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Abstract

In many face recognition applications, due to the small sample size (SSS) problem, it is difficult to
construct a single strong classifier. However, ensemble classifiers are gaining significance mainly in face
recognition systems due to its ability to overcome the SSS problem. Hence this chapter proposed a novel
Ensemble of Convolutional Neural Networks based feature descriptors for face recognition in

uncontrolled environments.
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1. INTRODUCTION

Inrecent years, machine learning has reached its pinnacle in automation and deep learning started achieving
success in numerous research areas of Computer Vision. As Data became Big Data, traditional CPUs are
getting replaced by powerful GPUs for computationally intensive applications. The need to use Deep
Learning systems is of utmost importance in various domains such as Medical Image Analysis, Face
Recognition, Robotics, Self-driving Cars etc. to achieve better results. Before a decade, traditional feature
extraction methods such as Local Binary Pattern (LBP) by Ojala et al. (2015), Scale Invariant Feature
Transform (SIFT) by David Lowe, Histogram of Oriented Gradients (HoG) by Dalal and Triggs achieved
good results in publicly available datasets. It was mainly due to the use of Bag of Visual Words approach
along with a Machine Learning classifier such as Linear SVM as shown by Yang et al. Recent research
works in the Machine Learning community showed that automatic learning of these features in raw images
is possible if multiple layers of nonlinear activation functions are used. This led to the introduction of a
Neural Networks, namely the Convolutional Neural Networks (CNN) which was first applied on a larger
dataset. CNN has attracted the Computer Vision (CV) research by significantly improving the state of the
art application domains. The key success of using CNN in CV applications is due to its scalable quantities
of processing speed, power in accuracy and the massive training dataset. However, deep learning
techniques are far better than the conventional machine learning techniques. Technology giants like
Google, DeepMind and Facebook, etc., are already making a huge stride in the CV space. In olden days
Facebook asked you to tag your friends in your photograph, but the advancement of deep learning
techniques leads the ability to recognize your friends from your group photograph. Facebook algorithms
are efficient enough to recognize the faces with 98% accuracy from the posted group/individual
photographs. The recent face recognition method by Google also uses nearly about 200 million face images
which are larger than any other publicly available dataset. Hence, processing these large datasets is a
complex task and requires high computational devices like Graphics Processing Units (GPU). Face
recognition in an uncontrolled environment is still a challenging task. The recent study on Face recognition
under uncontrolled environment reveals the practical difficulties of implementing. The conventional face

recognition algorithms use the low-level features and shallow models to represent the faces and facial
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features. In this decade, many authors have proved the effectiveness of the deep learning models in effective
face recognition. Recent deep learning models such as Alexnet, ZFNet, VGG, GoogleNet, Inception etc.,
are effectively utilized to extract high level visual features. In contrast to the above stated models this
research work proposes a novel ensemble of deep learning models for an efficient face recognition. An
ensemble is a finite collection of models that can be used to obtain better average predictive accuracy than
using a single model in the ensemble collection. This research work also addresses the existing CNN model
to extract the features for face matching. The existing handcrafted feature descriptors such as Local Binary
Patterns (LBP), Speeded Up Robust Features (SURF) or Histogram of Oriented Gradients (HoG), which
requires domain level understanding of the face recognition problem. In this research work an Ensemble
of Convolutional Neural Network (ECNN) based feature descriptors for face recognition is proposed to

overcome the challenges namely, facial expression, aging and pose, illumination and low resolution.

2. Related works

Face detection algorithms aim to locate the main face area in input images or video frames.
Furthermore, they help robots discriminate between humans and other objects in the scene. Before the deep
learning era, the cascade-based methods and deformable part models (DPM) dominated the face detection
field with limitations in unconstrained face images due to considerable variations in resolutions, illumination,
expression, skin color, pose, and occlusions [1]. In recent years, deep learning methods have shown their
power in computer vision and pattern recognition. As a result, many deep convolutional neural networks
(CNN or DCNN)-based face detection methods have been proposed to overcome the limitations mentioned
above [3,2,3,4,5,6]. The CNN-based face detection approaches generally have two stages: a feature extraction
stage by utilizing a CNN-backbone network to generate the feature map, and a stage for predicting the
bounding box locations [15]. They can be divided into two categories: (1) multi-stage; and (2) single-stage
detection algorithms.

Two-stage algorithms: Most two-stage algorithms are typically based on Faster R-CNN [12] and
generate several candidate boxes and then refine the candidates with a subsequent stage. The first stage
utilizes a sliding window to propose the candidate bounding boxes at a given scale, and the second stage

rejects the false positives and refines the remaining boxes [16.17.18]. The advantage of this type of model is

that they reach the highest accuracy rates, on the other hand they are typically slower.

Single-stage algorithms: Most single-stage algorithms are typically based on the single shot multi-box
detector (SSD) [11]. These algorithms treat object detection as a simple regression problem by performing
the candidate classification and bounding box regression from the feature maps directly in only one stage,
without the dependence on an extra proposal stage [3.13]. The advantage of this type of model is that they
are much faster than two-stage algorithms, but they have lower accuracy rates. Among the many variants
using the single-stage structure, state-of-the-art face detection performance was achieved by RetinaFace [3].
RetinaFace is the latest one-stage face detection model, which is based on the structure of RetinaNet [19] and
uses deformable convolution and dense regression loss. We utilized the lightweight version of RetinaFace
based on the mobilenet backbone to enhance the detection speed to achieve real-time performance. Face
alignment plays a vital role in many computer vision applications. It is necessary to improve the robustness
of face recognition against in-plane rotations and pose variations [20]. Meanwhile, facial landmarks are

essential for most existing face alignment algorithms because they are involved in the similarity
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transformation for finding the closest shape of the face. So, facial landmark localization is a prerequisite for
face alignment.

Face alignment aims to identify the geometric structure of the detected face and calibrate it to the
canonical pose, i.e., determining the location and shape of the face elements, such as the mouth, nose, eyes,
and eyebrows. From an overall perspective, face alignment methods can be divided into model-based and
regression-based methods [21]. However, the regression methods show superior accuracy, speed, and
robustness when compared to model-based methods [22]. Furthermore, model-based methods show
difficulties to express the very complex individual landmark appearance. Trigeorgis et al. [23] further
optimize regression-based methods by introducing a single convolutional recurrent neural network
architecture that combines all stages’ training through facilitating a memory unit that shares information
across all levels. The importance of the initialization strategies for face alignment is demonstrated in [24].
Despite that, Valle et al. [25] handled the sensitivity problem of initialization strategies by introducing the
Deeply-initialized Coarse-to-Fine Ensemble (DCFE) approach. DCFE refines a CNN-based initialization
stage with Ensemble of Regression Trees (ERT) to estimate probability maps of landmarks’ locations.
Cascade of experts is used by Feng et al. in [26] to improve the face alignment accuracy versus the different
face shape poses. Feng et al. proposed Random Cascaded Regression Copse (R-CR-C) method that utilizes
three parallel cascaded regressions. Furthermore, Zhu et al. [27] used a probabilistic approach to adopt coarse-
to-fine shape searching. There have been significant improvements in face alignment using deep learning
methods. As in [28], Kumar and Chellapa introduced a single dendritic CNN, termed the Pose Conditioned
Dendritic Convolution Neural Network (PCD-CNN). Furthermore, they combine a classification network
with a second and modular classification network to predict landmark points accurately. In addition, Wu et
al. [28] proposed a boundary-aware face alignment algorithm that interpolates the geometric structure of a
human face as boundary lines to improve landmark localization. In a later work, a more efficient compact
model has been recently proposed by Guo et al. named practical facial landmark detector (PFLD) [29]. They
used a branch of the network to estimate the geometric information for each face sample to make the model
more robust. PFLD achieved a size of 2.1 Mb and over 140 fps per face on a mobile phone with high accuracy
against complex faces, including unconstrained poses, expressions, lighting, and occlusions, which makes it
more suitable for HRI applications. A face recognition system is a system that can identify or verify a person
in an input image or a video frame. With the current advances in machine learning, the deep face recognition
systems based on the CNN models have been the most common due to their remarkable results, and several

deep face recognition models have been proposed [4,30,31,32,33,34]. These models work by localizing the

face in the input image, extracting the face embeddings, and comparing them to other face embeddings pre-
extracted and stored in a database. Every embedding creates a unique face signature and the identity of a
specific human face. Taigman et al. proposed a multi-stage approach called DeepFace [30] based on AlexNet
architecture [35]. The faces are first aligned to a generic 3D shape model, and then facial representation is
derived from a nine-layer deep neural network. In addition, the authors used a Siamese network trained by
standard cross-entropy loss for face verification. Inspired by the work of DeepFace, Sun et al. introduced a
high-performance deep convolutional neural network called DeepID2+ [36] for face recognition. DeepID2+
achieved a better performance by adding supervision to early convolutional layers and increasing the
dimension of hidden representations. Schroff et al. proposed FaceNet [31] based on the GoogleNet
architecture [37]. FaceNet directly optimizes the face embedding by a deep convolutional network trained
using a triplet loss function at the final layer. He et al. proposed a Wasserstein convolutional neural network
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and visual face images. Recently, different loss functions for face recognition have been proposed

[4.32.33.39.40] to enhance discriminative feature learning and representation. Sphereface presents the

importance of the angular margin and its advantage in feature separation, but the training is unstable and hard
to converge. CosFace defines the decision margin in the cosine space by directly adding the cosine margin
penalty to the target logit, which results in better performance than SphereFace with easier implementation
and stable training. The ArcFace or Additive Angular Margin Loss [4] is one of the most potent loss functions

designed for deep face recognition [41,42.43]. It enhances discriminative learning by introducing an additive

angular margin. In contrast with SphereFace and CosFace which have a nonlinear angular margin, ArcFace
has a constant linear angular margin. The evaluation of single face recognition requires high computational
power. Furthermore, multiple faces in a single scene need to be recognized and identified in practice. This
makes recognizing multiple faces another challenge, as it requires more computing power to process multiple
faces per scene. The accuracy and processing time are the main criteria for any face recognition system.
Nevertheless, especially for the HRI, accuracy and real-time recognition are a challenge in scenes with
subjects that do not co-operate with the recognition system. Visual object tracking has always been a research
hotspot in computer vision, and face tracking is a special case. Face tracking is primarily a process of
determining the position of the human face in a digital video or frame based on the detected face. This is
challenging as the face is not the same during the time (video frames), but it may vary in pose and view.
Moreover, other factors affected the face tracking in the actual scene and made it more complex, such as
illumination, occlusion, and posture changes. On the other hand, face tracking has many advantages, such as
counting the number of human faces in a digital video or camera feed and following a particular face as it

moves in a video stream to predict the person’s path or direction.

3. CONVOLUTIONAL NEURAL NETWORKS (CNN)

CNN consists of three layers, namely convolution, max-pooling and fully connected layers. The CNN
architecture is formed by stacking these layers sequentially. CNN applies multiple filters to the raw input
image to extract the high level features. CNN transform the original image layer by layer from the original

pixel values to the final class scores. Figure 1. shows the convolution layer with the set of filters.
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Figure 1: Convolution Layer

3.1 Convolution (Conv) Layer

The convolution layer’s parameters consist of a set of learnable filters. The size of every filter is smaller
than the input width and height of volume. Slide each filter across the width and height of the input volume
and compute the dot products between entries of the filter and the input at any position. It will produce a
2-dimensional activation map that gives the responses of that filter at every spatial position. The network
will learn the filters that activate when they see some type of visual feature. In the first convolution layer it
detects the edges from raw pixel data. In the second convolution layers it detects shapes or blobs from the
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structures from the last layer. The last layer in CNN is a classifier that uses these higher-level features to
make predictions.

Convolution Layer accepts a volume size of W1*H1*D1 and requires four hyper parameters such as
number of filters K, filter size F, Stride S and amount of zero padding P. The output volume size of the

single convolution layer is W2*H2*D2.

Where,
W2=((W1-F+2P)/S) +1 H2 =
((H1-F+2P)/S) +1 P = (F-1)/2
D2 =K

3.2 Max-pooling Layer

The Max-pooling layer is inserted in between the Convolution layers in CNN architecture. The Max-
pooling layer is used to reduce the spatial size of Convolution image. The Max-pooling layer operates
independently on every depth slice of the input and it resizes the image using MAX operation. The pooling
layer accepts input volume size of W1*H1*D1 and it requires two hyper parameters such as Filter Size F
and Stride S. It produces the output volume size of W2*H2*D2. Figure 2 shows the max pooling operation

with stride 1 and 2.

where,
W2=(WI1-F)/S+1 H2=
(H1-F)/S+1 D2 =Dl

2x2 max pooling with a
stride of 1

2x2 max pooling with a
stride of 2 237 223

Figure 2: Max pooling layer with stride 1 and 2
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3.3 Fully Connected Layer

Fully connected layers are used at the end of the network after feature extraction and consolidation has
been performed by the convolution and pooling layers. They are used to create final nonlinear combinations

of features and for making predictions by the network.

3.4 Transfer learning

Transfer learning is the process of taking a pre-trained model (the weights and parameters of a network that
has been trained on a large dataset) and “fine-tuning” the model with own data set. The idea is that this pre-
trained model will act as a feature extractor by removing the last layer of the network and replace it with

your own classifier.
3.5 Ensemble Methods

Ensemble methods generally refer to training a “large” number of models and then combining their output
predictions via voting or averaging to yield an increase in classification accuracy. Ensemble methods are
specific to deep learning and Convolutional Neural Networks. Multiple networks are trained and each
network returns the probability for each class label. These probabilities are averaged and the final

classification is obtained.
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Figure 3: Random Forest consists of multiple decision trees

Figure 3 shows the Random Forest consists of multiple decision trees. The outputs of each decision tree

are averaged together to obtain the final classification.
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Figure 4: Ensemble of neural networks
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Figure 4 shows the ensemble of neural networks consists of multiple networks. When classifying an input
image, the data point is passed to each network where it classifies the image independently of all other

networks. The classifications across networks are then averaged to obtain the final prediction.

4. Convolution Neural Network for Feature Extraction

Convolution Neural Networks applies multiple filters on the raw input image for extracting high level
features. Figure 5 shows the extraction of features, where x represents input face image and f(x) shows the

extracted features.
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Figure 5: ConvNet feature extraction

The similarity of two face images is computed with the extracted features using Euclidean distance metric
algorithm. Therefore, the encodings of two images of the same person are similar to each other and the
encodings of two images of different persons are different. Figure 6.6 shows the comparison of two face

images of the same person.
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Figure 6: Comparison of two face images

4.1 Feature Extraction using a Pre-trained CNN

The VGG16 network architecture produces the probabilities for the input 1,000 ImageNet class labels.
When treating networks as a feature extractor, the network at an arbitrary point is chopped off. Now the
last layer in the network is a max pooling layer which will have the dimension of 7*7*512. Thus achieving
25088 feature values for each face image. The above discussed process is repeated for an entire dataset
resulting the total size of N images, each with 25,088 columns. The extracted feature vectors are trained
using Logistic Regression classifier. Figure 7 shows the architecture of VGG 16 CNN model. The inception
model in GoogleNet proposed a new way to perform convolution on the previous layer by performing

multiple convolutions (which are computed in parallel over the input volume) which gets concatenated at
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the output volume. Instead of using [3x3] and [5x5] filter sizes directly on the input volume (which greatly
increases the depth of output volume), dimensionality reduction (which could also be thought of as pooling
of features) is performed using [ 1x1] convolution filters, so that the overall depth at the output volume does
not get increased at a higher rate. Thus, the inception module holds a smaller filter convolution, a medium
filter convolution, a large filter convolution and a pooling operation performed in parallel on the input
volume which learns extremely fine grain details, higher level details and combats overfitting (due
to the presence of pooling operation). In addition to this, the presence of Rectifier Linear Unit
(ReLu) non-linear activation after each convolutional layer enhances the performance.

The incepton-v3 architecture does not have fully connected layers at the top, instead it uses “average pool”
operation which greatly reduces the learnable parameters involved. Thus, instead of stacking layers in a
CNN sequentially (in the case of VGGNet and OverFeat network), GoogLeNet showed a different type of
deep architecture such as the “Inception” module (network in a network) which highly contributes to

achieve better results. Figure 8 shows the inception module of GoogleNet architecture.

Input 224x224x3 Input 224x224x3
e winy &
(Cosgcf) = 112x112x128 (coggos) = 112x112x128
(Cog;‘;f) o 56x56x256 (cor;gés) e 56x56x256
(CDE;‘;E) = 28x28x512 (cov;g;s) e 28x28x512
(Cogééi‘) o 14x14x512 (coggés) r 14x14x512
(coz;éf) i TxTx512 ‘Coﬁgéi) . Tx7x512
(E';:SF’T?\?I :;' 1x1x1000
v !

Output Labels Output Features

Figure 7: VGG 16 network architecture
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Figure 8: Inception module of GoogleNet
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4.2 Ensemble of Convolutional Neural Networks

The proposed ECNN method extracts the features from three different ConvNets models, namely VGG16,
Incpetion-v3 and Xception. The pre-trained Convets models are used for extracting features because of
weights and architectures of these models are publicly made available for Computer Vision research. The
model weights and architecture of the considered models are loaded locally prior to the training phase. The
architecture of the proposed ECNN method is presented in Figure 9 and the images in training database
are resized to a fixed dimension as shown in Table 1.

After pre-processing, each of the images in the database is given to VGG16, Inception-v3 and Xception
model architecture for extracting features by removing the top fully-connected layers of the ConvNets model.
The extracted features of the three different pre-trained models of a single image is concatenated and stored
in a list. Its corresponding label is also stored in another list. This process is repeated for all the images in the
training database. The extracted image features and labels are stored locally in an HDFS5 file format as NumPy
arrays. This feature extraction process is carried out for two different benchmark Face datasets such as
YouTube and WebFace. VGG16 ConvNets model accepts the input image size of 224*224 and it has 13
convolution layers with different number of filter sizes such as 64,128, 256, 512. The size of each filter is
3*3. Along with this the VGG16 network poses five max pooling and three fully connected layers. The size
of the feature vector extracted for VGG16 before the last fully connected network is 4096. Inception-V3
ConvNets model accepts the input image size of 299*299, inception module extracts multi-level features by
performing convolutions with different filter size such as 1x1, 3x3, and 5x5 convolution. The weights for
Inception V3 are smaller than VGG and ResNet, of memory size 96MB. Xception is an extension of the
Inception architecture which replaces the standard Inception modules with depth wise separable convolutions

and it has a small weight memory size of 91MB.

Training images

Pre-processing

database
Save model &
VGG Net-16 Features
Xception
Feature
- Extraction &

Inception v3 w ; Classifier

Prediction
Testing images
database Pre-processing

Figure 9: Proposed ECNN architecture for Face Recognition
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Table 1: Fixed dimension to resize the images for ECNN method

ConvNets model Fixed dimension
(for pre-processing)
VGG16 224 x 224
VGG19 224 x 224
ResNet50 224 x 224
Inception-v3 299 x 299
Xception’ 299 x 299

4.3 Training and Evaluation

After extracting features from the training phase, the stored features and labels are loaded and split into
training and testing data based on a parameter ‘train_test split’. If ‘train_test split’ is chosen as 0.1, then
it means 90% of the overall data is used for training and 10% of the overall data is used to evaluate the
trained model. Based on parameter tuning and Grid-search methodology, it is found that Logistic
Regression (LR) outperformed all the other machine learning classifiers such as Random Forests (RF),
Support Vector Machine (SVM) and K-Nearest Neighbors (KNN). Two performance metrics are chosen
to evaluate the trained model, namely Rank-1 and Rank-5 accuracy. Rank-1 accuracy gives the accuracy
of the trained model when tested with an unseen test data on the first chance. Rank-5 accuracy gives the

accuracy of the trained model when tested it with an unseen data given five chances.

Algorithm
Begin

Input: ImageNet data DImageNet = {x;, yi}m Output:
model M, Accuracy A, Classifier H xi = {1, %2, o0 el
Xn}

F={f(xD),f(x2),.... f(xn)}

F- Set of input face image features qi — query
face image features.

For feature =1 to n do
Learn Fn based on D1..m

Perform feature matching between database face and query face
d(p.q)= TV (qz'l - xj)?
L:

Append all the distance values results =

max (d(p,q))
If results< threshold

Known person

Else:
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Unknown person
End if
End for End

5. Results and Discussion

The experimental setup for the proposed methodology is carried out using Intel Xeon processor with the
NVIDIA Titanx GPU and 28GB RAM. Python programming language is used for the overall experiment
from data processing, feature extraction, model training till model evaluation. A developed, efficient and
modular Deep Learning library for Python called Keras created by Frangois Chollet is used for the overall
experiment. The entire experiment is carried out on Windows-7 Operating System (OS) with Theano as
backend for Keras. Other python packages are also used for implementing the proposed method are NumPy,
SciPy, scikit-image, h5py, scikit-learn and OpenCV 2.4.10.

5.1 Dataset

Two publicly available face datasets are considered for analyzing the performance of the proposed ECNN
method. The WebFace dataset contains 494414, color images of 10,575 people with different facial
expressions, illumination condition, aging, low resolution, different pose and occlusions. The Figure 10
represents the sample face images of WebFae dataset. The YouTube faces dataset contains 3425 videos of

1595 different people. Figure 11 shows the sample faces images of a YouTube face dataset.

Figure 10: Sample face images of WebFace dataset
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Figure 11: Sample face images of a YouTube face dataset

Table 2: Feature vector dimension of ConvNets model

ConvNets Models Feature Dimension
VGG16 4096
VGGI19 4096

ResNet 50 2048
Inception-v3 2048
Xception 2048

Table 2 represents the feature vector dimension of different pre- trained CNN models. The proposed ECNN
method concatenate vgg16, inception-v3 and xception feature vectors which produces the final feature vector
of 8192 size. Table 3 presents face recognition accuracy of WebFace dataset. From Table 3 it is observed
that the proposed ECNN method performs better face recognition accuracy compared to vggl6, vggl9,
inception-v3, resnet50 and xception CNN models. Figure 12 shows the rank 1 and rank 5 face recognition

accuracy for webface dataset.
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Table 3: Recognition accuracy for Web Face dataset.

ConvNet Models Accuracy (%)
Rank-1 Rank-5
VGG16 (Simonyan et al) [12] 69.96 88.86
VGGI19 (Simonyan et al) [12] 66.25 86.49
ResNet 50 (Kaiming He et al) [16] 29.90 55.25
Inception V3 (Szegedy et al) [15] 78.81 93.91
Xception (Frangois Chollet et al) [17] 65.82 89.02
Inception V3 + VGG16 (proposed) 85.44 96.25
Inception V3 + VGG19 (proposed) 84.01 95.58
Inception V3 + Xception (proposed) 77.30 94.98
Inception V3+ ResNet 50 (proposed) 79.71 94.15
ECNN (proposed) 87.08 97.12

Accuracy

Recognition accuracy for Web Face dataset
8o
m I I I I I
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) I
o
vaGie - EY—— Incoption w3 mcoption  Incaption ¥3 + incaption V3 « Inception W3 + inception Vi ———
Tahe Pachs ik Realiet 80 (propowd)
(proposed)  (propossd) (Proposea)  (proposed)

Propose propose

Figure 12: Face recognition accuracy for web face dataset

Table 4: Recognition accuracy of YouTube face dataset.

Accuracy (%)
ConvNet’s Models
Rank-1 Rank-5
VGG16 (Simonyan et al) [12] 99.97 99.98
VGG19 (Simonyan et al) [12] 99.97 99.98
ResNet 50 (Kaiming He et al) [16] 99.02 99.79
Inception V3 (Szegedy et al) [15] 99.93 99.97
Xception (Frangois Chollet et al) [17] 99.92 99.98
Inception V3 + VGG16 (proposed) 99.97 100
Inception V3 + VGG19 (proposed) 99.97 100
Inception V3 + Xception (proposed) 99.97 100
Inception V3+ ResNet 50 (proposed) 99.98 100
ECNN (proposed) 99.99 100
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Table 4 shows the recognition accuracy of a YouTube face dataset. From Table 4 it is proved that the

proposed ECNN method outperforms vggl6, vggl9, inception-v3, resnet50 and xception CNN models.

Figure 13 Face Recognition results for YouTube Faces Dataset

Figure 13 shows the face recognition results for YouTube Face dataset and Figure 14 shows face

recognition results for MIT-India dataset.

Figure 14 Face Recognition results for MIT-Dataset
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11.

12.

5.2 Complexity Analysis

The dataset processed using any deep learning models are huge and complex. Processing such huge
data always requires multiple loops to traverse the whole datasets. However, the increased number
of loops always consumes more time for obtaining the results. In order to reduce the number of
loops and for fast processing, the present day neural model utilizes vectorization. The complexity
of the proposed model is found to be in O(mlogn), where m represents the total number of features

and n represents the total number of stacked classifiers.

6. Summary

This work presented an Ensemble of Convolutional Neural Networks (ECNN) for face
recognition. The performance of the proposed ECNN method is analyzed using benchmark
datasets namely Webface and YouTube face in terms of recognition accuracy. The proposed ECNN
model performs better than Inception- v3, VGG16, VGG19, Xception and ResNet50 CNN models
with a Rank-5 accuracy of 97.12% on Webface dataset. It is concluded that the proposed ECNN has

outperformed the existing state of art methods in terms of recognition accuracy.
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