaker can handle up to 1 billion neurons and is 
mainly used for neuroscience research, not for commercial AI applications. 

4. 4 Advantages Over Conventional Processors 

Neuromorphic chips do better than CPUs and GPUs in several ways:Energy Efficiency: 
These chips only process what is needed and reduce memory use, which can lower power use 
by up to 100 times compared to GPUs for similar tasks.Massive Parallelism: Neurons work at 
the same time and on their own, which helps process streams of sensory data in real 
time.Adaptability: They can learn and adjust while working on the chip, making them good 
for changing environments without needing help from the cloud.Latency: The way these 
chips work, based on events, allows for fast responses, which is important for robots, self-
driving systems, and AI at the edge, Shafique M et al.(2018)[19]. 

5 Hybrid Architectures 

Even though neuromorphic chips are promising, they are often used together with CPUs and 
GPUs in mixed systems. This setup uses the strengths of traditional processors for tasks like 
handling big calculations while using neuromorphic parts for efficient, event-driven 
processing. Neuromorphic computing’s design and way of working directly fix the issues 
with CPUs and GPUs, making it a strong choice for future AI and edge computing systems. 

5.1 Comparative Analysis 

The shift from CPUs to GPUs and now to neuromorphic chips shows how the needs of 
computing tasks have changed. While CPUs and GPUs are good for general use and parallel 
work, neuromorphic chips are better at using less energy, handling events, and adapting. A 
full comparison of these designs helps understand their strengths, weaknesses, and where 
neuromorphic systems are especially useful , Indiveri G, Liu SC.(2015), BrainChip Holdings 
(2021)[21-22]. 

5.2 Performance Benchmarks 

CPUs are built for doing one task after another and are fast at handling single tasks. They have 
few powerful cores, making them good for general use but less efficient for tasks that need a 
lot of parallel processing, like deep learning. GPUs have many simpler cores that are great for 
parallel work, especially handling big matrix calculations.For example, modern GPUs like 
NVIDIA’s A100 can do trillions of operations per second and are widely used in training deep 
neural networks. However, they use a lot of power, often over 250 to 400 watts for top models, 
and need advanced cooling systems, NVIDIA. CUDA (2022)[26]. Neuromorphic chips are 
very efficient because they process data in a way that responds to events as they happen, instead 
of running instructions all the time. For example, IBM’s TrueNorth chip can handle 46 billion 
synaptic operations per second per watt, and it uses just 70 milliwatts of power—much less 
than GPU systems doing similar tasks. Intel’s Loihi chip is also very efficient, using up to 100 
times less energy than GPUs for similar tasks when dealing with sparse data patterns. 

Energy efficiency is very important, especially for devices that need to work without being 
plugged in or for applications that need to run in real time. CPUs are designed for general use, 
but they use a lot of power when they’re not doing anything because they keep running all the 
time. GPUs are good for parallel tasks but still use a lot of energy because all their parts are 
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always on. Neuromorphic chips are different because they only use power when neurons are 
activated by events. For example, Loihi can run speech recognition tasks using less than 20 
milliwatts, while GPU-based systems need hundreds of watts. This makes neuromorphic chips 
great for devices like drones, sensors, and other battery-powered gadgets. CPUs and GPUs are 
limited by the von Neumann architecture, which separates memory and processing, creating a 
bottleneck in data transfer. High-performance GPUs use expensive and power-hungry memory 
to help, but the problem remains. 

Neuromorphic chips avoid this by combining memory and processing in each neuron and 
synapse. This reduces the need to move data around and makes processing faster and more 
efficient, especially for tasks with event-based data like real-time vision or sensing, Schuman 
K, et al.(2017)[25] . 

5.3 Applications Vision Processing 

 IBM TrueNorth can process high-resolution visual data and recognize objects using up to 100 
times less power than traditional GPU systems, making it perfect for embedded vision systems. 

Edge AI: Intel Loihi has been used in robotics for navigation, where it runs inference with very 
low latency and much less energy than NVIDIA Jetson GPUs. 

Speech Recognition: BrainChip Akida is efficient for tasks like detecting keywords and 
analyzing audio, working well on small devices that can't handle GPU-based AI models, 
NVIDIA. CUDA (2022)[26] . 

5.4 Limitations of Neuromorphic Chips 

Despite their advantages, neuromorphic chips are not yet universal replacements for CPUs or 
GPUs. Current neuromorphic platforms are optimized for spiking neural networks and event-
driven workloads but are less effective for dense matrix computations, which remain the 
strength of GPUs. Moreover, the lack of standardized programming frameworks and the 
relative immaturity of the software ecosystem present challenges for widespread adoption. 

6  Summary of Comparison 
Table 1 Summary of Comparison CPU GPU and Neuromorphic Chip 

SN Feature CPU GPU Neuromorphic Chip 

1 Processing Type Sequential Parallel (SIMD) Event-driven (SNN) 

2 
Energy 

Efficiency 
Low Moderate Very High 

3 Best For General-purpose tasks AI training, graphics 
Low-power AI 

inference 

4 Latency High for parallel AI Moderate Low 

5 Scalability Limited High (parallelism) 
Extremely high 

(neurons) 
 
Neuromorphic chips work together with CPUs and GPUs instead of taking their place. They 
are especially good at tasks that need fast responses, use less power, and can adapt on the fly. 
Putting them into mixed systems is a great idea for the future of computing. 
7. Challenges  
There are many challenges to overcome, including technical issues, design limitations, and 
problems with the overall system and support. In the coming years, neuromorphic chips are 
likely to play a big role in areas like smart cities, medical devices, AI cameras that work at the 
edge, and even space missions. They are light and use very little power, which makes them 
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perfect for situations where power is limited and reliability is key.These chips do more than 
just speed things up—they help create new kinds of technology that traditional processors can't 
handle.Because they respond quickly, adjust on the fly, and use minimal energy, they open up 
possibilities for inventions that wouldn't be possible with regular computer chips, Amir A, et 
al.(2017), LeCun Y, et al.(2015)[23-24] . 
7.1 Software Ecosystem and Programming Complexity 
One of the biggest problems for neuromorphic chips is that there isn't a well-developed 
software environment yet. Most traditional AI tools, like TensorFlow and PyTorch, are made 
for dense matrix-based neural networks and don't naturally work with Spiking Neural Networks 
(SNNs). This makes it hard for developers to switch from regular deep learning models to 
systems that work with event-driven, spike-based processing. 
To fix this, some companies like Intel and BrainChip have created special software 
development kits, such as Intel's NxSDK for Loihi. 
But these tools are still in early stages and don't have the same wide range of libraries or strong 
community support as tools used for CPU and GPU-based AI. Also, training SNNs is tough 
because spike events aren't differentiable, which makes it hard to use backpropagation—the 
key technique in modern deep learning. Going forward, the focus should be on creating hybrid 
frameworks that work smoothly with existing AI systems while allowing efficient use on 
neuromorphic hardware. 
7.2 Hardware Scalability and Manufacturing Challenges 
One of the main issues with neuromorphic chips is that there isn't a good software environment 
yet. Most common AI tools, like TensorFlow and PyTorch, are built for neural networks that 
use dense matrices and don't really work well with Spiking Neural Networks (SNNs). This 
makes it difficult for developers to move from regular deep learning models to systems that 
use event-driven, spike-based processing. 
To help with this, some companies like Intel and BrainChip have made special software 
development kits, such as Intel's NxSDK for Loihi. 
However, these tools are still in the early stages and don't have the same variety of libraries or 
strong community support as tools used for CPU and GPU-based AI. 
Also, training SNNs is hard because spike events aren't differentiable, which makes it hard to 
use backpropagation—a key method in modern deep learning. Looking ahead, the focus should 
be on making hybrid frameworks that work well with existing AI systems while also being 
efficient for neuromorphic hardware, Market Research Future(2023–24)[28]. 
7.3 Benchmarking and Standardization 
Unlike CPUs and GPUs, which have well-defined benchmarks (e.g., FLOPS, TOPS, SPEC 
scores), neuromorphic performance is difficult to measure using conventional metrics. Event-
driven processing and adaptive learning mechanisms do not translate well to traditional 
performance indicators. A lack of standardized benchmarks makes it challenging to compare 
neuromorphic chips to GPUs or even to one another. Establishing domain-specific 
benchmarks—for vision, speech, or robotics—will help accelerate adoption by providing clear 
performance indicators. 
7.4 Training and Model Conversion 
Most current AI models are designed for dense deep neural networks, which do not directly 
map to spiking architectures. The process of converting a conventional deep learning model 
(e.g., a CNN) to an SNN often involves accuracy loss, performance trade-offs, and retraining. 
Techniques such as ANN-to-SNN conversion are still evolving, and a unified methodology for 
creating high-performance SNNs is needed. In the future, we may see end-to-end training 
methods for SNNs that bypass the conversion step altogether. 
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8  Future Directions 
The future of neuromorphic computing lies in hybrid architectures that combine the strengths 
of CPUs, GPUs, and neuromorphic cores. Such systems would use CPUs for control logic, 
GPUs for high-throughput matrix operations, and neuromorphic chips for event-driven 
inference and low-power real-time tasks. 
Advances in 3D integration, chiplet architectures, and photonic neuromorphic processors are 
expected to push the boundaries of scalability and energy efficiency. Moreover, quantum 
neuromorphic computing—an intersection of neuromorphic and quantum paradigms—may 
emerge as a groundbreaking field, blending probabilistic computation with brain-inspired 
architectures. 
Another promising direction is co-design, where hardware and software are developed together 
to maximize performance. For example, neuromorphic chips could be paired with custom SNN 
training algorithms optimized for specific applications, such as real-time robotics or edge AI. 
However, ongoing research and development suggest that hybrid architectures combining 
CPUs, GPUs, and neuromorphic cores will define the future of computing. This co-existence 
will allow neuromorphic systems to complement traditional processors by handling event-
driven and low-power inference tasks, while CPUs and GPUs continue to manage dense, 
compute-heavy workloads, VentureBeat (2024–25),. Market Research Future(2023–
24), VentureBeat (2024–25)[27-28]. 
9. Conclusion 
The evolution of computing architectures—from CPUs to GPUs, and now toward 
neuromorphic chips—represents a fundamental paradigm shift in the way we approach 
computation. CPUs have long been the foundation of general-purpose computing, excelling in 
sequential task execution. GPUs extended this capability by introducing massive parallelism, 
enabling breakthroughs in artificial intelligence, scientific computing, and data-intensive 
applications. However, the growing complexity of modern AI workloads, conventional 
architectures are reaching their practical limits. Neuromorphic systems can process AI 
workloads, , at a fraction of the power consumption of GPUs—making them ideal for edge 
computing, robotics, and autonomous systems. 
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no financial support for the research, authorship, and/or publication of this article. 
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