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ABSTRACT: Quantum computing, a paradigm-shifting
technology, leverages the principles of quantum
mechanics to perform computations far beyond the
capabilities of classical systems. Many problems in
classical physics and engineering, such as turbulence, are
governed by nonlinear differential equations, which
typically require high-performance computing to be
solved. Over the past decade, however, the growth of
classical computing power has slowed because the
miniaturization of chips is approaching the atomic scale.
The computational power is leveraged by quantum bits
(qubits) capable of superposition and entanglement that
provide exponential speed-up for certain complex
problems by using quantum computing. In this proposed
system a Quantum-Assisted Machine Learning (QAML)
framework is developed. The quantum computing
principles integrate with classical ML classifiers for
high-dimensional data analysis. A quantum feature
extractor and a classical neural network as the final
classifier use Quantum Support Vector Machine
(QSVM) to develop a new hybrid model. The proposed
method is evaluated using benchmark datasets and
shows significant improvement in classification accuracy,
precision and efficiency when compared with traditional
ML classifiers.

KEYWORDS: Machine Learning (ML), Quantum
computing, Quantum Support Vector Machine (QSVM),
Quantum-Assisted  Machine  Learning (QAML),
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I. INTRODUCTION
Quantum computing is an emerging technology
with the potential to revolutionize scientific
research [1] and our industry, economy, and whole
society.

However, despite recent significant investments
and the growing trend of interest in the scientific
community, the technology is not yet fully
developed, with our current period being famously
called noisy intermediate-scale quantum (NISQ)
era[2]. A class of applications that is particularly
promising in the near term is variational quantum
computing, which is an iterative method where
“variational” parameters of a quantum application
are adapted through an optimization process
running in a classical computer[3]. However, as
the ecosystem of the quantum computing platform
providers becomes richer and the maturity of the
solutions they offer improves, we see a shift in the
way platforms are designed, operated, and made
available to the users: software engineering is
entering the field, with a promise to make systems
more scalable, efficient, and easy to use [4]. One
of the improvements proposed is adopting a
serverless computing approach.

Serverless computing is a mature technology in
cloud services that enables developers to write
applications as collections of elementary stateless
functions calling one another[5]. The functions
run inside lightweight virtualization abstractions,
usually containers, and are automatically scaled
up when the demand for a given function
increases, thereby spawning more workers that
run the same function to which a load balancer
dispatches invocations. On the other hand, when
there are fewer function invocations, the platform
progressively reduces the number of workers,
down to zero, if necessary[6]. System providers
like serverless computing because of its inherent
flexibility, which enables them to fine-tune the use
of resources efficiently. Users enjoy the
programming model, called function as a service
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(FaaS), which relieves them from all management
tasks and enables pay-per-use billing schemes[7].

Current quantum computers are commonly
defined as noisy intermediate-scale quantum
(NISQ) devices, being characterized by a few
dozens of quantum bits (qubits) with nonuniform
quality and highly constrained physical
connectivity. The growing demand for large-scale
quantum computers is motivating research on
distributed quantum  computing (DQC)
architectures as a scalable approach for increasing
the number of available qubits for computational
tasks, and experimental efforts have demonstrated
some of the building blocks for such a design[8].
Indeed, with the network and communications
functionalities provided by the Quantum Internet,
remote quantum processing units (QPUs) can
communicate and cooperate for executing
computational tasks that each NISQ device cannot
handle by itself[9].

In general, when moving from local to distributed
quantum computing one faces two main
challenges, namely, quantum  algorithm
partitioning and execution management [10]. To
partition a monolithic quantum algorithm, a
quantum compiler must be used to find the best
breakdown, i.e., the one that minimizes the
number of gates that are applied to qubits stored at
different devices. Such remote gates can be
implemented by means of three communication
primitives that we denote as Teleport [11]
(quantum state teleportation), Cat-Ent (cat-
entanglement), and Cat-DisEnt (cat-
disentanglement). These primitives require that an
entangled state is consumed and a new one must
be distributed between the remote processors
through the quantum link before another
interprocessor operation can be executed[12].

Quantum entropies and distances are basic
concepts in quantum physics and quantum
information. Quantum entropies characterize the
randomness of a quantum system, while quantum
distances measure the closeness of quantum
systems[13]. It is essential to compute their values
in many important applications, from the
estimation of the capacity of quantum
communication channels and verification of the
outcomes of quantum computation to the
characterization of quantum physical systems.
Several kinds of quantum algorithms for
computing quantum entropies and distances have
been proposed under different computational

resources, e.g., quantum algorithms with access to
copies of quantum states quantum algorithms with
purified quantum query access and variational
quantum algorithms[14].

A main consideration of those quantum algorithms
with copy access for computing quantum
entropies and distances is the number of copies of
quantum states used in the algorithms. This type
of input model is known as the “quantum sample
access” model, where identical copies of quantum
states are directly given[15].

Il. LITERATURE SURVEY

H. C. Watanabe, R. Raymond, Y. -Y. Ohnishi, E.
Kaminishi and M. Sugawara, et al.[16] propose a
method to construct a PQC by continuous
parameterization of both the angles and the axes
of its single-qubit rotation gates. The method is
based on the observation that when rotational
angles are fixed, optimal axes of rotations can be
computed by solving a system of linear equations
whose coefficients can be determined from the
PQC with small computational overhead. This
method demonstrate PQCs with free-axis selection
are more effective to search the ground states of
Hamiltonians for condensed matter physics,
quantum chemistry, and combinatorial
optimization

M. Chakraborty, A. Mukherjee, A. Nag and S.
Chandra, et al.[17] establish a holistic hybrid
quantum noise model to determine the quantum
channel capacity. In this paper, we formulated a
mathematical expression for this capacity and
conducted simulations for both Gaussian and non-
Gaussian inputs. A hybrid noise model is
constructed by convolution of Poisson-distributed
guantum noise with classical additive white
Gaussian noise. We characterized the quantum-
classical noise and the received signal using
Gaussian Mixture Models. The maximum amount
of quantum information that can be reliably
transmitted over a quantum channel (per use of the
channel) is determined by its capacity, and entropy
and related quantities like mutual information play
a role in calculating this capacity.

D. Lee, H. Shin and S. Hong, et al.[18] introduces
a quantum amplitude hash function as a new
paradigm. The function operates by directly
hashing the entire amplitude, which represents the
totality of information within the quantum
evidence state, into a hash qubit. The proposed
function is implemented as a quantum circuit of
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constant depth, ensuring excellent scalability. It is
theoretically proven to satisfy key cryptographic
properties such as preimage resistance, collision
resistance, and sensitivity.

M. A. Shafique, A. Munir and I. Latif, et al. [19]
introduce readers to the fundamental concepts of
qubits, superposition, entanglement, interference,
and noise. We explore quantum hardware,
quantum gates, and basic quantum circuits. This
study offers insight into the current phase of
quantum  computing, including the noisy
intermediate-scale quantum (NISQ) era and its
potential for solving real-world problems.
Furthermore, we discuss the development of
quantum algorithms and their applications, with a
focus on famous algorithms like Shor’s algorithm
and Grover’s algorithm.

D. Wlya and P. Mishra, et al.[20] investigate and
report  digital simulations of Markovian
nonunitary dynamics that converge to a unique
steady state. The steady state is programmed as a
desired target state, yielding semblance to a
quantum state preparation protocol. By delegating
ancilla qubits and system qubits, the system state
is driven to the target state by repeatedly
performing the following steps: 1) executing a
designated system-ancilla entangling circuit; 2)
measuring the ancilla qubits; and 3) reinitializing
ancilla. We show results of the method by
preparing arbitrary qubit states and qutrit (three-
level) states on contemporary quantum computers.

S. DiAdamo, M. Ghibaudi and J. Cruise, et al.[21]
approach  for distributing the accelerated
variational quantum eigensolver algorithm over
arbitrary sized—in terms of number of qubits—
distributed quantum computers. We consider
approaches for distributing qubit assignments of
the Ansatz states required to estimate the
expectation value of Hamiltonian operators in
quantum chemistry in a parallelized computation
and provide a systematic approach to generate
distributed quantum circuits for distributed
quantum computing.

Y. Akahoshi, J. Fujisaki, H. Oshima, S. Sato and
K. Fujii, et al.[22] construct an integrated software
system of STAR-architecture-based quantum
computation, which generates physical
instructions executable on quantum devices from
input logical quantum circuits. The system mainly
consists of two parts, a circuit converter and an
operation controller. The circuit converter

comprises a set of conversion subroutines, which
bridge several instruction layers: logical circuit
layer, lattice surgery layer, and physical circuit
layer. The operation controller efficiently executes
the generated instructions. Especially, it enables
efficient treatment of the analog rotation gate,
which needs real-time scheduling of running
instructions due to its probabilistic nature.

M. A. Ullah, A. J. Awan and E. Svensson, et
al.[23] developed two multi-chip mapping
methods that maximize compute capacity
utilization of quantum processing units (QPUS)
while addressing their limited coherence times and
the transmission rates of quantum interconnects.
These methods assess critical parameters of QPUs
and interconnects in a multi-chip quantum
network, enabling optimal assignment of quantum
gates in a quantum algorithm onto the network.
Our methods produce runnable subcircuits,
mapped to a minimum number of capacity-
maximized QPUs while achieving high-fidelity
multi-chip quantum computing.

M. M. Hasan, M. M. Rahman, M. M. Ali and P.
Machado, et al.[24] introduce QuantoTrace, a
cloud-based platform offering Error Correction as
a Service (ECaaS). It enhances quantum system
reliability by detecting, analysing, and rectifying
errors, and implements bit-flip error correction
compatible with various quantum technologies.
Using 3-qubit and 5-qubit models, we
demonstrated its efficacy on quantum simulators
and IBM quantum hardware. Remarkably, we
achieved 100% error correction accuracy on
simulators and significant success rates on IBM
hardware: 68.95% for error correction and 86.04%
for error detection in 5-qubit systems.

S. Kashani, A. Singh and U. Stege, et al.[25] focus
on the distribution at the algorithm and circuit
levels.  Algorithmic  distribution  involves
distributing tasks before compilation, allowing
different quantum processing units (QPUs) to
receive distinct parts of an algorithm. Circuit
distribution involves executing a quantum
algorithm in a distributed manner at the circuit
execution level wusing circuit and adaptive
qguantum technologies. If entanglement across
QPUs is supported, then quantum states can be
shared between qubits on remote quantum
processors. This requires a specialized architecture
with data and communication qubits with non-
local gates such as telegates and teledata gates.
This paper presents our progress towards a
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framework for exploring quantum distribution at
the algorithm and circuit levels.

I11. FRAMEWORK OF HYBRID QUANTUM-
MACHINE LEARNING CLASSIFIER FOR
HIGH-DIMENSIONAL DATA
OPTIMIZATION
In this section framework of Hybrid Quantum-
Machine  Learning  Classifier for  High-
Dimensional Data Optimization is observed in
figurel. The hybrid quantum machine learning
framework designed to improve the efficiency and
accuracy that deals with high-dimensional data.
The input dataset is collected initially, which may
include complex, high-dimensional information
such as medical, financial, or image data. The
normalization and feature scaling are applied to
ensure all input features are on a comparable scale
in preprocessing phase. The categorical attributes
are encoded numerically, and noisy or redundant
features are reduced to make the dataset accurate
for quantum encoding. The classical features are
transformed  into  quantum  states  using
parameterized quantum circuits (PQCs) in
preprocessing to cleaned data is fed into the
Quantum Feature Encoder. That numerical
features are encoded into qubits through
techniques like amplitude or angle encoding in

these circuits apply quantum gates.

Input Dataset

!

Data Pre-processing

v

Normalization

v

Quantum Feature Encoder

v

Quantum Kernel Estimation

y

Machine Learning Classifier

v

Performance Evaluation

Figure.1: Framework of Hybrid Quantum-Machine
Learning Classifier for High-Dimensional Data
Optimization

Next, the Quantum Kernel Estimation module,
implemented through a Quantum Support Vector
Machine (QSVM). It evaluates the similarity
between quantum states. In a high-dimensional
Hilbert space, kernel acts as a nonlinear mapping
function that separates complex data classes. The
QSVM efficiently computes relationships that
would otherwise require heavy computation in
classical systems to exploiting quantum
interference. This step provides quantum-
enhanced features to carry better data content
when compared to conventional feature extraction
methods. The Machine Learning Classifier is used
to generate quantum features. The quantum-
enhanced data representations and performs the
final prediction learns to recognize class
boundaries in classical classifier. In a hybrid
model that combines the strengths of both
paradigms quantum computational power and
classical interpretability by integration of quantum
feature mapping with classical classification
results. The hybrid quantum-assisted approach
significantly improves classification accuracy,
enhances generalization, and reduces
computational complexity demonstrates in this
comparative analysis with traditional classifiers.

Data preprocessing in quantum computing
involves transforming raw data into a format
suitable for quantum algorithms, which includes
classical steps like cleaning and feature scaling,
and quantum-specific steps like encoding data into
qubits. This process is critical for making data
usable by quantum computers, ensuring higher
accuracy and efficiency by handling issues like
noisy data, and leveraging quantum parallelism
for potential computational speedups.

Normalization in quantum computing is the
process of scaling a wave function so that the total
probability of finding a particle is equal to 1. This
is crucial because quantum mechanics uses wave
functions to describe the probability of a particle's
location, and the sum of all possible outcomes
must equal one for the probabilistic interpretation
to be wvalid. Mathematically, it involves
multiplying the wave function by a constant,
ensuring that the integral of its squared magnitude
over all space equals 1.

A quantum feature encoder, also known as a
guantum feature map, is a process that translates
classical data into quantum states using a quantum
circuit. This is a crucial step in guantum machine
learning (QML), as it allows classical data to be
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processed by quantum algorithms by representing
it in a high-dimensional quantum state space, such
as a Hilbert space. Different encoding methods,
like amplitude encoding or angle encoding, are
used to map the data in ways that can potentially
make patterns easier to find than in classical
computing. Quantum Kernel Estimation (QKE) is
a technique in quantum machine learning that uses
a quantum computer to estimate a kernel function,
which is then used by a classical computer to train
algorithms like Support Vector Machines (SVMs).
It maps classical data into a quantum feature
space, where a quantum kernel measures the
similarity between data points, and can potentially
handle problems that are difficult for classical
algorithms alone.

IV. RESULT ANALYSIS

In this section, result analysis of Hybrid Quantum-
Machine  Learning  Classifier for  High-
Dimensional Data Optimization is observed. In
table.1, performance comparison is observed
between hybrid Quantum-Machine Learning
Classifier is compared with holistic hybrid
quantum noise model and quantum amplitude
hash function interms of accuracy, precision and
efficiency.

Table.1: Performance Comparison

Parameters Accuracy | Precision | Efficiency

Quantum 96.3 97.8 96.7
amplitude
hash
function

Holistic 97.1 97 95.4
hybrid
guantum
noise model

Hybrid 98.2 98.9 97.4
Quantum-
Machine
Learning
Classifier

In this figure 2, x-axis demonstrates methods and
y-axis demonstrates percentage. A comparison
graph of accuracy is observed between Quantum-
Machine  Learning  Classifier for  High-
Dimensional Data Optimization of hybrid
Quantum-Machine  Learning  Classifier s
compared with other existing system.

Accuracy

98.5
98
97.5
97
96.5
96
955 +—
95

Percentage

Quantum amplitude  Holistic hybrid ~ Hybrid Quantum-

hash function quantum noise  Machine Learning
model Classifier
Methods

Figure.2: Accuracy Comparison Graph

In this figure 3, precision comparision graph is
observed between Quantum-Machine Learning
Classifier for High-Dimensional Data
Optimization of hybrid Quantum-Machine
Learning Classifier is compared with other
existing system. In this graphical representation,
x-axis demonstrates methods and y-axis
demonstrates percentage.
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Figure.3:Precision Comparison Graph

The Quantum-Machine Learning Classifier for
High-Dimensional Data Optimization of hybrid
Quantum-Machine  Learning  Classifier s
compared with other existing system for
efficiency in figure 4. In this graphical
representation, x-axis demonstrates methods and
y-axis demonstrates percentage.
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Figure.4: Efficiency Comparison Graph

V. CONCLUSION

In this section, Hybrid Quantum-Machine
Learning Classifier for High-Dimensional Data
Optimization is concluded. Quantum computing is
integrated with machine learning classifiers
significantly enhances classification performance
in high-dimensional datasets. The quantum
kernel’s ability to explore exponentially large
feature spaces while retaining the interpretability
of ML classifier by using Quantum-Assisted
Machine Learning model. The quantum feature
extraction  improves both accuracy and
generalization in this result.
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