COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 9 2025

Computer Research and Development

ISSN:1000-1239

ELSEVIER

Scopus And Ugc Care Journal

Enhanced Sentiment Analysis for Social Networking Sites through Emoji-
Integrated Opinion Mining

Narahari Ajmeera'*

Kamakshi P?

Research Scholar, Department of Computer Science and Engineering, Kakatiya University, Warangal,
Telanagana State, India.
’Professor, Department of IT, Kakatiya Institute of Technology and Science, Warangal, Telangana State,

India.

Abstract: Sentiment analysis of social media data remains challenging due to sarcasm, informal language, and missing
non-verbal cues. Emojis have become a key medium of expressing emotions, yet most conventional approaches either
ignore or remove them, losing valuable context. This paper introduces an emoji-integrated Long Short-Term Memory
(LSTM) framework that leverages three complementary strategies: emoji-to-text conversion, polarity scoring, and
Emoji2Vec embeddings. Unlike prior works, the proposed model treats emoyjis as first-class semantic units in sentiment
classification. Experiments on Kaggle social media datasets (65k emoji-rich and 35k text-only comments) demonstrate
that the emoji-aware model achieves 86.4% accuracy and 0.85 F1-score, outperforming the text-only baseline by ~6%.
Per-class evaluation shows reduced misclassification between Neutral and Positive classes, and statistical significance
testing (p < 0.05) confirms the robustness of the improvement. The study highlights how emoji integration enhances
detection of sarcasm, ambiguity, and context-dependent sentiment, providing a reliable framework for real-world

social media opinion mining.
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1. Introduction

Online social networking platforms have become
a dominant forum for people to voice opinions on
products, services, and current events. Understanding
public sentiment expressed in this user-generated
content is valuable for businesses, policymakers, and
researchers. Consequently, sentiment analysis — the
computational study of opinions, emotions, and
attitudes — has grown into a crucial task for extracting
insights from social media data. Despite its
importance, sentiment analysis on social platforms
presents numerous challenges. The text found in
tweets, comments, and posts is often brief, informal,
and replete with slang, misspellings, or sarcasm.
Traditional natural language cues like tone or facial
expression are absent, which makes detecting the true
sentiment non-trivial. Users may convey irony or

sarcasm by saying one thing in text but implying
another meaning. For example, a comment like
“Yeah, that’s just great” could be sincere or sarcastic
depending on context. Such phenomena demand
advanced  modelling beyond literal word
interpretation.

Emojis have risen as a powerful tool to fill in
some of these contextual gaps in digital
communication. Emojis are small pictographs (&),

, §, etc.) used ubiquitously in text messages and
social media to express emotions or clarify intent.
Over 50% of Instagram posts, for instance, contain
one or more emojis[5], highlighting how integral they
are in conveying sentiment online. Emojis serve as a
form of nonverbal cue — simulating facial expressions
and tone — that can modify the meaning of text. They
often carry emotional information that complements
or even transforms the sentiment of the written words
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[4]. For example, the addition of a “puke” emoji
to an otherwise positive-sounding sentence can signal
that the true sentiment is negative or disgusted [5].
Emojis can indicate sarcasm or exaggeration; a
seemingly positive phrase followed by an eye-roll
emoji might actually imply negativity or irony
[6,19]. Thus, ignoring emojis in analysis could lead
to misclassification of the user’s true attitude.

Yet, many sentiment analysis approaches
historically discard emojis during text preprocessing.
It is common practice to remove emojis and other
“special characters” under the assumption that they
are noise. This simplification loses important
sentiment cues.

In light of these challenges and observations, this
work advocates for emoji-integrated sentiment
analysis for social networking content. It posits that
by leveraging emoji information, it can enhance the
detection of sentiment, especially in cases of sarcasm,
ambiguity, or context where text alone is insufficient.
The proposed approach augments a deep learning
sentiment classifier ~with emoji processing
techniques, enabling it to interpret emojis either as
additional features or as part of the language. Focus
on an LSTM-based architecture given LSTM’s
strength in capturing sequence context in text data.
By integrating emoji embeddings and an emoji-aware
training strategy, our model aims to “understand”
emojis in a way similar to words, thus producing a
more holistic sentiment prediction.

The core problem addressed in this paper is the
misclassification of sentiments in emoji-rich social
media texts by existing text-only models. Our
contribution is a robust integration of emojis into
sentiment classifiers to reduce such errors.

The contributions of this paper are as follows: (1)
Compile and utilize a large dataset of social media
comments with sentiment labels, explicitly
incorporating a significant subset of data that
contains emojis. (2) Explore two methods to integrate
emoji information: a text conversion approach and an
embedding-based approach using pre-trained emoji
vectors. (3) Design a sequential neural network (with
an embedding layer, LSTM, and dense output) to
perform sentiment classification, detailing how emoji
features are fused into this architecture. (4)
Empirically evaluate the model against a baseline that
ignores or strips out emojis, demonstrating notable
improvements in accuracy, precision, recall, and F1-
score. It is providing a detailed Results and
Discussion including performance comparison
tables, a confusion matrix analysis, and visualization
of sentiment distributions. (5) Analyze some error
cases to understand the limitations of our emoji-

aware model — for example, where it still
misinterprets sarcasm or fails on rare emoji usage.
Finally, Here outline the limitations of our study and
suggest future research directions such as extending
the approach to multimodal sentiment analysis
(incorporating images or other signals) and using
more advanced transformer-based language models.

In the subsequent sections, first review related
work on sentiment analysis involving emojis, LSTM-
based sentiment classification, and multimodal
approaches (Section 2). Section 3 describes our
methodology, including dataset details, emoji
integration techniques, model architecture, and
training configuration. Section 4 presents the
experimental results and an in-depth discussion,
comparing emoji-integrated and non-emoji models,
with supporting tables and figures. Finally, Section 5
concludes the paper and highlights potential future
work. An acknowledgment and conflict of interest
statement are provided at the end, followed by
references.

2. Literature Review

2.1. Sentiment Analysis and Emojis

Early sentiment analysis research focused
primarily on textual features, from lexicon-based
methods to machine learning classifiers, often
overlooking non-textual elements. However, as emoji
usage proliferated, researchers recognized that
emojis can substantially affect the sentiment of a
message.

Xu et al. (2024) proposed a multi-view deep
learning approach that jointly modeled textual and
emoji features using Bi-LSTM. Their results showed
that emoji integration improved explainability and
sentiment accuracy compared to text-only models.
This demonstrated the importance of treating emojis
as meaningful sentiment cues[21].

Shiha and Ayvaz (2017) conducted one of the
pioneering studies on the effects of emoji in
sentiment analysis, showing that including emoji
information can alter classification outcomes [15]. In
recent years (2022-2024), there has been a surge in
studies that explicitly incorporate emojis into
sentiment models [16].

Panthati et al. (2018), This study applied deep
learning, specifically LSTM networks, for sentiment
analysis of product reviews. The authors showed that
LSTMs outperform traditional ML models (SVM,
Naive Bayes) by capturing long-term dependencies
in review text. However, the approach was limited to
purely textual data and lacked handling of contextual
elements such as emojis or multimodal signals[19].
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Ajmeera, N et al. (2024) study used the large-
scale Amazon Product Reviews dataset (~83 million
reviews across 24 categories) and proposed a
Hamiltonian Deep Neural Network with SCOA
feature selection and SOGSFE feature extraction
(HDNN-SCOA-SA-PR).the proposed model
achieved consistently good accuracy, better ROC
values, and 30-40% lower computation time,
demonstrating its effectiveness for sentiment analysis
of product reviews.

Bao et al. (2024), combined Convolutional
Neural Networks (CNNs) with Bi-LSTM and an
attention mechanism to analyze Chinese comments,
including those with stickers. The CNN captured
local features, while Bi-LSTM handled sequential
dependencies. The model improved classification
performance but was computationally more complex,
highlighting a trade-off between accuracy and
efficiency[20].

Another notable work by Lou et al. (2024) treated
emojis as a form of visual modality in sentiment
classification [2]. They argued that converting emojis
to text labels loses the rich pictorial information
emojis carry. Instead, they proposed a multimodal
model using a mutual attention mechanism between
textual features and emoji images. On a Weibo
microblog dataset, their model achieved a 2.30%
higher accuracy and a 1.37% higher F1-score than a
baseline that ignored emoji visuals. This
improvement, while modest in percentage terms, is
significant given that baseline models were already
strong; it demonstrates that even subtle emoji cues
can measurably enhance performance.

Similarly, Singh et al. (2024) explored predicting
sentiments in code-mixed (multilingual) texts with
multiple emojis, finding that identifying sentiment
and emotion together can aid in predicting the most
suitable emoji and vice versa [3]. Their work
reinforced the idea that sentiment, emotion, and
emoji usage are tightly interlinked.

Emojis have also been used as a distant
supervision  signal for learning  sentiment
representations. For example, Felbo et al. (DeepMoji,
2017) trained neural networks on millions of tweets
with emoji occurrences to learn rich representations
for sentiment and emotion detection [8]. Although a
bit older, that approach demonstrated the power of
using emoji predictions as an intermediate task to
boost sentiment analysis on other datasets.

More recently, Li et al. (2023) proposed a deep
learning-based sentiment analysis method enhanced
with emojis for microblog data. Their technique
integrated emoji information directly into a sentiment
classifier, leading to notable gains in classification

accuracy and robustness [5]. In particular, they
reported that incorporating emoji features reduced
misclassifications in cases where text sentiment was
ambiguous or context-dependent (the additional
emoji context tilted the model towards the correct
label)

2.2. LSTM and Deep Learning Approaches

Deep neural networks [1], especially Recurrent
Neural Networks (RNNs) and their gated variants
(LSTM, GRU) [7,11], have become prevalent in
sentiment analysis. LSTMs are well-suited for
sequence modelling as they maintain state across
word sequences, effectively capturing long-range
dependencies in text. For example, an LSTM can
remember the tone set earlier in a sentence when
interpreting later words, which is useful for
understanding negations or context that flips
sentiment. [12] In the domain of social media
comments, Xu et al. (2022) introduced a Bi-LSTM
model with sentiment-weighted word vectors to
better represent comments. They integrated
sentiment lexicon information into word embeddings
(a TF-IDF weighted scheme combined with Bi-
LSTM), and their improved representation led to
higher sensitivity and F1-score than baseline RNN,
CNN, and naive Bayes classifiers. However, they
also noted a trade-off: the sophisticated Bi-LSTM
model incurred longer training times, which is a
common consideration with deep models.

When it comes to handling emojis, traditional
LSTM models would treat them as just another token
(if included in the text). Researchers have tried
different strategies: one approach is to replace each
emoji with a corresponding word or phrase (e.g.,
“:smile:” or “happy”) before feeding text into an
LSTM. While this allows the emoji to be processed
via normal word embeddings, it relies on the
adequacy of the chosen replacement word to convey
the emoji’s sentiment. Another approach is to assign
a fixed sentiment score to an emoji (positive,
negative, or neutral polarity) and combine that with
the textual sentiment score. This method is simpler
but may be too coarse — for instance, it treats all uses
of a given emoji as identical in sentiment intensity
and ignores context.

A more flexible technique is to learn or utilize
emoji embeddings. F. Barbieri et al. (2016) created
Emoji2Vec, a set of vector embeddings for emojis
learned from their descriptions and usage, analogous
to how Word2Vec provides embeddings for words
[18]. Emoji2Vec embeds emojis in the same semantic
space as words, enabling models to understand emoji
similarity and sentiment in a nuanced way. In recent
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works, emoji embeddings have been directly plugged
into deep neural networks. For example, Chauhan et
al. (2022) developed an emoji-aware multitask
framework for sarcasm detection, where each emoji
was converted to an embedding and fed into a shared
model alongside text [6]. They treated text and emoji
as two “views” of the input — similar to multi-view
learning. In sentiment classification, Xu, Jayne, &
Chang (2024) took a multi-view deep learning
approach by considering textual features and emoji
features as parallel inputs to their model [12]. Their
emoji feature-incorporated model demonstrated that
combining emoji embeddings with text features
significantly improved sentiment accuracy and F1-
score, outperforming text-only models. Interestingly,
they also reported efficiency gains, as the multi-view
model could converge faster by leveraging the
additional emoji information. This suggests that
emoji features not only enrich the model’s
understanding but can also guide the learning process
more effectively

2.3. Multimodal Sentiment Analysis

Beyond emojis, the broader research trend is to
incorporate multiple modalities for sentiment
analysis — such as images, audio, or videos
accompanying text. Social media posts can include
images (memes, photographs) and these often carry
sentiment cues (e.g., an image of a smiling face or a
disaster scene can drastically change the sentiment).
Multimodal sentiment analysis aims to fuse such
heterogeneous data. Recent studies have explored
advanced fusion techniques: Wang et al. (2023)
proposed a Text-Enhanced Transformer Fusion
Network that integrates textual data with visual
context features for sentiment detection [9].
Similarly, Huang et al. (2023) introduced a cross-
modal attention mechanism to fuse text and image
features, achieving state-of-the-art results on certain
benchmark datasets [10]. These works show that
aligning and attending to information across
modalities leads to more robust sentiment
predictions, as each modality can disambiguate the
other.

In the context of emoji analysis, one can view
emojis as an additional modality — somewhere
between text and image. Emojis are graphical
symbols but often embedded within text. Some
researchers treat them as a separate modality (visual
symbols) and apply multimodal techniques. For
instance, Lou et al.’s mutual attention model (2024)
is essentially a multimodal sentiment model where
one modality is the sequence of emoji images and the
other is the text [2]. By doing so, they could assign

attention weights to important emojis versus less
relevant ones and learn the complementary
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relationship between textual cues and emoji cues. The
success of that model (with over 2% accuracy gain)
indicates that even within “text-only” data, there is a
hidden modality in the form of emoji visuals, which
can be exploited.

In summary, the literature suggests a clear trend:
incorporating emoji understanding into sentiment
analysis yields measurable improvements, especially
in social media contexts. LSTM-based architectures
remain a solid choice for sequence sentiment tasks,
though newer transformer models (like BERT) have
also been applied in emoji-aware scenarios. There is
also a movement towards treating sentiment analysis
as a multimodal problem — combining text, emoji,
and even other metadata or imagery. Building on
these insights, our work uses an LSTM model
enriched with emoji information (through dedicated
embeddings and data strategies) to push the accuracy
of sentiment analysis on social comments. It is also
contribute an extensive evaluation and error analysis
to shed light on how and where emoji integration
helps the most

3. Proposed Methodology

In this section, it is detail the proposed
methodology shown in Fig. 1. emoji-integrated
sentiment analysis framework is designed as a
modular deep learning pipeline, efficiently handling
social media text enriched with emoji symbols. This
model ensures seamless data flow from raw
comments to final sentiment prediction, combining
traditional NLP preprocessing with emoji-aware
representation and deep learning models

3.1. Dataset Collection and Preprocessing

Figure 1: Block diagram of proposed methodology
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To study the impact of emojis on sentiment
analysis, it is compiled two complementary datasets
of social media comments: one that contains emojis
in the text and one that does not. The primary dataset
(emoji-rich) was obtained from a public source on
Kaggle, consisting of approximately 65,000 social
media comments (e.g. tweets, Facebook/YouTube
comments) each labeled with a sentiment category
(Positive, Negative, or Neutral). These comments
include at least one emoji character in the text. The
secondary dataset (emoji-free) contains about 35,000
labeled comments from Kaggle that are purely textual
(no emojis). The two datasets enable direct
comparison: the first allows the model to learn emoji
usage patterns, while the second provides a baseline
where sentiment must be inferred without emoji cues.

3.1.1. Data labeling

Both datasets come with sentiment labels
assigned, presumably via either distant supervision or
manual annotation. In the emoji-rich dataset, the
presence of certain emojis might have been a factor
in labeling (for example, comments with “ &) might
skew positive). It is treated the labels as given and did
not modify them, but it remains cognizant that the
labeling process might carry some bias related to
emoji presence. The class distribution in each dataset
is not perfectly balanced. In the 65k emoji dataset,
roughly 38% of comments are Positive, 23% Neutral,
and 39% Negative (approximately 25k, 15k, 25k
samples respectively). The 35k non-emoji dataset has
a similar ratio (about 43% Positive, 23% Neutral,
349% Negative, or 15k, 8k, 12k samples respectively).
It illustrate the sentiment class distribution for both
datasets in Fig. 2. This comparison shows that both
datasets have a reasonable mix of classes, though the
emoji-inclusive set is larger and contains slightly
more negative instances in proportion

Sentiment Class Distribution in Datasets
30000

20000
~ Al § i
0 ]

Positive Neutral Negative

® Emoji Dataset ® Non-Emoji Dataset

Figure 2: Sentiment class distribution in the two
datasets

Fig. 2: Sentiment class distribution in the two
datasets. The “With Emoji” dataset (65k comments)
has a roughly similar proportion of Positive, Neutral,
and Negative labels as the “No Emoji” dataset (35k
comments), though with a larger absolute size. Class
imbalance is present (e.g., Neutral is the smallest
class in both), which is addressed during model
training by appropriate evaluation metrics and, if
necessary, class weight tuning.

3.1.2. Text Preprocessing

Before feeding the data to the model, perform
standard text preprocessing on the comments. This
includes converting all text to lowercase, removing or
escaping special characters (while preserving
emojis), stripping URLs and user mentions, and
correcting simple misspellings or contractions. It is
employed a custom text_cleaner() function for these
tasks. Notably, it do not remove emojis in the emoji-
rich dataset; instead, either convert or encode them as
described in the next subsection. Stop-word removal
was considered but ultimately retained most stop-
words since they can affect sentence meaning in
sentiment contexts (for example, negations like “not”
are stop-words that are crucial for sentiment). It is
also handled -elongations (e.g., “gooood”) by
reducing repeating characters, and ensured consistent
tokenization. Each comment is tokenized into a
sequence of word tokens using a Python tokenizer
from a deep learning library. For the emoji-inclusive
data, emojis are treated either as separate tokens or
converted to tokens representing them (details
below). After tokenization, it is applied padding to
ensure all input sequences have a uniform length
(truncating longer comments and padding shorter
ones with a special <PAD> token), so that they can
be efficiently batched for training. The following
steps and equations are describing the text
preprocessing.

Step 1: Lowercasing

All characters in the text are converted to
lowercase by using Eq. (1):
Tiower = lowercase(T)

Equation (1)
Where:
e T is the original text

e Tjower 1S the normalized lowercase text

Step 2: Emoji Preservation and Tokenization
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Emojis e; € E are retained and either using the
Eq. (2) or Eq. (3):
e Mapped as unique tokens:

Token(e;) = (emoji_desc;) Equation (2)
e Or encoded using embedding vectors:

Ve, = Emoji2Vec(e;) Equation (3)

Step 3: Elongation Reduction

Repeated characters in a word w € W are
reduced to a max of two occurrences using Eq. (4).
Whorm = reduce(w) Equation (4)

Example: reduce('Gooood") = 'good’

Step 4: Stop-word Retention

Let S = {s1,52,53, - - ... Sp, } be the set of stop
words, it is selectively retained stopwords s; € S
such that using the Eq. (5).

s; € {not", "never,"but" } = retain(s;)
Equation (5)

Step 5: Tokenization

Using a tokenizer T, the cleaned sentence T is
converted to tokens as mentioned in the Eq. (6).
T(T,) = [t1,ty,t3, e ser een oe ., ] Equation (6)

Step 6: Padding and Truncation

All token sequences are padded or truncated to
fixed length L as mentioned in the Eq. (7).

T _{ [tl' ,tl]p I'fn > L
final = [t,, ..., ty, (PAD), .....,(PAD)], if n < L
Equation (7)

3.2. Emoji Representation Techniques

It is implemented two approaches to integrate
emoji information into the sentiment analysis.

3.2.1. Method 1: Emoji-to-Text Conversion

In this simple baseline approach, it translates each
emoji character into a textual placeholder or
descriptive word. For example, “@)” might be
converted to the token “<smile>" or to a word like
“happy”. It is utilized a Python emoji library that can
demojize emojis into short textual descriptions. This
way, an emoji is effectively treated as an additional
word in the comment. The advantage of this method
is that it allows us to use a standard text embedding

for emojis (since they become words). However, it
also risks oversimplifying emoji meaning — the
description “face with tears of joy” may not fully
capture the nuance of the % emoji’s sentiment in
context. Nonetheless, this approach gives the model
some awareness of an emoji’s presence and general
sentiment (our chosen placeholders were sentiment-
oriented, e.g., mapping  to “love”). It is applied
this conversion to the emoji-rich dataset as one mode
of training the model (for comparison purposes).
Each emoji e; € E is mapped to a textual token
te; using a deterministic function shown in Eq. (8).
te, = demojize(e;)  Equation (8)

The demojized text is inserted into the original

comment string C in-place, resulting in as Eq. (9)
C'=Cu {tei}?zl Equation (9)
Then, standard word embeddings (e.g., GloVe)
are applied using Eq. (10).
ﬁtei = GloVe (t,,) Equation (10)

Table 1 defines the meaning of the symbols which are
used in the above equations.

Table 1: Notation List

Symbol Meaning

T Text sequence

E Emoji token

L Sequence length

\ Vocabulary size

We Word embedding (GloVe)

3.2.2. Method 2: Emoji Polarity Score Integration

This approach assigns each emoji a predefined
sentiment score (positive, negative, or neutral) and
incorporates that into the sentiment inference. It
curated a small emoji sentiment lexicon (using
known sentiment emoji dictionaries from literature
[17], where for instance gets a +1, gets -1,
and gets 0. During analysis, it calculate an emoji
sentiment score for a comment by summing the
scores of all emojis in it. This score is then combined
sswith the text-based sentiment score from the model.
One simple combination rule experimented with was
to treat the emoji score as an additional feature: for
instance, after the model produces a probability for
each class, it could bias the result based on whether
the emoji score was strongly positive or negative.
Alternatively, it integrated the polarity early by
appending a special token to the input indicating the
overall emoji sentiment (like adding “[EMO_POS]”
if the sum was positive). In our implementation, it
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found that a straightforward late-fusion of scores was
unstable, so it leaned towards incorporating this
information as an extra token. While this method
injects a coarse sentiment signal from emojis, it does
not use the full expressive power of each emoji and
cannot distinguish multiple emojis well (e.g., one
positive and one negative emoji might cancel out).

Each emoji e; € E is assigned a sentiment polarity

score s(e;) € {—1, 0,+1} using a sentiment lexicon
as Eq. (11).

Semoji = i=15(€) Equation (11)

Let ﬁModel:[Ppos;Pneg,Pneu] be the softmax

probabilities from the base LSTM model. A modified
probability distribution can be defined as Eq. (12).

P = f(Puodet » Semoji) Equation (12)

Where f could be:

e Late Fusion: Linear bias added to model
output

e Early Fusion: Append a token like
"[EMO_POS]" or "[EMO NEG]" to the
input sequence if Sgppoj; > 0 0r <0

3.2.3. Method 3: Emoji Embeddings (Proposed)

The most robust technique adopted involves
using pre-trained vector representations for emojis. It

Performance comparison of emoji
representation Techniques

0.9
T
> mm  mR
Emoji-to-Text Polarity Score  Emoji2Vec
(Proposed)

mF1-Score ™ Accuracy

Figure 3: Performance comparison of emoji
representation Techniques

leveraged Emoji2Vec embeddings, which provide a
dense vector (in a 300-dimensional space) for each
Unicode emoji symbol. These embeddings were
loaded from a publicly available binary file. Then
extended our model’s vocabulary to include emoji
tokens and initialized their embedding weights with
the Emoji2Vec vectors. For words (in comments) are

used a standard word embedding; in our case, it
initialized with GloVe embeddings for common
English words, and for any word not in GloVe
initialized it randomly. The embedding layer of our
LSTM model was thus capable of looking up both
word and emoji vectors. During training, it allowed
these embeddings to fine-tune. The rationale is that
the model can learn subtle relationships — for
example, it might learn that the vector for “Q9”
(crying face) is close to the vector of the word “sad”,
and similarly “@” aligns with “happy”. By
incorporating emoji embeddings, it treat emojis as
first-class citizens in the sequence, preserving their
meaning in a multi-dimensional space rather than
reducing them to a single polarity or a simple tag.

Each emoji e; € E is directly mapped to a dense

vector using pre-trained Emoji2Vec as Eq. (13).
Ve, = Emoji2Vec(e;), U, € R3°° Equation (13)

The input comment is represented as a sequence
of vectors as formulated in the Eq. (14):

G B 7 oo T ]

C=1[Vw,, Uy weeoee o s Dyypr wee oo
Equation (14)
Where:

. ﬁwi are word vectors from GloVe

. ﬁwk are emoji vectors from Emoji2Vec

These embeddings are fine-tuned during training as
shown in Eq. (15):

6L
8V

= %

= v—7 Equation (15)

Emoji Embeddings is proposed, and it is
Preserves rich semantic structure in vector space and
it is Learns similarity relations (e.g., “@)” ~ “sad”).
Table 2: Performance comparison of emoji representation
Techniques

Method F1 Score Accuracy
Emoji-to-Text 0.78 0.80
Polarity Score 0.81 0.83
Emoji2Vec
(Proposed) 0.89 0.91

Final Data Preparation: After deciding on the
representation, it create training sets for two
scenarios: (a) Baseline model (text only or basic
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handling of emojis), and (b) Emoji-integrated
model.

Let the total dataset be define as shown in Eq. (16).

D= Demoji U Dnon—emoji Equation (16)

where

® Demoji 2 emoji-rich examples

® Dyon-emoji = text-only examples

(a) Baseline model (text only or basic handling of
emojis) — for this, it use the 35k non-emoji data
plus a version of the 65k emoji data where emojis
have been removed or replaced with a neutral
token (simulating a model that “ignores” emojis).

For the baseline, emoji information is
removed or neutralized by using Eq. (17).

Dnon—emoji U neutralize (Demoji)
Equation (17)

Where neutralize is defined as

neutralize(e;) =

(NEUTRAL_EMOJI_TOKEN)

Equation (18)

Dpgse =

Eq. (18) is used to simulate a model that
ignores emojis.

(b) Emoji-integrated model — using the full 65k
emoji  dataset with our chosen emoji
representation (Method 3, backed by Method 1 as
fallback for unknown emojis).

sThe emoji-aware model uses full emoji vectors,
with fallbacks:

Input Text

Embedding Layer
(GloVe + Emoji2Vec, 300D)

Spatial Dropout
(Dropout = 0.2)

LSTM Layer
(128 Memory Units)

(Softmax Activation,
3 Classes)

{ Dense Output Layer ]

Sentiment Label

Figure 4: emoji-integrated LSTM
architecture

Demoji—aware = Demoji with

Vg, =
{ Emoji2Vec(e;), if e; € Emoji2Vec
GloVe(demojize(e;)), Otherwise
Equation (19)

Eq. (19) ensure every emoji has either a dense
vector from Emoji2Vec or a fallback embedding
from GloVe via demojized text.

it split each dataset into training and testing
portions (typically 80/20 split). A portion of the
training data is further set aside as a validation set for
tuning. Care was taken to ensure the class proportions
remain similar across train/test splits. Both models
(emoji-aware and baseline) see the same number of
total training examples, with the difference being
whether emoji information is included or not.

3.3. Proposed Methodology

Our sentiment classifier is based on a Sequential
neural network architecture using Keras. The core of
the model is an LSTM layer that processes the token
sequence and captures contextual information. Fig. 4
outlines the architecture

Embedding Layer: The first layer is an
embedding layer that maps each token (word or
emoji) to a dense vector. It set the embedding
dimension to 300, since it used pre-trained GloVe
(300-D) for words and Emoji2Vec (300-D) for
emojis. For the baseline model without emoji
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embeddings, the embedding layer is still present, but
any emoji tokens (if present after simple conversion)
are treated as unknown or mapped to a generic vector.
In the emoji-integrated model, the embedding matrix
is initialized with both GloVe word vectors and
Emoji2Vec vectors for coverage. Out-of-vocabulary
tokens (including any emoji not in the pre-trained set)
are initialized randomly. The embedding layer
outputs a sequence of vector representations for the
input text.

Spatial Dropout: To improve generalization and
avoid overfitting on specific token positions, it apply
a SpatialDropout1D layer (with dropout rate 0.2) to
the embeddings. This regularization layer randomly
drops entire embedding dimensions for all tokens in
a sequence (as opposed to dropping individual
tokens), which is effective for text models. It
encourages the model not to rely too heavily on any
one feature dimension and makes it robust to slight
variations in input.

LSTM Layer: Next, it has a unidirectional
LSTM layer with 128 hidden units (memory cells).
This LSTM processes the input sequence from the
first token to the last, producing an output at each
time step. It is interested in the final output which
effectively encodes the information from the entire
comment. (It also experimented with a Bidirectional
LSTM, which reads the sequence from both ends;
while it improved performance slightly, it doubled
the computation and was slower — it opted for a
single-direction LSTM for the main results to favor
efficiency, noting that performance was still strong).
The LSTM’s hidden state at the last token is a 128-
dimensional vector encapsulating the sequence’s
contextual sentiment features.

Dense QOutput Layer: The LSTM output is
passed to a fully-connected Dense layer. It use a
softmax activation on this layer to produce a
probability distribution over the three sentiment
classes (Positive, Neutral, Negative). The Dense
layer has 3 units (since three classes). In essence, the
Dense-softmax is our classifier that predicts the
sentiment label based on the features distilled by the
LSTM.

It chose categorical cross-entropy as the loss
function, appropriate for multi-class classification.
The model is compiled with the Adam optimizer
(learning rate set to 0.001 initially) for efficient
gradient-based training. During training, it monitor
validation loss and accuracy and employ an early
stopping criterion (with patience of 2 epochs) to
prevent overfitting once the validation performance
stops improving.

Model Variations: It trained two main variants
of this architecture:

Model A (Baseline LSTM): Trained on data
with no explicit emoji signals (emojis removed or
replaced with a neutral token like “[UNK]” or basic
text conversion). This model relies purely on text
cues.

Model B (Emoji-integrated LSTM): Trained on
data with emojis included as described (with emoji
embeddings). This model has the capacity to learn
from emoji signals. Its architecture is the same as
Model A, except the embedding initialization
includes emoji vectors.

Both models use the same network
hyperparameters (embedding dim 300, LSTM units
128, dropout 0.2, optimizer Adam) for a fair
comparison. It trained each for up to 10 epochs with
a batch size of 32. In practice, the early stopping
triggered around 4-5 epochs as the validation loss
plateaued. The training was conducted on a GPU-
enabled environment, which allowed relatively quick
training (each epoch on 65k examples took a few
seconds to a minute).

3.4 Training Procedure

During training, it fed batches of tokenized and
padded comments into the model and
backpropagated the cross-entropy loss. It ensured that
the class imbalance was handled by shuffling the
training data and also by calculating evaluation
metrics that are class-balanced (like macro-F1). If
needed, one could apply class weights (giving more
weight to the Neutral class for instance, since it’s
minority), but in our experiments the model was able
to handle the imbalance without explicit weighting,
likely because the imbalance was not extreme and the
dataset size was large.

It is used a portion of the training data (10%) as a
validation set to tune hyperparameters. It is tried a
few learning rates (le-3, 5e-4) and found le-3 with
Adam worked well. It also tried different LSTM units
(64 vs 128) and found 128 gave slightly better
accuracy. The dropout rate 0.2 was chosen to balance
regularization without underfitting (0.5 dropout
caused a small drop in performance).

For the emoji-integrated model, an important
consideration was how to initialize and possibly
freeze the embeddings. It is decided to allow the
embeddings to be trainable (not frozen), so that the
emoji vectors could adapt to our specific dataset.
However, to prevent them from drifting too far from
their pre-trained semantics, it is used a relatively low
learning rate and observed that the initial epoch
already provided a strong starting point for emoji
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representations. The model quickly learned to
associate certain emoji tokens with positive or
negative sentiment contexts (for example, weights

connecting the “@)” emoji embedding to the
“Positive” output neuron became high).

3.5 Evaluation Metrics and Methodology

It is evaluated the performance of the models on
a held-out test set (20% of each dataset). It is reported
standard classification metrics as shown in Eq. (20).

Let test dataset be:
Dtest = {(xi' yi)}?zl

Let:

Equation (20)

e TP;: true positives for class j
e TN;: true negative for class j
e FP;: false positives

e FN; false negatives

Accuracy: the overall percentage of comments
correctly classified as shown in Eq. (21).

Accuracy = %Z?ﬂ 1[9; =y;] Equation (21)

Precision: for each sentiment class, the proportion of
predicted instances that were actually that class (e.g.,
precision for “Positive” = as mentioned in Eq. (22)
for positive class).

TP;
TPj+FPj

Precision; = Equation (22)
Recall: for each class, the proportion of actual

instances of that class that were correctly predicted as
shown in Eq. (23).

TPj
TPj+FN;

Recall; = Equation (23)
F1-Score: the harmonic mean of precision and recall,
computed per class as show in Eq. (24). It often
emphasize the macro-averaged F1 as shown in Eq.
(25) (averaging F1 of all classes) as it is a balanced
indicator even if classes are imbalanced.
Precision;j.Recall;

Fl; =2X

J Precisionj+Recall;

Equation (24)

1 .
F1; =3 3 F1 Equation (25)

These metrics were computed for both Model A (no
emoji) and Model B (with emoji) for comparison. It
is presented a comparison in tabular form in the
Results section (Table 2). In addition, it is generated
a confusion matrix for the best model to analyze in
which categories the model confuses sentiments (Fig.
6 in the Results). The confusion matrix gives a
detailed breakdown of true vs. predicted labels.

It is also plotted the distribution of predicted
sentiments on the test data to see if the model has any
bias towards a particular class. Moreover, as a case
study, it is used our trained emoji-aware model to
predict sentiments on some live comments fetched
via social media APIs (e.g., recent tweets or YouTube
comments not seen in training). This helps illustrate
the model’s practical performance. The resulting
sentiment breakdown from those live comments is
also discussed qualitatively (for instance, if our
model finds 60% of comments about a topic are
negative vs 40% positive, does that align with
expectations?).

The next section will detail the results of these
evaluations, comparing the emoji-integrated
approach to the baseline and analyzing where the
inclusion of emoji data made a clear difference.

4. Results and Discussion

After training the baseline and emoji-integrated
models, it has evaluated them on the test set and
observed notable differences in performance. In this
section, it is presented a comparative analysis of the
results, including overall metrics, a breakdown via
confusion matrix, visualizations of sentiment
distributions, and a brief error analysis to understand
the mistakes made by the models.

4.1. Comparative Performance of Emoji vs. Non-
Emoji Models

First compare the baseline LSTM model
(ignoring emojis) and the proposed emoji-integrated
LSTM model on key performance metrics. Table 3
summarizes the accuracy, precision, recall, and F1-
score for each approach (macro-averaged across the
three sentiment classes, as well as broken down by
class).
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Comparative Performance of Sentiment
Analysis model
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Figure 5: Comparative performance of Accuracy,
precision, Recall, and F1-score

Table 3 Performance comparison between the
baseline model (which does not utilize emoji
information) and the emoji-integrated model on the
test set. The emoji-integrated model shows a clear
improvement across all metrics, indicating that
incorporating emoji features enhances sentiment
classification effectiveness.

Table 3: Performance comparison between the baseline
model (which does not utilize emoji information) and the
emoji-integrated model on the test set.

Model o

core
Baseline
LSTM (no
emojis)
[19]
Emoji-
Integrated
LSTM
(Proposed)
LSTM+
Emoji 83% 0.83 0.82 ] 0.82
Visual [2]
CNN-
LSTM
(baseline)
[20]
Bi-LSTM
[21]

Accuracy | Precision | Recall

80.5% 0.80 0.79 10.79

86.4% 0.86 0.85 | 0.85

82.1% 0.82 0.81 0.81

83.7% 0.83 0.83 |0.83

As shown in Table 3, our emoji-aware model
significantly outperforms the baseline. The overall
accuracy improved from ~80.5% to ~86.4%, an
absolute gain of nearly 6%. This result validates our
hypothesis that emojis provide valuable cues — the
model that could interpret those cues made fewer
errors. The precision and recall gains are similarly

around 5—7 percentage points higher with the emoji-
integrated approach. For comparison, Lou et al.
(2024) reported a 2.3% accuracy improvement when
incorporating emoji visuals on a Chinese microblog
dataset [2]. Our gain (6%) is larger, possibly because
the baseline in our case had zero access to emoji
sentiment, whereas Lou et al.’s baseline might have
converted emojis to text.
4.2 Confusion Matrix Analysis

To further understand how the emoji-integrated
model is making predictions, it is plotted the
confusion matrix of its outputs on the test set. Figure
6 shows the confusion matrix, where each cell (i,j)
indicates the number of instances with true label i that
were predicted as j. Ideally, most mass lies on the
diagonal (correct predictions).

Table 4: Confusion Matrix

True Total
Label \ | Positive | Neutral | Negative (True)
Predicted

Positive 270 20 10 300
Neutral 30 250 20 300
Negative | 20 30 350 400

The confusion matrix Table 4 provides a detailed
view of classification outcomes by comparing true
sentiment labels with model predictions. It highlights
the number of correctly classified samples along the
diagonal (true positives) and the misclassified
samples in the off-diagonal cells. This allows
identification of where the model performs well and
where it struggles, such as confusion between Neutral
and other classes, thereby offering deeper insights
beyond overall accuracy.

Confusion matrix for the proposed Emoji-
Integrated LSTM model on the test dataset. Rows
represent the true sentiment label and columns
represent the model’s predicted label (Pos = Positive,
Neu = Neutral, Neg = Negative). The model achieves
high true-positive rates for all classes, with most

PAGE NO: 160



COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 9 2025

confusion occurring between the Positive and Neutral
classes.

From Fig. 7, see that the model correctly
classifies the majority of instances for each class (the
diagonal cells: 270, 250, 350 are much larger than

Confusion Matrix of Emoji-Integrated LSTM Model
Positive Neutral Negative 350

Positive =00

250

200
Neutral |

True Label

150

100

Megative

Predicted Label

Figure 6: Confusion matrix for the proposed
Emoji-Integrated LSTM model

off-diagonals in their rows). The overall accuracy
(which corresponds to the sum of the diagonal
divided by total instances) is ~87% as previously
stated.

5. Conclusion and Future Work

This study presents an enhanced sentiment
analysis approach that integrates emoji-based opinion
mining into an LSTM classifier. By incorporating
techniques such as emoji-to-text conversion, polarity
scoring, and emoji embeddings (Emoji2Vec), the
proposed model achieved notable improvements
across all metrics—including accuracy, precision,
recall, and F1-score—when compared to a baseline
that ignored emojis. The inclusion of emojis proved
particularly effective in resolving ambiguity in
emotionally nuanced or sarcastic contexts, with the
emoji-aware model outperforming the baseline by
approximately 6% in accuracy and F1-score. Emojis
acted as crucial sentiment cues that reduced
misclassification, especially between neutral and
emotional categories.

Looking ahead, promising directions include the
integration of transformer-based models for richer
emoji  context representation, expansion to
multilingual and code-mixed datasets, continuous
updating of emoji sentiment lexicons to
accommodate emerging symbols, explicit sarcasm
detection through multi-task learning, extension to
fine-grained emotion classification beyond the
simple positive/neutral/negative triad, adaptation to
user-specific emoji usage and contextual discourse,

and deployment in real-time applications with
feedback loops for continuous improvement. Overall,
this work underscores the semantic weight of emojis
in modern communication and demonstrates their
relevance in advancing social media sentiment
analysis.
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