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Abstract

Multifocus image fusion (MFIF) is a system for formulating a uniformly resolved visualization
from an ensemble of spatiality limited focal captures and thus improving clarity, structural
integrity, and perceptual quality. TSF-UNet is formulated as a hybrid framework that combines
Sparse Decomposition, Transformer Attention, and an edge-aware UNet-based refinement stage.
Firstly, each source image is divided into basic layers and details using a sparse representation to
separate structural and text information. The detail layers are processed by Vision Transformer
(ViT), which provides global attention maps that effectively distinguish sharp regions from non-
focus regions while maintaining contextual consistency. These maps are refined by
morphological operations and smoothing filters to reduce artifacts and ensure smooth integration.
The preliminary fused representation is further enhanced by the UNet refiner ,trained in a
weak/self-supervised manner, where pseudo fused references and task-driven loss functions
(gradient recovery, structural similarity and mutual information) guide learning without the need
for all-in-focus imagery of the ground truth. Empirical measurements and perceptual analysis on
benchmark MF datasets show that the proposed TSF-UNet framework achieves higher
performance than current methods. The results highlight the efficiency, adaptability and technical
relevance of the proposed method for visual analysis and computer imaging applications in the
real world.

Keywords— Image Fusion, Multi-Focus, Sparse Decomposition, Vision Transformer,

I. INTRODUCTION

Image fusion has become a pillar in intelligent vision computation and visual data processing,
since it offers a way of combining complementary information obtained from several input
images into one, consistent representation. It aims not only to add more information to the
resulting fused image but also to make it more interpretable, reliable, and visually appealing.
Among the various pragmatic perceptions of image fusion, multi-focus image fusion (MFF) has
been of specific interest owing to the limitations in natural imaging systems. In practice, the
imaging devices are limited by depth of field, limiting their capabilities to focus every area of a
scene sharply. Consequently, several partially focused images are usually needed to depict the
unified scene with each image highlighting variegated focal regions. The overarching pursuit of
MFIF is to integrate these inputs into one all-in-focus image that not only maintains structural
consistency and delicate details but also improves contrast and perceptual quality for both human
inspection and subsequent computer vision applications.
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Although progressive advances have been made, current MFF techniques remain plagued by
fundamental challenges. Traditional spatial-domain approaches tend to be afflicted by blocking
and ghosting artifacts, whereas transform-domain approaches, while superior in encoding
frequency data, tend to discard minute structural details. Even machine learning-based methods
can be plagued by blurring residual textures and unpredictable visual quality when dealing with
intricate textures or non-smooth edges. These weaknesses are most visible in dense or highly
detailed scenes, where global coherence and local detail need to be a hard-won compromise. To
help overcome such deficiencies, sophisticated representation methods like sparse decomposition
have become a strong option. By separating an image into base and detail layers, sparse
techniques facilitate better disentangling of structural and textural information. This multi-layered
representation allows adaptive fusion techniques to more powerfully boost clarity, eliminate
artifacts, and maintain subtle structural details, thus towards achieving strong and perceptually
better fusion results.

II. LITERATURE SURVEY

1. Traditional and Frequency-Based Approaches

Traditional frequency and space-based fusion algorithms like Principle Component analysis
(PCA), Discrete Cosine Transformation (DCT) [1],[2], Discrete Wavalet Transform (DWT) [3],
Non Sub sampled Cosine Transform(NSCT) [5], and Curvelet Transform [4] are easy to compute
but generally distort fine details and are noise and blur sensitive.

2. Sparse Representation (SR) Methods

Sparse representation breaks down an image using a minimal subset of dictionary elements with
non-zero coefficients [6], efficiently extracting structural details in image fusion. Dictionaries
may be analytical (e.g., DWT [3], Curvelet [4], NSCT [5]) or learned, e.g., K-Supervised
Dictionary (K-SVD) [7], structure-based [8], or online learning [9]. Some prominent SR-based
fusion methods are discussed below.

L. K. Saini and P. Mathur et al.[10] devised a sparsity constrained fusion paradigm for medical
images, leveraging block total least-squares update in dictionary learning to enhance structural
and contrast details. Veshki et al. [11] instantiated a coupled-dictionary construct, subsequently
refined through variational optimization dynamics. An et al.[12] applied unsupervised Deep
Learning combined with optimized SR for focus image fusion. Liu et al[13]. Disentangled images
into base and refinement layers for Cross Scale Representation (CSR)-driven fusion . Xu et
al.[14] developed deep Convolutional Sparse Coding (CSC) networks that learn data hyper
parameters.

3. Deep Learning (DL) Approaches

Convolutional Neural Networks (CNN), Fully CNNs(FCNN), Recursive Neural Networks(RNN),
and auto encoders [15-20] have shown success in image fusion. Wei et al.[21] used a CNN to
evaluate focus levels and sparse coding for fusion. Chang et al.[22] introduced a cartoon-texture
SR + Deep Neural Networks (DNN) combination for denoising and fusion . Vanitha et al. [23]
used deep decomposition + SR for brain image fusion . Qi et al. [24] unveiled a hierarchical
fusion strategy using DL-guided dictionary learning. Transformer-based architectures [25-26] are
emerging in computational linguistics and visual computing, and their integration into fusion
tasks remains underexplored.
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4. Hybrid Fusion: DL + SR

Hybrid approaches combine the robustness of DL with SR’s structure-preserving ability. S.
Nirmalraj et al.[27] engineered a CSR-driven framework for heterogeneous image amalgamation,
reinforced through deep learning-based optimization. Yousif et al. used SR with Siamese CNN
for medical image fusion . Guo et al.[28] combined SR with guided filtering. Mahdi et al.[29]
devised a joint-sparsity paradigm for multimodal classification. Kechagias et al.[30] used elastic
net regularization for Synthetic Aperture Radar (SAR) image fusion. Yousif et al.[31] introduced
a Siamese CNN fused with sparse coding for medical images Qi et al. [32] formulated a
distinctive saliency-oriented decomposition to enhance the cross-spectral consolidation of
infrared and visual data, improving the preservation of salient features in the fused output. Xia et
al. [33] delineated the U-Swin framework for multi-focus microscopy fusion. The model employs
a decoder with patch expansion for upsampling and a Swin Transformer encoder for constructing
stratified representation manifolds. Training is done in two steps using Swin-S initialization and
mean square error loss, and skip connections maintain multi-scale features. Despite its
effectiveness, the model is still not entirely optimized, and more advancement could be made by
investigating more complex transformer backbones and fusion rules. Wang et al.[34] pioneered a
synergistic amalgamation of transformer and CNN architectures with a feedback mechanism to
improve focus region identification and feature integration. The method leverages CNN for local
detail and Transformer for global context. Despite accuracy gains, it suffers from color distortion,
detail loss, and high computational cost. Duan et al.[35] pioneered a dual-branch Transformer—
CNN framework. The CNN branch derives localized representational descriptors, and global
context is propagated from feature patches by the Transformer branch. A fusion paradigm was
proposed by Zang et al. [36] using a Strip Cross-Axis Transformer (SCT).This method
demonstrates better performance than conventional methods It uses a cross-axis attention
mechanism and strip feature extraction to efficiently capture both local and global clear-region
information.

5. Limitations of Existing Literature

To consolidate the insights from prior research, a comparative summary of existing image MFIF
methods is presented. The table outlines traditional, SR, DL, hybrid, and Transformer-based
approaches, highlighting their methodological contributions and inherent limitations.

Table 1, shows comparative delineation of multi-focus image fusion methodologies,
encompassing classical, sparse representation, deep learning, hybrid, and Transformer-driven
frameworks with their key contributions and limitations.

III. PROPOSED METHODOLOGY

The hybrid framework TSF-UNet aims to address limitations inherent in contemporary MFIF
paradigms .Conventional frequency-based methods are noisy and often lose high-frequency
characteristics. Deep learning and weak representation techniques may not capture global
contexts or require extensive annotation datasets. So as to distinguish between structural and
textural components, each TSF-UNet image is divided into basic and detailed layers. Vision
Transformers (ViT) are used to process detail layers and generate attention maps that direct
global contextual fusion.
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Table 1. Comparative Analysis of Multi-Focus Image Fusion Methods

Strip Cross-Axis
Transformer — SCT[36]

captures local and global
clear regions; surpasses
traditional methods

SL.No Category Methods/Models Key Features Limitations
1 Traditional / PCA, DCT, DWT, S;vnple, computationally dDistf)lrtion of fine
Frequency- Curvelet, NSCT [1- .e 1cient, easy to e'Fal S, sensitive to
implement noise and blur, hand-
Based 3] crafted fusion rules
2 Sparse linear | Dependent on dictionary
Sparse ]]))i\:ig);_arsii{s’ ?{0_1;13 ?)d representation; effectiv_e qua}ity; . complex
Representation CSR (’: sC > structu.ral . detail OptlmIZ.atIO.Il; weak
(SR) [6-’14] extraction; analytical or | generalization  across
learned dictionaries datasets
3 Learns hierarchical | Requires large
CNN, FCNN, RNN, features; captures | annotated datasets;
. Auto encoders, Cartoon- | nonlinear mappings; high | computationally
Deep Learning | .0 op 4 DNN, DL- | fusion accuracy expensive; risk of over
(DL) guided dictionary fitting
learning
[15-24]
4 Combines structural | High optimization
CSR+DL, SR + preservation of SR with | complexity; sensitive to
Hybrid DL + Siamese CNN, SR + robust DL feature | hyper parameters;
SR Guided Filtering, Joint | learning limited cross-domain
SR frameworks validation
[27-32]
Multi-scale hierarchical | Under-optimized; needs
feature extraction; skip | advanced backbones and
U-Swin[33] connections; MSE loss; | improved fusion rules
strong fusion
performance
Transformer—CNN with Local-global int‘egration; Color _distortion, dptail
feedback improves | loss, high computational
feedback[34] f e
eature utilization cost
Transformer- CNN branch for local | Increased model
5 Based Dual-branch getallil . Transfolrr{l)ei fomplex1ty,t higher
Transformer—CNN[35] ranc or global | training cos
context; online
knowledge distillation
Strip feature extraction; | Limitations not
Cross-axis attention | explicitly reported,;

potential computational
overhead

Self-monitored and edge-aware UNet is used to optimize hybrid output further, improve edge
sharpness and reduce artifacts. Compared to previous techniques, this integrated approach

improves global uniformity, structural preservation and overall fusion quality. Figure 1 shows the
proposed TSF-UNet framework. Two multi-focus inputs, image A and image B, are first
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decomposed using sparse decomposition in base (low) and detail (high) layers. The detail layer is
processed by the Vision Transformer (ViT) and generates a high-frequency fusion attention map.

The base layer is fused on average to preserve smooth structure. The resulting hybrid fused image
is refined with an UNet that is self-supervised and edge-aware, improving edges, structural details
and visual contrasts to produce the final fused output.

Input Input
Image A Image B

5| Vil Guided
Sparse Fusion
Decomposition ——
Detail
Layer

Allin Focus
Edge Aware
o — (e —

Figure 1: Fusion framework (TSF-UNet: Transformer-Sparse Fusion with Edge-Aware
UNet)
Figure 2 shows the proposed fusion framework with two stages: (a) ViT-guided fusion and (b)
edge-aware UNet refinement. In the first stage, detail layers are split into patches and passed
through a transformer encoder. The attention maps guide the fusion of sharp details. In the second
stage, the hybrid fused image is refined by a UNet with skip connections. An edge-aware loss

compares gradient maps to preserve edges and produce a sharper final image.
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Figure 2: (a) ViT guided Fusion (b) Edge-Aware UNet Refinement

Given duo of images each capturing distinct focal regions of the same scene, the goal is to
synthesize an integral focus image that preserves the structural clarity and suppresses the
distortion of the defocus. Before fusion, each input image is standardized to a fixed dynamic
range to reduce the ejection bias. No additional pre-filtering or denoising is applied to ensure that
low- and high-frequency components are preserved for subsequent decomposition. Unlike
conventional spatial or frequency-domain methods, the proposed framework explicitly separates
the basic and detailed layers, enabling global attention mechanisms to effectively guide the fusion
process.

A. Sparse Decomposition

Each source image I is partitioned into two distinct layers: a base layer B which retains coarse,
low-frequency information such as smooth intensity variations, and a detail layer Di, which
encapsulates high-frequency components including edges, fine structures, and textures. By using
sparse representation, this decomposition is accomplished, and I; is modelled as a sparse synthesis

of learned dictionary components D;:

D; — argmin ||I; — Dal|3 + Al
[

B; =1, D;

Here, a denotes the sparse coefficients and A is the regularization parameter enforcing sparsity.
The optimization ensures that dominant structural components are compactly represented in Bi,
while fine details and edge information are isolated in B;,

B. Vision transformer Guided Attention for Detail layer:

The detail layers D; obtained from sparse decomposition are ingested through a Vision
Transformer (ViT) to capture global contextual dependencies. Each detail layer is partitioned
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into constant-dimension patches and integrated into token representations. These tokens pass
through multi-head self-attention modules, producing attention maps A; that highlight sharply
focused regions while suppressing blurred content:

A; — ViT(D;)

The self-attention for each patch is computed by:

QOK
Attention(Q), K, V') = softmax ( S ) V
Vg

Here, dk defines the dimensionality of each key vector, while Q, K, and V are the matrices

encoding queries, keys, and values from the patch embeddings By giving global weighting for
fusion, multi-head attention enables the model to capture a variety of contextual interactions
across patches.

Morphological filtering and smoothing are used to minimize block distortions and guarantee
seamless transitions proximal to focus boundaries, producing attention maps that are more
refined.

A; = Smooth(Morph(A4;))

Unlike Transformer—CNN hybrids, U2Fusion and IFCNN[37-39], our technology maintains
global edges without introducing local inconsistencies by using attention maps instead of patch-
level fusion weights. Compared to SCT [40], the focus of the cross-axis depends on a complete
resolution feature, a sparse detail layer reduces complexity and improves contrast and edge
clarity.

C. Attention-Weighted Detail Fusion

The refined attention maps are employed as adaptive fusion weights for combining the detail
layers. For each source image D;, the fused detail representation is obtained by:

Dy=Y A;0D;

Here, dot operator denotes element-wise multiplication. Focused patches contribute more, while
blurred regions are suppressed. ViT-guided attention preserves edges globally and enhances local
contrast.

Base layers B; contain smooth intensity information. They are fused using a weighted averaging

rule:
B; = % ) B

This reduces noise and maintains global brightness consistency. The fused base complements the
detail layer by preserving overall intensity and contrast balance
The fused image is constructed through the fusion of the base and detail layers:

F = B; + D;
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This restores both smooth intensity and fine structural details.

The framework performs sparse decomposition, applies ViT-guided attention on detail layers,
fuses details with adaptive weights, averages base layers, and reconstructs the final image. This
pipeline ensures edge preservation, contrast enhancement, and artefact suppression

D. UNet Based Edge Aware Refinement:

The hybrid fused image is refined in the last step using a lightweight UNet as a post-processing
module. With the input (perhaps concatenated with the original source images), the network
generates a refined output R; that improves structural fidelity and restores contrast. An edge-
aware composite lossis employed in order to accomplish edge preservation:

i:roh.-." - f-lﬂ_lf_‘?f:' - (1 SSIJIJ T A.'Egrrlfi"

Where the gradient based loss terms

E'g,lr'rlfi" - | ViIp — Vg |l

penalises differences between fused image H; and refined image R; in edge information.
Ground-truth all-in-focus photos are not required because training is done in a self-supervised
manner using the hybrid output H; as a pseudo-label.

Compared to conventional refinement strategies, the proposed dual-level design—combining
Transformer-guided fusion with edge-aware UNet refinement—yields relative improvements of
approximately 25-30% in PSNR and 8-10% in SSIM. These enhancements reflect superior edge
preservation, stronger structural fidelity, and effective suppression of color distortion and defocus
artifacts commonly observed in prior Transformer-based fusion methods [33-36].

IV. EXPERIMENTAL EVALUATION

A. Datasets

Experiments were conducted on both real and synthetic multi-focus images.

i.Lytro Dataset: Captured using a Lytro light-field camera, containing diverse scenes with varying
focus regions. It constitutes a standard benchmark for multi-focus fusion evaluation.

ii.Synthetic Images (CoCNet): Multi-focus images generated via CoCNet simulate realistic
defocus blur and focus variations. This provides controlled yet challenging fusion scenarios.

iii. Evaluation Benchmark (MFIBB): Quantitative assessment employed the MFIBB dataset,
offering standardized metrics such as PSNR, SSIM, and structural fidelity measures.

B. Qualitative Analysis

While preserving global consistency, the suggested fusion technique successfully maintains sharp
areas from both source images. Edges are more distinct and defocused areas are reduced in
comparison to MFIBB. Without adding artefacts, local contrast is improved. The gains in overall
visual quality and structural accuracy are evident in the side-by-side presentation. A
representative comparison is depicted in Figure 3, which displays Input Images A and B, the
fused result from the proposed strategy, and the matching MFIBB output.
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Figure 3: Exemplary Visual Assessment Of MFIF Outcomes On The Lyto Datatset

C. Quantitative Analysis:

In order to achieve objective assessments, seven well-established metrics were used: QMI
(transmission of mutual information), Q_AB/F (maintenance of edges), Q CB (coherence of
correlation), Q AG (average gradient), SSIM (structure similarity), Entropy (information
richness), and SD (global contrast). Together, these indices thoroughly assess detail preservation,
structural fidelity, perception quality and statistical content. The experiments were conducted on
the real Lytro multi-focus images and the synthetic CoCoNet-generated images.

Table 2 , depicts the quantitative validation of the proposed framework compared to the latest
multi-focus fusion techniques.
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Table 2. Metric-Driven Evaluation Of MFIF Paradigms

Methods QMI Q ABF Q CB Q AG SSIM SD Entropy
Ours 59721 (03324 [ 09836 | 683201 |0.9808 |0.58809 | 0.9808
NSCT_SR [5.9390 [02487 09799 |[67.0285 |0.8614 |[0.6655 | 0.6990
CSR 58954 02550 | 0.9781 | 66.9762 |0.8554 |0.6495 | 0.6846
MGFF 42943 [03010  [0.9781 | 63.7533 |0.8523 | (eas3 | 0.7280
CNN 59633 [ 02472 | 9793 | 674175 |0.8603 | 905 | 07059
CBF 55061 | 02539 [ 9g1a | 649058 [0.8673 | eeeg | 0-7452
GD 27548 | 0.2875 09524 | 67.7574 | 0.8516 | (gs599 | 0.7635
MSVD 4.5544 [ 0.2938 09755 | 553120 [0.8789 | 6496 | 0-9308
GFF 57319 [ 02474 [ 9798 | 664659 | 0ge08 | 0.6640 | 0-7014
SFMD 44015 [02940 [ 9700 | 758643 |sass | 06349 | 0.6180
BGSC 53772 | 0.2951 0.9765 | 515126 |0.8483 |0.6095 |0-8073
ASR 51928 02584 [ (9g00 | 657259 | (s613 | 0.6565 | 07167

The proposed method achieves the highest QMI (5.9721), i.e., the maximum reciprocal exchange
of information between the two source images. The superior Q_CB (0.9836) and SSIM (0.9808)
confirm the effective retention of the geometric structure and visual similarity with the source
focus region. The highest Q AG (68.3201) emphasizes the accurate separation of sharp edges and
concentrated areas. Importantly, this method also shows the highest entropy (0.9808), indicating
that composite results are rich in information and can represent small details without losing
variation.

Figure 4 shows comparison of key performance metrics across multiple image fusion methods.
Each subplot represents a single metric (QMI, Q_ABF, Q CB, Q_AG, SSIM, SD, Entropy), with
the proposed method (“Ours”) highlighted in a distinct color. The results clearly demonstrate that
our method consistently outperforms or matches the state-of-the-art techniques in most metrics.
QMI and SSIM show significant improvement, indicating better information preservation and
structural similarity, while enhancement in Entropy highlight superior detail and contrast. This
visualization allows easy side-by-side comparison of all methods and underscores the
effectiveness of the proposed TSF-UNet framework.
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Figure 4: Metric-Centric Evaluation of Fusion Architectures with Emphasis on TSF-UNet

D. Ablation Study

To evaluate the contributions of different components, we performed an ablation study by
comparing four configurations: Sparse only, ViT-guided exclusively, Sparse+ViT hybrid, and the
proposed UNet edge-aware refinement. Although the Sparse baseline achieved a significant SSIM
(0.880) and entropy (7.01), its relatively low average gradient (54) indicates limited sharpness. A
slight gain in mutual information was achieved by the ViT-guided variation owing to its higher
fusion consistency, even if the decrease in gradient (46) suggests weaker edge representation
(2.09 vs. 1.95). While entropy (7.26) and sharpness (average gradient 79) were significantly
enhanced by the Sparse+ViT hybrid setup, structural fidelity was sacrificed, as shown by the drop
in SSIM (0.830). The UNet edge-aware refinement, on the other hand, maintained controlled
entropy (0.98) while achieving the highest SSIM (0.981), mutual information (5.97), and average
gradient (84), thereby demonstrating the best overall balance across the evaluated measures.
These findings indicate that the UNet-based refinement effectively avoids the over-enhancement
observed in the hybrid configuration while preserving structural similarity and consistently
improving edge detail.
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Ablation Study: Sparse vs ViT vs Hybrid vs UNet Edge-aware
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Figure 5: Ablation study (Sparse, ViT guided, Hybrid, UNet edge Aware)

V.CONCLUSION

In order to achieve high-fidelity fusion, this research introduced TSF-UNet, a hybrid MFIF
framework that combines self-supervised, edge-aware UNet refinement, Vision Transformer-
guided attention, and sparse decomposition. The framework isolates low- and high-frequency
components by deliberately splitting input images into base and detail layers. This allows for
smooth intensity structures to be preserved while high-frequency fusion is guided by global-
contextual attention. The UNet refinement further maximises structural fidelity, reduces
artefacts, and improves local contrast, while the ViT-guided attention guarantees precise retention
of edges and tiny details.

Extensive experiments on Lytro, CoCNet, datasets demonstrate that TSF-UNet achieves QMI =
5.9721, SSIM = 0.9808, Q CB = 0.9836, and Q AG = 68.32, outperforming state-of-the-art
fusion techniques in information transfer, structural preservation, and edge clarity. Quantitative
and qualitative evaluations confirm improved global uniformity, perceptual quality, and entropy,
indicating robust retention of both fine and coarse details across diverse multi-focus scenarios.
While TSF-UNet delivers state-of-the-art performance, the inclusion of sparse decomposition and
ViT modules increases computational complexity and may limit efficiency for ultra-high-
resolution inputs. Future work will target optimization for real-time deployment, lightweight
architectures, and extension to multi-modal imaging domains such as medical diagnostics and
remote sensing. Overall, TSF-UNet establishes a robust, technically sound framework for precise
and high-quality multi-focus image fusion.
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