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Abstract  

Recent advancements in neural networks have significantly improved facial expression recognition 

(FER) and emotion detection systems, enabling transformative applications in healthcare, human-

computer interaction, and safety. This review critically examines 70 studies to highlight 

methodological innovations, including convolutional neural networks (CNNs) optimized for static 

expressions, spiking neural networks (SNNs) for dynamic emotion analysis, and graph neural 

networks (GNNs) modelling spatial relationships in facial landmarks. Hybrid architectures, such 

as capsule-CNN models and transformer-based frameworks, demonstrate superior performance in 

capturing subtle micro-expressions and cross-dataset generalization. Multimodal approaches 

integrating facial, speech, and physiological signals (e.g., EEG, EMG) further enhance robustness, 

particularly in healthcare applications like autism detection, schizophrenia diagnosis, and 

depression monitoring. However, challenges persist in real-world deployment, including dataset 

bias, computational complexity, and ethical concerns around privacy and explainability. Emerging 

trends emphasize lightweight models for edge computing, self-supervised learning for unlabelled 

data, and explainable AI (XAI) frameworks. Future research should prioritize standardized 

benchmarks, cultural diversity in training data, and causal relationships between facial actions and 

emotional states. This synthesis underscores the potential of neural networks to revolutionize.  

  

Keywords: Facial expression recognition, Convolutional neural networks, Capsule-CNN,  

Multimodal, Lightweight models, Explainable AI  

  

1. Introduction    

  

Facial expression recognition (FER) and emotion detection have emerged as pivotal technologies 

in understanding human behaviour, with applications spanning healthcare, human-computer 

interaction (HCI), and safety systems. The human face, as a primary channel for non-verbal 

communication, conveys rich emotional information through micro-expressions, 

macroexpressions, and dynamic muscle movements [5,56]. Recent advances in neural networks, 

particularly deep learning (DL), have revolutionized FER by automating feature extraction and 
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enabling real-time analysis of complex emotional states [3,20,61]. For instance, convolutional 

neural networks (CNNs) have achieved remarkable accuracy in static image-based FER [1,4,21], 

while hybrid architectures like spiking neural networks (SNNs) and graph neural networks (GNNs) 

address challenges in dynamic and multimodal emotion recognition [2,17,34].    

The growing demand for emotion-aware systems is driven by diverse applications. In healthcare, 

FER aids in diagnosing neurodevelopmental disorders such as autism [23] and schizophrenia  

[18], monitoring depression [31], and enhancing patient engagement through empathetic AI 

[39,47]. In safety-critical domains, driver emotion recognition systems mitigate road accidents by 

detecting fatigue or distress [15], while deep fake detection algorithms safeguard against malicious 

facial manipulations [16]. Furthermore, human-robot interaction benefits from realtime FER 

systems that enable socially intelligent machines [48,51].    

Despite these advancements, significant challenges hinder the deployment of robust, generalizable 

FER systems. First, dataset variability—differences in lighting, pose, cultural expression norms, 

and annotation protocols—limits cross-dataset generalization [1,30,58]. For example, models 

trained on lab-controlled datasets often fail on spontaneous expressions captured in real-world 

settings [57,62]. Second, micro-expression recognition remains challenging due to the brevity and 

subtlety of facial muscle movements, necessitating highresolution spatiotemporal modeling 

[5,56,68]. Third, computational complexity and resource constraints hinder real-time deployment, 

particularly for edge devices [44,51,64]. Ethical concerns, including privacy violations and 

algorithmic bias, further complicate widespread adoption [16,60].    

  

2. Study Selection Process:  

  

 PRISMA Flow Diagram  

To ensure transparency in the study selection process, we followed the PRISMA guidelines. Figure 

1 presents the PRISMA flow diagram, which illustrates the number of records identified, screened, 

assessed for eligibility, and included in the final review.  
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Fig.2.1 PRISMA model  

3. Methodology  

  

3.1. Literature Search Strategy    

Databases and Sources: Databases and sources: peer-reviewed articles have been extracted from 

IEEE Xplore, PubMed, ScienceDirect, ACM Digital Library, arXiv, and SpringerLink. Grey 

literature (pre-prints, conference minutes) was included to capture emerging trends.  

Search  Keywords:Combinations  of  terms:Combination  of  terms:  ('Facial 

 Expression Recognition' OR 'Emotional Eradication') AND('Neural Network' OR 'Dive 

Learning') AND('CNN' OR 'Transformer' OR 'GNN' OR 'Multimodal').   

Time Frame: Focus on studies published between 2020 and 2024 to prioritize recent innovations, 

with important pre-2020 works cited for basic context.    

  

 3.2. Study Selection Criteria   Inclusion 

Criteria:    

- Studies proposing new neuronal architectures (CNC, NNN, NGC, transformer) for FER.   

- Multimodal systems that integrate facial data, EEG or physiological signals.   

- Applications in health care, safety or interaction between human and computer.   

- Empirical validation of benchmark data sets (such as CK+,FER2013,DEAP, etc.).   

Exclusion Criteria:    

- Non-peer reviewed articles without technical validation.   

- Studies that do not have comparative analysis with baselines.   

- Non-English publications.   
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 3.3. Screening Process    

A three-stage screening process has been implemented:   

1. Initial screening: 31768 papers identified by keyword searches. Duplicate removal (n=12647).  

2.Title/Abstract Screening: 2753 papers that were maintained according to their relevance to FER 

and neuronal networks.   

3. Full text review: 70 articles selected after assessing the rigor, innovation and conformity 

with the inclusion criteria of methods.  

   

3.4. Data Extraction and Categorization    

Key data were extracted into a structured template:  

Table 3.4: Data Extraction and Categorization    

Category  Variables Extracted  

Neural Architectures  Model type (CNN, SNN, GNN), attention mechanisms, hybrid designs   

Category  Variables Extracted  

Datasets  Modality (static/dynamic), cultural diversity, size  

Applications  safety, ethics, Healthcare, HCI  

Performance Metrics  inference latency, cross-dataset generalization,Accuracy, F1-score  

Limitations  ethical concerns, Computational cost, bias  

  

3.5. Thematic Analysis    

The studies were divided into four themes using iterative encoding:   

1.Methodological innovation (CNN, SNN, GNN, transformer).   

2. Applications (health care, robotics, security).   

3. Challenges (dataset bias, computational complexity).   

4. The effects on ethics and society.    

  

3.6. Quality Assessment    

The quality assessment study was evaluated for: -   
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Technical validity: reproducibility of results, size of the data set and peer review status.  

Clinical Relevance: medical applications with clinical validation (e.g., [18, 23, 31]).  Ethical 

rules: explicit discussion of privacy, consent or prejudice reduction (e.g. [16, 60]).   

  

3.7. Limitations of Methodology    

Language bias: non-English studies excluded  

Database bias: The emphasis on technical databases (IEEE, arXiv) may be underrepresented from 

a clinical point of view.   

Temporary bias: fields that are evolving rapidly; foundational work before 2020 is limited.  

  

4. Methodological Innovations    

  

 4.1. Convolutional Neural Networks (CNNs)    

Convolutional Neural Networks (CNNs) remain the cornerstone of facial expression recognition 

(FER), particularly for static image analysis. Standard CNN architectures, as demonstrated in 

[1,3,4,11,20,21], excel at extracting hierarchical spatial features (e.g., edges, textures) from facial 

images, achieving state-of-the-art accuracy on benchmark datasets. Innovations in hybrid 

architectures have further expanded their utility. For instance, capsule networks integrated with 

CNNs [10,43] address spatial hierarchies by preserving part-whole relationships, enabling robust 

recognition of occluded or rotated faces. Reversible Neural Networks [3] reduce memory overhead 

during training by reconstructing intermediate activations, enhancing scalability for high-

resolution inputs. Additionally, attention mechanisms [7,21,36,61] refine feature localization, 

directing computational resources toward critical regions like the eyes and mouth while 

suppressing irrelevant background noise.    

  

 4.2. Spiking Neural Networks (SNNs)    

Spiking Neural Networks (SNNs) have emerged as energy-efficient alternatives for dynamic 

expression analysis, leveraging bio-inspired temporal coding. The NSNP-DFER framework [2] 

employs nonlinear spiking neurons to model temporal dependencies in video sequences, achieving 

real-time performance with reduced computational costs. Similarly, NeuroSense [45] combines 

SNNs with spatiotemporal EEG patterns to detect fleeting micro-expressions, demonstrating 

superior efficiency compared to traditional recurrent architectures. These models are particularly 

suited for edge devices and scenarios requiring low-power consumption.    
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 4.3. Graph Neural Networks (GNNs)    

Graph Neural Networks (GNNs) have gained traction for modeling structural relationships 

between facial landmarks. The HiMul-LGG model [17] constructs local-global graphs to capture 

both fine-grained muscle movements and holistic expression patterns, while C3DBed [14] embeds 

3D-CNN features into transformer-based graphs to enhance micro-expression recognition. For 3D 

facial data, the two-stage stratified GCN [34] leverages geometric priors to improve landmark 

detection accuracy, enabling robust performance under varying head poses. These approaches 

underscore the potential of GNNs in addressing spatial variability and occlusion challenges.    

 4.4. Transformers and Self-Supervised Learning    

Transformers have disrupted FER by leveraging self-attention to model long-range dependencies 

in both spatial and temporal domains. C3DBed [14] and transformer-based frameworks [61,62] 

outperform conventional CNNs in video-based FER by capturing dynamic expression evolution 

across frames. Meanwhile, self-supervised learning [57] mitigates reliance on labeled data by 

pretraining models on unlabeled facial videos, enabling generalization to diverse real-world 

scenarios. These methods are particularly effective for spontaneous expression recognition, where 

labeled datasets are scarce.    

  

 4.5. Multimodal Fusion    

Multimodal fusion techniques enhance emotion recognition robustness by integrating 

complementary signals. EEG-facial fusion [37,39,65] combines brain activity metrics with facial 

features to improve valence-arousal prediction, offering insights into covert emotional states. 

Speech-facial systems [24,26,28] synchronize acoustic prosody with lip movements to resolve 

ambiguities in uni-modal analysis, achieving higher accuracy in noisy environments. Advanced 

frameworks like Granger causality networks [19] and Markov transition fields [32] further refine 

fusion by modeling temporal correlations between eye-tracking data and physiological signals 

(e.g., EMG). These innovations highlight the importance of cross-modal synergy in achieving 

human-like emotional understanding.    

  

 5. Key Applications   

   

5.1. Healthcare    

Neural network-based FER systems are revolutionizing healthcare by enabling non-invasive, early 

diagnosis and continuous monitoring of neurodevelopmental and psychological conditions. For 

autism detection, [23] compares deep neural network (DNN) classifiers trained on facial videos to 

identify atypical expression patterns, such as reduced eye contact and delayed emotional responses, 
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achieving 89% accuracy on clinical datasets. In depression detection, [31] leverages graph 

networks to analyze correlations between facial action units (AUs) like brow lowering (AU4) and 

lip corner depressor (AU15), which are strongly linked to depressive states, offering clinicians 

quantitative tools for mood assessment. Similarly, schizophrenia recognition benefits from 3D-

CNNs [18], which process temporal dynamics in facial videos to detect flat affect—a hallmark 

symptom—with 92% specificity. These systems reduce reliance on subjective clinical evaluations 

and enable remote patient monitoring.    

  

 5.2. Human-Robot Interaction    

Real-time emotion-aware systems are critical for enhancing social robotics and immersive virtual 

environments. Lightweight models like the sign language robot [51] and real-time FER 

frameworks [64] deploy pruned CNNs on edge devices to achieve sub-100ms inference times, 

enabling robots to respond empathetically to human emotions during interactions. In virtual reality 

(VR), [48] introduces an adaptive music system that synchronizes background scores with users’ 

gestural emotions (e.g., joy, fear) detected via skeletal tracking and neural networks, enhancing 

immersion in gaming and therapeutic scenarios. These advancements highlight the role of FER in 

bridging emotional gaps between humans and machines.    

  

 5.3. Safety and Security    

FER technologies are increasingly deployed in safety-critical domains to prevent accidents and 

mitigate risks. For driver monitoring, [15] employs multi-task learning to simultaneously detect 

distraction, fatigue, and anger from in-cabin facial videos, triggering alerts (e.g., lane-assist 

activation) to avert collisions. In deep fake detection, [16] combines geometric facial structure 

analysis with GNNs to identify synthetic artefacts in lip sync and micro-expression sequences, 

achieving 98% accuracy on the Deep Fake-TIMIT dataset. Such systems are vital for combating 

misinformation and ensuring trust in digital media.    

  

  

 6. Challenges and Limitations    

  

 6.1. Dataset Biases and Generalization    

A critical challenge in FER systems is their vulnerability to dataset biases, which severely limit 

real-world generalization. Models trained on posed expressions in controlled environments (e.g., 

CK+ or FER2013) often fail to recognize spontaneous emotions in naturalistic settings due to 

discrepancies in lighting, head pose, and cultural expression norms [1,30]. Cross-dataset 
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evaluations, such as those in [58], reveal performance drops of up to 40% when models are tested 

on unseen datasets like DISFA or SAMM. Micro-expression recognition exacerbates this issue, as 

brief, low-intensity muscle movements (e.g., fleeting smiles or frowns) require highresolution 

spatiotemporal modeling [5,56]. Despite advances in 3D-CNNs and optical flow techniques [68], 

the scarcity of labeled micro-expression datasets (e.g., CASME III) remains a bottleneck.    

  

 6.2. Computational Complexity    

State-of-the-art neural architectures, such as transformers and GNNs, often incur prohibitive 

computational costs, hindering deployment on resource-constrained devices. For example, 

3DCNNs for video-based FER [18] demand GPU-intensive training, while multimodal fusion 

frameworks [17,65] escalate memory usage with parallel signal processing. To address this, 

lightweight models like the pruned CNN in [51] and quantized SNNs in [44] optimize inference 

speeds for edge devices, achieving real-time performance (≤50 ms per frame) at the cost of 

marginal accuracy loss (5–8%). However, balancing efficiency with robustness remains 

unresolved, particularly for high-stakes applications like driver monitoring [15].    

  

 6.3. Explainability and Trust    

The "black-box" nature of deep learning models raises concerns about trust and clinical adoption. 

For instance, graph-based depression detection systems [31] provide limited insight into how 

specific facial AUs correlate with emotional states, complicating diagnostic validation. Recent 

work in explainable AI (XAI) [60] proposes saliency maps and layer-wise relevance propagation 

to visualize attention patterns, but these methods often lack clinical interpretability. Stakeholders 

in healthcare and criminal justice demand transparent decision-making frameworks, necessitating 

collaboration between DL engineers and domain experts.    

  

 6.4. Ethical Concerns    

The proliferation of FER technologies introduces significant ethical risks. Privacy violations arise 

from unauthorized emotion surveillance in public spaces [16], while biased training data (e.g., 

underrepresentation of ethnic minorities in Affect Net) perpetuate algorithmic discrimination [50]. 

For example, [23] reports a 15% accuracy gap in autism detection between Caucasian and Asian 

cohorts due to cultural differences in expression labelling. Regulatory gaps further exacerbate 

misuse, such as employers leveraging FER for emotion-based hiring assessments. Addressing 

these issues requires standardized ethical guidelines, diverse dataset curation, and federated 

learning frameworks to protect user anonymity [57,60].    
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 7. Emerging Trends    

  

 7.1. Cross-Dataset Learning    

A growing emphasis on cross-dataset generalization aims to overcome biases in single-domain 

training. For instance, [1] and [58] propose multi-scale spatial-temporal graph networks that adapt 

to diverse datasets by learning invariant features across posed and spontaneous expressions. These 

frameworks leverage adversarial training and domain adaptation to align feature distributions 

between datasets like CK+ (lab-controlled) and AffWild2 (in-the-wild), reducing performance 

gaps by up to 25%. Such approaches are critical for deploying models in real-world settings where 

lighting, pose, and cultural expression norms vary unpredictably.  

    

 7.2. Dynamic and Real-Time Recognition    

The shift toward temporal modeling addresses the need for real-time emotion analysis in dynamic 

environments. [15] Introduces a driver monitoring system using 3D-CNNs to track micro-

expressions like eye blinks and lip tremors, enabling fatigue detection at 30 FPS on embedded 

GPUs. Similarly, [63] and [64] deploy hybrid CNN-LSTM architectures for live video analysis, 

achieving sub-50ms latency by pruning redundant network branches. These advancements are 

pivotal for applications requiring instantaneous feedback, such as virtual assistants and automotive 

safety systems.    

  

 7.3. Neurological Insights    

FER is increasingly intersecting with neuroscience to uncover links between facial expressions and 

neurodevelopmental disorders. [38] identifies impaired emotion recognition in presymptomatic 

Huntington’s disease patients by correlating AU activation patterns with fMRI data, while [47] 

uses FER to detect atypical gaze aversion in autism spectrum disorder (ASD). These studies not 

only improve diagnostic accuracy but also inform AI models with neurophysiological priors, 

bridging gaps between computational and clinical research.    

  

 7.4. Multimodal Fusion    

Multimodal systems are advancing robustness by integrating facial, speech, and physiological 

signals. [17] Combines EEG and facial videos in a hierarchical graph network to predict depression 

severity, outperforming unimodal baselines by 18% in F1-score. Meanwhile, [19] and [65] 

synchronize eye-tracking data with EMG signals to resolve ambiguities in valence detection (e.g., 

distinguishing frustration from concentration). Such systems excel in noisy environments, such as 

crowded classrooms or telehealth consultations, where single-modality analysis often fails.    
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Synergy and Future Potential:    

These trends collectively drive FER toward generalizable, efficient, and clinically relevant 

systems. Cross-dataset learning and multimodal fusion enhance robustness, while real-time 

architectures and neurological insights expand applicability in healthcare and human-cantered AI. 

Future work may integrate quantum-inspired SNNs for energy-efficient temporal modelling [2,45] 

and federated learning to address privacy concerns [60].    

  

8.Future Directions in Emotion Recognition Systems  

  

Emotion recognition systems are rapidly evolving, driven by advancements in neural architectures 

and multimodal learning. This section outlines critical future research directions, emphasizing 

generalizability, micro-expression analysis, ethical deployment, and energyefficient models.  

  

 8.1. Generalizable Models: Federated Learning for Cross-Dataset FER    

Challenges: Dataset bias due to variations in lighting, pose, and cultural annotation protocols 

remains a barrier to robust cross-dataset facial expression recognition (FER) [1], [30]. Privacy 

concerns further complicate centralized training with sensitive facial data.    

Advancements: Federated learning (FL) enables decentralized training across heterogeneous 

datasets. For instance, [30] employs a cross-dataset bidirectional long short-term memory 

(BiLSTM) model for EEG-based emotion recognition, while [58] proposes multi-scale 

spatialtemporal graph convolutional networks (GCNs) for cross-dataset FER. Meta-learning 

frameworks, such as model-agnostic meta-learning (MAML), show promise in few-shot 

adaptation to unseen datasets.    

Opportunities:    

- Heterogeneous FL: Training on non-independent and identically distributed (non-IID) data, 

combining lab-controlled and in-the-wild datasets.    

- Edge Deployment: Lightweight FL frameworks (e.g., TinyML) for real-time FER on 

resourceconstrained devices.    

- Synthetic Data: Generative adversarial networks (GANs) [66] can augment underrepresented 

demographics.    

  

8.2. Micro-Expression Recognition: Spatiotemporal Architectures    

Challenges: Micro-expressions involve transient, localized muscle movements (0.5–4 seconds), 

complicating detection [5], [14]. Labeled datasets like SAMM and CASME remain limited.   

Advancements: Three-dimensional convolutional neural networks (3D-CNNs) and transformers 
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excel in capturing temporal dynamics. For example, [14] introduces C3DBed, embedding 

3DCNNs within transformers, while [56] surveys end-to-end models using optical flow and apex 

frame detection. Multimodal fusion with physiological signals (e.g., EEG [19], electromyography 

(EMG) [41]) enhances robustness.    

Opportunities:    

- Neuro-Symbolic AI: Hybrid models merging deep learning with rule-based systems [68].    

- Event Cameras: High-temporal-resolution sensors for micro-movement detection.    

- Cross-Modal Pretraining: Leveraging facial action unit (AU) datasets (e.g., DISFA).    

   

8.3. Ethical Frameworks: Guidelines for FER Deployment    

Challenges: Privacy invasion via non-consensual data collection and demographic bias (e.g., 

underrepresented ethnicities and neurodiverse groups [23], [52]) threaten equitable deployment.   

Advancements: Explainable AI (XAI) techniques, such as gradient-weighted class activation 

mapping (Grad-CAM) and local interpretable model-agnostic explanations (LIME), improve 

transparency [60]. Geometric facial analysis mitigates deepfake-driven synthetic emotions [16].   

Opportunities:    

- Regulatory Compliance: Aligning FER systems with GDPR and HIPAA.    

- Bias Auditing: Open-source tools (e.g., FairFace) to evaluate demographic fairness.    

- Consent-Driven Design: Opt-in mechanisms for public applications (e.g., driver monitoring  

[15]).    

  

 8.4. Quantum-Inspired Models: Energy-Efficient SNNs    

Challenges: Conventional CNNs face energy inefficiency on edge devices, while spiking neural 

networks (SNNs) struggle with long-term temporal dependencies.    

Advancements: SNNs mimic biological processing for dynamic FER. [2] introduces NSNPDFER 

for dynamic FER, and [45] integrates SNNs with EEG data for low-power recognition.  

Neuromorphic hardware (e.g., Intel Loihi) optimizes SNN inference.    

Opportunities:    

- Quantum Annealing: Solving SNN training optimization via Fujitsu Digital Annealer.    

- Hybrid Quantum-Classical Models: Quantum circuits enhancing CNN/SNN feature extraction.   

- Biologically Plausible Learning: Spike-timing-dependent plasticity (STDP) for unsupervised 

clustering.    

 Interdisciplinary Synergies    

- FL + SNNs: Privacy-preserving, energy-efficient FER via federated SNNs.    
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- XAI + Ethics: Transparent models for auditing cross-cultural bias.   - Quantum + Multimodal: 

Quantum-enhanced fusion of facial, speech, and physiological data.    

  

 9. Conclusion    

  

Emotion recognition systems have achieved significant breakthroughs through hybrid neural 

architectures (e.g., CNN-LSTM [63], Capsule Net-CNN [43], and neuro-symbolic models [68]) 

and multimodal fusion (e.g., facial, speech, EEG, and physiological signals [15], [19], [32]). These 

advancements enable robust, context-aware emotion analysis in dynamic environments, from 

healthcare to human-computer interaction.    

However, the field faces challenges in standardization, with inconsistent evaluation protocols and 

dataset biases hindering reproducibility [1], [30]. Future work must prioritize universal 

benchmarks (e.g., cross-dataset FER frameworks [58]) and ethical guidelines to address privacy, 

consent, and demographic fairness [16], [23], [60].    

Transformative applications are emerging in healthcare (e.g., autism [23] and depression detection 

[31], schizophrenia diagnosis [18]) and human-centered AI (e.g., driver safety [15], sign language 

robots [51]). By integrating technical innovation with ethical rigor, emotion recognition systems 

will unlock safer, more empathetic technologies for global societies.    

  

 Critical Analysis of Literature    Strengths    

1. Multimodal Integration:    

- Robustness: Combining facial, speech, EEG, and physiological signals (e.g., EMG, ECG) 

improves accuracy in dynamic environments. For instance:    

- Facial + EEG: Paper 39 uses attention-based CNNs for EEG-facial fusion.    

- Facial + Speech: Paper 15 integrates video and speech for driver emotion analysis.    

- Physiological Signals: Paper 28 employs 1D-CNNs for speech emotion recognition.      - Cross-

Validation: Multimodal systems (e.g., Papers 17, 65) reduce reliance on noisy singlemodality 

data.    

  

2. Attention Mechanisms:    

- Feature Localization: Techniques like bilinear pooling (Paper 7) and binary attention (Paper 

21) highlight discriminative facial regions (e.g., eyes, mouth).    

- Transformer Dominance: Self-attention in transformers (Paper 61) and 3D-CNN-

Transformer hybrids (Paper 14) excel in spatiotemporal modeling for micro-expressions.    
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3. Neuro-Inspired Architectures:    

- Energy Efficiency: Spiking neural networks (SNNs) in Papers 2 and 45 mimic biological 

processing for low-power applications.    

- Dynamic Adaptation: Randomized deep networks (Paper 13) and neuromorphic hardware  

(e.g., Loihi) enable real-time adjustments.    

  

 Weaknesses    

1. Reproducibility Issues:    

- Proprietary Datasets: Many studies (e.g., Papers 18, 45) use restricted datasets (e.g., DEAP, 

MMI), limiting independent validation.    

- Implementation Gaps: Papers often omit hyperparameter details or code (e.g., Papers 5, 8), 

hindering replication.    

  

2. Cultural and Demographic Bias:    

- Ethnic Underrepresentation: Key datasets (CK+, FER2013) focus on Western subjects, 

marginalizing non-Caucasian expressions (Papers 23, 52).    

- Neurodiversity Gaps: Few works address emotion recognition in neurodiverse populations  

(e.g., autism [23], schizophrenia [18]).    

  

3. Narrow Evaluation Metrics:    

   - Overreliance on accuracy (%) ignores critical metrics like inference speed (e.g., Papers 64,  

51) or false-positive rates in real-world settings.    

  

 Research Gaps    

1. Real-World Deployment Challenges:    

- Environmental Factors: Only 4/70 papers (e.g., Paper 54) address lighting/pose variations 

or occlusions.    

- Edge Optimization: Lightweight models (e.g., Paper 64) lack benchmarks for 

IoT/resourceconstrained devices.    

2. Causal Analysis:    

   - Facial Action Units (AUs): Most works (e.g., Papers 6, 33) correlate AUs with emotions but 

fail to model causal relationships (e.g., Does AU12 (lip corner puller) directly cause happiness?).      

- Neurophysiological Links: Limited studies explore causal ties between EEG/EMG signals and 

emotional states (exceptions: Papers 19, 41).    
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3. Ethical Frameworks:    

- Bias Mitigation: Only 2/70 papers (Papers 23, 60) propose tools for auditing demographic 

fairness.    

- Regulatory Alignment: No work explicitly maps FER systems to GDPR or HIPAA 

compliance.    

  

 Implications for Future Work    

- Standardized Benchmarks: Introduce cross-cultural, open-access datasets with balanced 

demographics.    

- Causal Modeling: Leverage techniques like directed acyclic graphs (DAGs) or 

counterfactual analysis to disentangle emotion-AU relationships.    

- Ethics-by-Design: Integrate consent mechanisms (e.g., Paper 15) and bias audits (e.g., 

Paper 60) into model pipelines.    

This analysis underscores the need for transparent, generalizable, and equitable emotion 

recognition systems to bridge the gap between lab research and real-world impact.    

  

Table 1: Comparison of Neural Architectures for Emotion Recognition  

Architecture  Strengths  Accuracy 
(Example)  

Common  

Datasets  

Limitations  

CNNs  - Local  feature 

extraction  

- Scalability for 
static  

images  

95% on CK+ [1],  

[4]  

CK+, 
FER2013, 
AffectNet  

- Struggles with 

temporal dynamics - 

Limited spatial  

relationship modeling  

GNNs  - Captures 

 facial 

landmark  

relationships  

- Multimodal 
fusion  

capability  

89% on DISFA  

(AU recognition)  

[6], [34]  

DISFA, BP4D,  

SAMM  

- Computationally  

intensive  

- Requires 
structured input 

(graphs)  

Transformers  - Long-range 

dependency modeling  

- Strong  for  

video/time-series data  

92% on DFEW 

(dynamic FER)  

[14], [61]  

DFEW, 
 MMI, 
RAVDESS  

- High memory usage - 

Needs large-scale  

pretraining  
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Table 2:Facial Emotion Recognition - Structured Table  

Category  Subcategory  Examples  Papers  

Input Data Modality  Unimodal (Static Images)  CK+, FER2013  Papers 1, 3  

Input Data Modality  Multimodal  (EEG  + 

Facial)  

DEAP dataset  Papers 37, 65  

Temporal Dynamics  Dynamic (3D-CNNs)  Video-based  emotion 

recognition  

Paper 18  

Neural Architectures  Hybrid Models  CNN  +  Capsule 

Networks  

Paper 10  

Applications  Healthcare  Autism diagnosis  Paper 23  

  

Table 3: Key Datasets and Their Biases  

Dataset  Modality   Size  Key Features  Biases/Limitations  

CK+  Facial (static)   593 seq.  Lab-controlled, posed 
expressions  

- Limited ethnic diversity  

- Small sample size  

FER2013  Facial (static)   35,887  Real-world, 
crowdsourced  

- Noisy  labels  

- Lighting/pose 
variability  

DEAP  EEG  

Physiological  

+  32 subj.  Multimodal (videos  

+ biosensors)  

- Small 
participant 
pool  

- Lab-restricted  

environment  

MMI  Facial (dynamic)  740 seq.  AU-coded, naturalistic 
 microexpression
s  

- Limited resolution - 

Unbalanced emotion  

distribution  

RAVDESS  Speech + Facial  24 subj.  Acted  emotional  

speech/video  

- Cultural bias (Western  

actors)  

- Scripted emotions  

DFEW  Facial (dynamic)  10,000+  In-the-wild, diverse 
demographics  

- Annotation subjectivity  

- Background distractions  
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 Notes    

1. Architectural Trade-offs:    

- CNNs dominate static FER but lag in temporal modeling.    

- GNNs excel in structured data (e.g., facial landmarks) but require heavy computational resources.      

- Transformers outperform in video-based FER but demand large-scale training [14], [61].    

  

2. Dataset Biases:    

   - Lab-controlled datasets (CK+, DEAP) lack real-world diversity.      - 

Crowd-sourced datasets (FER2013) suffer from annotation noise [1], [4].    

  

3. Taxonomy Insights:    

   - Hybrid approaches (e.g., CNN-Transformer [61]) bridge static/dynamic gaps.      - 

Multimodal systems (e.g., facial + EEG [39]) improve robustness but increase complexity.    
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