
 

 
 

 

 

 

 

 

 

 

 

 

 

ABSTRACT: Quantum computing, a paradigm-shifting 

technology, leverages the principles of quantum 

mechanics to perform computations far beyond the 

capabilities of classical systems. Many problems in 

classical physics and engineering, such as turbulence, are 

governed by nonlinear differential equations, which 

typically require high-performance computing to be 

solved. Over the past decade, however, the growth of 

classical computing power has slowed because the 

miniaturization of chips is approaching the atomic scale. 

 The computational power is leveraged by quantum bits 

(qubits) capable of superposition and entanglement that 

provide exponential speed-up for certain complex 

problems by using quantum computing. In this proposed 

system a Quantum-Assisted Machine Learning (QAML) 

framework is developed. The quantum computing 

principles integrate with classical ML classifiers for 

high-dimensional data analysis. A quantum feature 

extractor and a classical neural network as the final 

classifier use Quantum Support Vector Machine 

(QSVM) to develop a new hybrid model. The proposed 

method is evaluated using benchmark datasets and 

shows significant improvement in classification accuracy, 

precision and efficiency when compared with traditional 

ML classifiers. 

 

KEYWORDS: Machine Learning (ML), Quantum 

computing, Quantum Support Vector Machine (QSVM), 

Quantum-Assisted Machine Learning (QAML), 

Quantum Bits   

 

I. INTRODUCTION 

Quantum computing is an emerging technology 

with the potential to revolutionize scientific 

research [1] and our industry, economy, and whole 

society.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, despite recent significant investments 

and the growing trend of interest in the scientific 

community, the technology is not yet fully 

developed, with our current period being famously 

called noisy intermediate-scale quantum (NISQ) 

era[2]. A class of applications that is particularly 

promising in the near term is variational quantum 

computing, which is an iterative method where 

“variational” parameters of a quantum application 

are adapted through an optimization process 

running in a classical computer[3]. However, as 

the ecosystem of the quantum computing platform 

providers becomes richer and the maturity of the 

solutions they offer improves, we see a shift in the 

way platforms are designed, operated, and made 

available to the users: software engineering is 

entering the field, with a promise to make systems 

more scalable, efficient, and easy to use [4]. One 

of the improvements proposed is adopting a 

serverless computing approach. 

 

Serverless computing is a mature technology in 

cloud services that enables developers to write 

applications as collections of elementary stateless 

functions calling one another[5]. The functions 

run inside lightweight virtualization abstractions, 

usually containers, and are automatically scaled 

up when the demand for a given function 

increases, thereby spawning more workers that 

run the same function to which a load balancer 

dispatches invocations. On the other hand, when 

there are fewer function invocations, the platform 

progressively reduces the number of workers, 

down to zero, if necessary[6]. System providers 

like serverless computing because of its inherent 

flexibility, which enables them to fine-tune the use 

of resources efficiently. Users enjoy the 

programming model, called function as a service 

HYBRID QUANTUM-MACHINE LEARNING CLASSIFIER FOR 

HIGH-DIMENSIONAL DATA OPTIMIZATION 
 

1D.Mahaboob Basha,2P Harikrishna Reddy,3S.Latha Rani,4P. Sai Srujana, 
5K Chaitanya Lakshmi   

1Assistant Professor, Department of Computer Science, St. Joseph's Degree College, Sunkesula Road, 

Kurnool, Andhra Pradesh, India 
2Assistant Professor, Department of Computer Science, St. Joseph's Degree College, Sunkesula Road, 

Kurnool, Andhra Pradesh, India 
3HOD, Department of Computer Science, St. Joseph's Degree College, Sunkesula Road, Kurnool, Andhra 

Pradesh, India 
4Lecturer, Department of Computer Science, St. Joseph's Degree College, Sunkesula Road, Kurnool, 

Andhra Pradesh, India 
5Lecturer, Department of Computer Science, St. Joseph's Degree College, Sunkesula Road, Kurnool, 

Andhra Pradesh, India 

 

 

COMPUTER RESEARCH AND DEVELOPMENT  (ISSN NO:1000-1239)  VOLUME 25 ISSUE 10 2025

PAGE NO: 117



(FaaS), which relieves them from all management 

tasks and enables pay-per-use billing schemes[7]. 

 

Current quantum computers are commonly 

defined as noisy intermediate-scale quantum 

(NISQ) devices, being characterized by a few 

dozens of quantum bits (qubits) with nonuniform 

quality and highly constrained physical 

connectivity. The growing demand for large-scale 

quantum computers is motivating research on 

distributed quantum computing (DQC) 

architectures as a scalable approach for increasing 

the number of available qubits for computational 

tasks, and experimental efforts have demonstrated 

some of the building blocks for such a design[8]. 

Indeed, with the network and communications 

functionalities provided by the Quantum Internet, 

remote quantum processing units (QPUs) can 

communicate and cooperate for executing 

computational tasks that each NISQ device cannot 

handle by itself[9]. 

 

In general, when moving from local to distributed 

quantum computing one faces two main 

challenges, namely, quantum algorithm 

partitioning and execution management [10]. To 

partition a monolithic quantum algorithm, a 

quantum compiler must be used to find the best 

breakdown, i.e., the one that minimizes the 

number of gates that are applied to qubits stored at 

different devices. Such remote gates can be 

implemented by means of three communication 

primitives that we denote as Teleport [11] 

(quantum state teleportation), Cat-Ent (cat-

entanglement), and Cat-DisEnt (cat-

disentanglement). These primitives require that an 

entangled state is consumed and a new one must 

be distributed between the remote processors 

through the quantum link before another 

interprocessor operation can be executed[12]. 

 

Quantum entropies and distances are basic 

concepts in quantum physics and quantum 

information. Quantum entropies characterize the 

randomness of a quantum system, while quantum 

distances measure the closeness of quantum 

systems[13]. It is essential to compute their values 

in many important applications, from the 

estimation of the capacity of quantum 

communication channels and verification of the 

outcomes of quantum computation to the 

characterization of quantum physical systems. 

Several kinds of quantum algorithms for 

computing quantum entropies and distances have 

been proposed under different computational 

resources, e.g., quantum algorithms with access to 

copies of quantum states quantum algorithms with 

purified quantum query access and variational 

quantum algorithms[14]. 

 

A main consideration of those quantum algorithms 

with copy access for computing quantum 

entropies and distances is the number of copies of 

quantum states used in the algorithms. This type 

of input model is known as the “quantum sample 

access” model, where identical copies of quantum 

states are directly given[15]. 

 

II. LITERATURE SURVEY 

H. C. Watanabe, R. Raymond, Y. -Y. Ohnishi, E. 

Kaminishi and M. Sugawara, et al.[16] propose a 

method to construct a PQC by continuous 

parameterization of both the angles and the axes 

of its single-qubit rotation gates. The method is 

based on the observation that when rotational 

angles are fixed, optimal axes of rotations can be 

computed by solving a system of linear equations 

whose coefficients can be determined from the 

PQC with small computational overhead. This 

method demonstrate PQCs with free-axis selection 

are more effective to search the ground states of 

Hamiltonians for condensed matter physics, 

quantum chemistry, and combinatorial 

optimization 

 

M. Chakraborty, A. Mukherjee, A. Nag and S. 

Chandra, et al.[17] establish a holistic hybrid 

quantum noise model to determine the quantum 

channel capacity. In this paper, we formulated a 

mathematical expression for this capacity and 

conducted simulations for both Gaussian and non-

Gaussian inputs. A hybrid noise model is 

constructed by convolution of Poisson-distributed 

quantum noise with classical additive white 

Gaussian noise. We characterized the quantum-

classical noise and the received signal using 

Gaussian Mixture Models. The maximum amount 

of quantum information that can be reliably 

transmitted over a quantum channel (per use of the 

channel) is determined by its capacity, and entropy 

and related quantities like mutual information play 

a role in calculating this capacity. 

 

D. Lee, H. Shin and S. Hong, et al.[18] introduces 

a quantum amplitude hash function as a new 

paradigm. The function operates by directly 

hashing the entire amplitude, which represents the 

totality of information within the quantum 

evidence state, into a hash qubit. The proposed 

function is implemented as a quantum circuit of 
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constant depth, ensuring excellent scalability. It is 

theoretically proven to satisfy key cryptographic 

properties such as preimage resistance, collision 

resistance, and sensitivity. 

 

M. A. Shafique, A. Munir and I. Latif, et al. [19] 

introduce readers to the fundamental concepts of 

qubits, superposition, entanglement, interference, 

and noise. We explore quantum hardware, 

quantum gates, and basic quantum circuits. This 

study offers insight into the current phase of 

quantum computing, including the noisy 

intermediate-scale quantum (NISQ) era and its 

potential for solving real-world problems. 

Furthermore, we discuss the development of 

quantum algorithms and their applications, with a 

focus on famous algorithms like Shor’s algorithm 

and Grover’s algorithm.  

 

D. Volya and P. Mishra, et al.[20] investigate and 

report digital simulations of Markovian 

nonunitary dynamics that converge to a unique 

steady state. The steady state is programmed as a 

desired target state, yielding semblance to a 

quantum state preparation protocol. By delegating 

ancilla qubits and system qubits, the system state 

is driven to the target state by repeatedly 

performing the following steps: 1) executing a 

designated system–ancilla entangling circuit; 2) 

measuring the ancilla qubits; and 3) reinitializing 

ancilla. We show results of the method by 

preparing arbitrary qubit states and qutrit (three-

level) states on contemporary quantum computers. 

 

S. DiAdamo, M. Ghibaudi and J. Cruise, et al.[21] 

approach for distributing the accelerated 

variational quantum eigensolver algorithm over 

arbitrary sized—in terms of number of qubits—

distributed quantum computers. We consider 

approaches for distributing qubit assignments of 

the Ansatz states required to estimate the 

expectation value of Hamiltonian operators in 

quantum chemistry in a parallelized computation 

and provide a systematic approach to generate 

distributed quantum circuits for distributed 

quantum computing. 

 

Y. Akahoshi, J. Fujisaki, H. Oshima, S. Sato and 

K. Fujii, et al.[22] construct an integrated software 

system of STAR-architecture-based quantum 

computation, which generates physical 

instructions executable on quantum devices from 

input logical quantum circuits. The system mainly 

consists of two parts, a circuit converter and an 

operation controller. The circuit converter 

comprises a set of conversion subroutines, which 

bridge several instruction layers: logical circuit 

layer, lattice surgery layer, and physical circuit 

layer. The operation controller efficiently executes 

the generated instructions. Especially, it enables 

efficient treatment of the analog rotation gate, 

which needs real-time scheduling of running 

instructions due to its probabilistic nature. 

 

M. A. Ullah, A. J. Awan and E. Svensson, et 

al.[23] developed two multi-chip mapping 

methods that maximize compute capacity 

utilization of quantum processing units (QPUs) 

while addressing their limited coherence times and 

the transmission rates of quantum interconnects. 

These methods assess critical parameters of QPUs 

and interconnects in a multi-chip quantum 

network, enabling optimal assignment of quantum 

gates in a quantum algorithm onto the network. 

Our methods produce runnable subcircuits, 

mapped to a minimum number of capacity-

maximized QPUs while achieving high-fidelity 

multi-chip quantum computing. 

 

M. M. Hasan, M. M. Rahman, M. M. Ali and P. 

Machado, et al.[24] introduce QuantoTrace, a 

cloud-based platform offering Error Correction as 

a Service (ECaaS). It enhances quantum system 

reliability by detecting, analysing, and rectifying 

errors, and implements bit-flip error correction 

compatible with various quantum technologies. 

Using 3-qubit and 5-qubit models, we 

demonstrated its efficacy on quantum simulators 

and IBM quantum hardware. Remarkably, we 

achieved 100% error correction accuracy on 

simulators and significant success rates on IBM 

hardware: 68.95% for error correction and 86.04% 

for error detection in 5-qubit systems. 

 

S. Kashani, A. Singh and U. Stege, et al.[25] focus 

on the distribution at the algorithm and circuit 

levels. Algorithmic distribution involves 

distributing tasks before compilation, allowing 

different quantum processing units (QPUs) to 

receive distinct parts of an algorithm. Circuit 

distribution involves executing a quantum 

algorithm in a distributed manner at the circuit 

execution level using circuit and adaptive 

quantum technologies. If entanglement across 

QPUs is supported, then quantum states can be 

shared between qubits on remote quantum 

processors. This requires a specialized architecture 

with data and communication qubits with non-

local gates such as telegates and teledata gates. 

This paper presents our progress towards a 
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framework for exploring quantum distribution at 

the algorithm and circuit levels. 

 

III. FRAMEWORK OF HYBRID QUANTUM-

MACHINE LEARNING CLASSIFIER FOR 

HIGH-DIMENSIONAL DATA 

OPTIMIZATION 

In this section framework of Hybrid Quantum-

Machine Learning Classifier for High-

Dimensional Data Optimization is observed in 

figure1. The hybrid quantum machine learning 

framework designed to improve the efficiency and 

accuracy that deals with high-dimensional data. 

The input dataset is collected initially, which may 

include complex, high-dimensional information 

such as medical, financial, or image data. The 

normalization and feature scaling are applied to 

ensure all input features are on a comparable scale 

in preprocessing phase. The categorical attributes 

are encoded numerically, and noisy or redundant 

features are reduced to make the dataset accurate 

for quantum encoding. The classical features are 

transformed into quantum states using 

parameterized quantum circuits (PQCs) in 

preprocessing to cleaned data is fed into the 

Quantum Feature Encoder. That numerical 

features are encoded into qubits through 

techniques like amplitude or angle encoding in 

these circuits apply quantum gates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure.1: Framework of Hybrid Quantum-Machine 

Learning Classifier for High-Dimensional Data 

Optimization 

 

Next, the Quantum Kernel Estimation module, 

implemented through a Quantum Support Vector 

Machine (QSVM). It evaluates the similarity 

between quantum states. In a high-dimensional 

Hilbert space, kernel acts as a nonlinear mapping 

function that separates complex data classes. The 

QSVM efficiently computes relationships that 

would otherwise require heavy computation in 

classical systems to exploiting quantum 

interference. This step provides quantum-

enhanced features to carry better data content 

when compared to conventional feature extraction 

methods. The Machine Learning Classifier is used 

to generate quantum features. The quantum-

enhanced data representations and performs the 

final prediction learns to recognize class 

boundaries in classical classifier. In a hybrid 

model that combines the strengths of both 

paradigms quantum computational power and 

classical interpretability by integration of quantum 

feature mapping with classical classification 

results. The hybrid quantum-assisted approach 

significantly improves classification accuracy, 

enhances generalization, and reduces 

computational complexity demonstrates in this 

comparative analysis with traditional classifiers. 

 

Data preprocessing in quantum computing 

involves transforming raw data into a format 

suitable for quantum algorithms, which includes 

classical steps like cleaning and feature scaling, 

and quantum-specific steps like encoding data into 

qubits. This process is critical for making data 

usable by quantum computers, ensuring higher 

accuracy and efficiency by handling issues like 

noisy data, and leveraging quantum parallelism 

for potential computational speedups. 

 

Normalization in quantum computing is the 

process of scaling a wave function so that the total 

probability of finding a particle is equal to 1. This 

is crucial because quantum mechanics uses wave 

functions to describe the probability of a particle's 

location, and the sum of all possible outcomes 

must equal one for the probabilistic interpretation 

to be valid. Mathematically, it involves 

multiplying the wave function by a constant, 

ensuring that the integral of its squared magnitude 

over all space equals 1. 

 

A quantum feature encoder, also known as a 

quantum feature map, is a process that translates 

classical data into quantum states using a quantum 

circuit. This is a crucial step in quantum machine 

learning (QML), as it allows classical data to be 

Input Dataset 

Data Pre-processing 

Normalization 

Quantum Feature Encoder 

Quantum Kernel Estimation 

Machine Learning Classifier 

Performance Evaluation 
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processed by quantum algorithms by representing 

it in a high-dimensional quantum state space, such 

as a Hilbert space. Different encoding methods, 

like amplitude encoding or angle encoding, are 

used to map the data in ways that can potentially 

make patterns easier to find than in classical 

computing. Quantum Kernel Estimation (QKE) is 

a technique in quantum machine learning that uses 

a quantum computer to estimate a kernel function, 

which is then used by a classical computer to train 

algorithms like Support Vector Machines (SVMs). 

It maps classical data into a quantum feature 

space, where a quantum kernel measures the 

similarity between data points, and can potentially 

handle problems that are difficult for classical 

algorithms alone. 

 

IV. RESULT ANALYSIS 

In this section, result analysis of Hybrid Quantum-

Machine Learning Classifier for High-

Dimensional Data Optimization is observed. In 

table.1, performance comparison is observed 

between hybrid Quantum-Machine Learning 

Classifier is compared with holistic hybrid 

quantum noise model and quantum amplitude 

hash function interms of accuracy, precision and 

efficiency. 

 
Table.1: Performance Comparison 

Parameters Accuracy Precision Efficiency 

Quantum 

amplitude 

hash 

function 

96.3 97.8 96.7 

Holistic 
hybrid 

quantum 

noise model 

97.1 97 95.4 

Hybrid 

Quantum-

Machine 

Learning 

Classifier 

98.2 98.9 97.4 

 

In this figure 2, x-axis demonstrates methods and 

y-axis demonstrates percentage. A comparison 

graph of accuracy is observed between Quantum-

Machine Learning Classifier for High-

Dimensional Data Optimization of hybrid 

Quantum-Machine Learning Classifier is 

compared with other existing system. 

 

 
 

Figure.2: Accuracy Comparison Graph 

 

In this figure 3, precision comparision graph is 

observed between Quantum-Machine Learning 

Classifier for High-Dimensional Data 

Optimization of hybrid Quantum-Machine 

Learning Classifier is compared with other 

existing system. In this graphical representation, 

x-axis demonstrates methods and y-axis 

demonstrates percentage.  

 

 
 

Figure.3:Precision Comparison Graph 

 

The Quantum-Machine Learning Classifier for 

High-Dimensional Data Optimization of hybrid 

Quantum-Machine Learning Classifier is 

compared with other existing system for 

efficiency in figure 4. In this graphical 

representation, x-axis demonstrates methods and 

y-axis demonstrates percentage.  
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Figure.4: Efficiency Comparison Graph 

 

V. CONCLUSION 

In this section, Hybrid Quantum-Machine 

Learning Classifier for High-Dimensional Data 

Optimization is concluded. Quantum computing is 

integrated with machine learning classifiers 

significantly enhances classification performance 

in high-dimensional datasets. The quantum 

kernel’s ability to explore exponentially large 

feature spaces while retaining the interpretability 

of ML classifier by using Quantum-Assisted 

Machine Learning model. The quantum feature 

extraction improves both accuracy and 

generalization in this result. 
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