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Abstract 
Multifocus image fusion (MFIF) is a system for formulating a uniformly resolved visualization 

from an ensemble of spatiality limited focal captures and thus improving clarity, structural 

integrity, and perceptual quality. TSF-UNet is formulated as a hybrid framework that combines 

Sparse Decomposition, Transformer Attention, and an edge-aware UNet-based refinement stage. 

Firstly, each source image is divided into basic layers and details using a sparse representation to 

separate structural and text information. The detail layers are processed by Vision Transformer 

(ViT), which provides global attention maps that effectively distinguish sharp regions from non-

focus regions while maintaining contextual consistency. These maps are refined by 

morphological operations and smoothing filters to reduce artifacts and ensure smooth integration. 

The preliminary fused representation is further enhanced by the UNet refiner ,trained in a 

weak/self-supervised manner, where pseudo fused references and task-driven loss functions 

(gradient recovery, structural similarity and mutual information) guide learning without the need 

for all-in-focus imagery of the ground truth. Empirical measurements and perceptual analysis on 

benchmark MF datasets show that the proposed TSF-UNet framework achieves higher 

performance than current methods. The results highlight the efficiency, adaptability and technical 

relevance of the proposed method for visual analysis and computer imaging applications in the 

real world. 

.Keywords— Image Fusion, Multi-Focus, Sparse Decomposition, Vision Transformer,  

I. INTRODUCTION 

Image fusion has become a pillar in intelligent vision computation and visual data processing, 
since it offers a way of combining complementary information obtained from several input 
images into one, consistent representation. It aims not only to add more information to the 
resulting fused image but also to make it more interpretable, reliable, and visually appealing. 
Among the various pragmatic perceptions of image fusion, multi-focus image fusion (MFF) has 
been of specific interest owing to the limitations in natural imaging systems. In practice, the 
imaging devices are limited by depth of field, limiting their capabilities to focus every area of a 
scene sharply. Consequently, several partially focused images are usually needed to depict the 
unified scene with each image highlighting variegated focal regions. The overarching pursuit of 
MFIF is to integrate these inputs into one all-in-focus image that not only maintains structural 
consistency and delicate details but also improves contrast and perceptual quality for both human 
inspection and subsequent computer vision applications. 
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Although progressive advances have been made, current MFF techniques remain plagued by 

fundamental challenges. Traditional spatial-domain approaches tend to be afflicted by blocking 

and ghosting artifacts, whereas transform-domain approaches, while superior in encoding 

frequency data, tend to discard minute structural details. Even machine learning-based methods 

can be plagued by blurring residual textures and unpredictable visual quality when dealing with 

intricate textures or non-smooth edges. These weaknesses are most visible in dense or highly 

detailed scenes, where global coherence and local detail need to be a hard-won compromise. To 

help overcome such deficiencies, sophisticated representation methods like sparse decomposition 

have become a strong option. By separating an image into base  and detail layers, sparse 

techniques facilitate better disentangling of structural and textural information. This multi-layered 

representation allows adaptive fusion techniques to more powerfully boost clarity, eliminate 

artifacts, and maintain subtle structural details, thus towards achieving strong and perceptually 

better fusion results. 

 
II. LITERATURE SURVEY 
 
1. Traditional and Frequency-Based Approaches 

Traditional frequency and space-based fusion algorithms like Principle Component analysis 

(PCA), Discrete Cosine Transformation (DCT) [1],[2], Discrete Wavalet Transform (DWT) [3], 

Non Sub sampled Cosine Transform(NSCT) [5], and Curvelet Transform [4] are easy to compute 

but generally distort fine details and are noise and blur sensitive. 

2. Sparse Representation (SR) Methods 

Sparse representation breaks down an image using a minimal subset of dictionary elements with 

non-zero coefficients [6], efficiently extracting structural details in image fusion. Dictionaries 

may be analytical (e.g., DWT [3], Curvelet [4], NSCT [5]) or learned, e.g., K-Supervised 

Dictionary (K-SVD) [7], structure-based [8], or online learning [9]. Some prominent SR-based 

fusion methods are discussed below. 

L. K. Saini and P. Mathur et al.[10] devised a sparsity constrained fusion paradigm for medical 

images, leveraging block total least-squares update in dictionary learning to enhance structural 

and contrast details. Veshki et al. [11] instantiated a coupled-dictionary construct, subsequently 

refined through variational optimization dynamics. An et al.[12] applied unsupervised Deep 

Learning combined with optimized SR for focus image fusion. Liu et al[13]. Disentangled images 

into base and refinement layers for Cross Scale Representation (CSR)-driven fusion . Xu et 

al.[14] developed deep Convolutional Sparse Coding (CSC) networks that learn data hyper 

parameters. 

 3. Deep Learning (DL) Approaches 

Convolutional Neural Networks (CNN), Fully CNNs(FCNN), Recursive Neural Networks(RNN), 

and auto encoders [15–20] have shown success in image fusion. Wei et al.[21] used a CNN to 

evaluate focus levels and sparse coding for fusion. Chang et al.[22] introduced a cartoon-texture 

SR + Deep Neural Networks (DNN) combination for denoising and fusion . Vanitha et al. [23] 

used deep decomposition + SR for brain image fusion . Qi et al. [24] unveiled a hierarchical 

fusion strategy using DL-guided dictionary learning. Transformer-based architectures [25–26] are 

emerging in computational linguistics and visual computing, and their integration into fusion 

tasks remains underexplored. 
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4. Hybrid Fusion: DL + SR 

Hybrid approaches combine the robustness of DL with SR’s structure-preserving ability. S. 

Nirmalraj et al.[27] engineered a CSR-driven framework for heterogeneous image amalgamation, 

reinforced through deep learning-based optimization. Yousif et al. used SR with Siamese CNN 

for medical image fusion . Guo et al.[28] combined SR with guided filtering. Mahdi et al.[29] 

devised a joint-sparsity paradigm for multimodal classification. Kechagias et al.[30] used elastic 

net regularization for Synthetic Aperture Radar (SAR) image fusion. Yousif et al.[31] introduced 

a Siamese CNN fused with sparse coding for medical images Qi et al. [32] formulated a 

distinctive saliency-oriented decomposition to enhance the cross-spectral consolidation of 

infrared and visual data, improving the preservation of salient features in the fused output. Xia et 

al. [33] delineated the U-Swin framework for multi-focus microscopy fusion. The model employs 

a decoder with patch expansion for upsampling and a Swin Transformer encoder for constructing 

stratified representation manifolds. Training is done in two steps using Swin-S initialization and 

mean square error loss, and skip connections maintain multi-scale features. Despite its 

effectiveness, the model is still not entirely optimized, and more advancement could be made by 

investigating more complex transformer backbones and fusion rules. Wang et al.[34] pioneered a 

synergistic amalgamation of transformer and CNN architectures with a feedback mechanism to 

improve focus region identification and feature integration. The method leverages CNN for local 

detail and Transformer for global context. Despite accuracy gains, it suffers from color distortion, 

detail loss, and high computational cost. Duan et al.[35] pioneered a dual-branch Transformer–

CNN framework. The CNN branch derives localized representational descriptors, and global 

context is propagated from feature patches by the Transformer branch.  A fusion paradigm was 

proposed by Zang et al. [36] using a Strip Cross-Axis Transformer (SCT).This method 

demonstrates better performance than conventional methods It uses a cross-axis attention 

mechanism and strip feature extraction to efficiently capture both local and global clear-region 

information. 

5. Limitations of Existing Literature 

 To consolidate the insights from prior research, a comparative summary of existing image MFIF 

methods is presented. The table outlines traditional, SR, DL, hybrid, and Transformer-based 

approaches, highlighting their methodological contributions and inherent limitations. 

Table 1, shows comparative delineation of multi-focus image fusion methodologies, 

encompassing classical, sparse representation, deep learning, hybrid, and Transformer-driven 

frameworks with their key contributions and limitations. 

 

III. PROPOSED METHODOLOGY 

The hybrid framework TSF-UNet aims to address limitations inherent in contemporary MFIF 

paradigms .Conventional frequency-based methods are noisy and often lose high-frequency 

characteristics. Deep learning and weak representation techniques may not capture global 

contexts or require extensive annotation datasets. So as to distinguish between structural and 

textural components, each TSF-UNet image is divided into basic and detailed layers. Vision 

Transformers (ViT) are used to process detail layers and generate attention maps that direct 

global contextual fusion.  
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Table 1. Comparative Analysis of Multi-Focus Image Fusion Methods 

 
Sl.No Category Methods/Models Key Features                                                                                                          Limitations 
1 

Traditional / 
Frequency-

Based 

PCA, DCT, DWT, 

Curvelet, NSCT         [1-

5] 

Simple, computationally 
efficient, easy to 
implement                                                                  

Distortion of fine 
details, sensitive to 
noise and blur, hand-
crafted fusion rules 

2 
Sparse 

Representation 
(SR) 

DWT + SR, Coupled 
Dictionaries, K-SVD, 

CSR, CSC 
[6-14] 

Sparse linear 
representation; effective 
structural detail 
extraction; analytical or 
learned dictionaries 

Dependent on dictionary 
quality; complex 
optimization; weak 
generalization across 
datasets   

3 

Deep Learning 
(DL) 

 
CNN, FCNN, RNN, 

Auto encoders, Cartoon-
Texture SR + DNN, DL-

guided dictionary 
learning 
[15-24] 

Learns hierarchical 
features; captures 
nonlinear mappings; high 
fusion accuracy        

Requires large 
annotated datasets; 
computationally 
expensive; risk of over 
fitting   

4 

Hybrid DL + 
SR 

 
CSR + DL, SR + 

Siamese CNN, SR + 
Guided Filtering, Joint 

SR frameworks 
[27-32] 

Combines structural 
preservation of SR with 
robust DL feature 
learning 

High optimization 
complexity; sensitive to 
hyper parameters; 
limited cross-domain 
validation 

 
 
 
 
 
 
 
 
 
5 

Transformer-
Based 

U-Swin[33] 

Multi-scale hierarchical 
feature extraction; skip 
connections; MSE loss; 
strong fusion 
performance       

Under-optimized; needs 
advanced backbones and 
improved fusion rules 

Transformer–CNN with 
feedback[34] 

Local-global integration; 
feedback improves 
feature utilization                                                       

Color distortion, detail 
loss, high computational 
cost      

Dual-branch 
Transformer–CNN[35] 

CNN branch for local 
detail; Transformer 
branch for global 
context; online 
knowledge distillation 

Increased model 
complexity; higher 
training cost   

Strip Cross-Axis 
Transformer – SCT[36] 

Strip feature extraction; 
cross-axis attention 
captures local and global 
clear regions; surpasses 
traditional methods 

Limitations not 
explicitly reported; 
potential computational 
overhead              

 
Self-monitored and edge-aware UNet is used to optimize hybrid output further, improve edge 

sharpness and reduce artifacts. Compared to previous techniques, this integrated approach 

improves global uniformity, structural preservation and overall fusion quality. Figure 1 shows the 

proposed TSF-UNet framework. Two multi-focus inputs, image A and image B, are first 
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decomposed using sparse decomposition in base (low) and detail (high) layers. The detail layer is 

processed by the Vision Transformer (ViT) and generates a high-frequency fusion attention map.  

 

The base layer is fused on average to preserve smooth structure. The resulting hybrid fused image 

is refined with an UNet that is self-supervised and edge-aware, improving edges, structural details 

and visual contrasts to produce the final fused output. 

 

 

 

Figure 1: Fusion framework (TSF-UNet: Transformer-Sparse Fusion with Edge-Aware 

UNet) 

Figure 2 shows the proposed fusion framework with two stages: (a) ViT-guided fusion and (b) 

edge-aware UNet refinement. In the first stage, detail layers are split into patches and passed 

through a transformer encoder. The attention maps guide the fusion of sharp details. In the second 

stage, the hybrid fused image is refined by a UNet with skip connections. An edge-aware loss 

compares gradient maps to preserve edges and produce a sharper final image. 
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                       (a)                                                            (b)                                                                    

Figure 2: (a) ViT guided Fusion (b) Edge-Aware UNet Refinement 

 
Given duo of  images each capturing distinct focal regions of the same scene, the goal  is to 

synthesize an integral focus image that preserves the structural clarity and suppresses the 

distortion of the defocus. Before fusion, each input image is standardized to a fixed dynamic 

range to reduce the ejection bias. No additional pre-filtering or denoising is applied to ensure that 

low- and high-frequency components are preserved for subsequent decomposition. Unlike 

conventional spatial or frequency-domain methods, the proposed framework explicitly separates 

the basic and detailed layers, enabling global attention mechanisms to effectively guide the fusion 

process.  

A. Sparse Decomposition 

Each source image Ii is partitioned into two distinct layers: a base layer BI which retains coarse, 

low-frequency information such as smooth intensity variations, and a detail layer Di, which 

encapsulates high-frequency components including edges, fine structures, and textures. By using 

sparse representation, this decomposition is accomplished, and Ii is modelled as a sparse synthesis 

of learned dictionary components Di: 

 

 
Here, α denotes the sparse coefficients and λ is the regularization parameter enforcing sparsity. 

The optimization ensures that dominant structural components are compactly represented in Bi, 

while fine details and edge information are isolated in Bi. 

B. Vision transformer Guided Attention for Detail layer: 

The detail layers Di obtained from sparse decomposition are ingested through a Vision 

Transformer (ViT) to capture global contextual dependencies. Each detail layer is partitioned  
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into constant-dimension  patches and integrated into token representations. These tokens pass 

through multi-head self-attention modules, producing attention maps Ai that highlight sharply 

focused regions while suppressing blurred content: 

 
The self-attention for each patch is computed by: 

 
 

Here, dk defines the dimensionality of each key vector, while Q, K, and V are the matrices 

encoding queries, keys, and values from the patch embeddings  By giving global weighting for 

fusion, multi-head attention enables the model to capture a variety of contextual interactions 

across patches. 

Morphological filtering and smoothing are used to minimize block distortions and guarantee 

seamless transitions proximal to focus boundaries, producing attention maps that are more 

refined.  

 
Unlike Transformer–CNN hybrids, U2Fusion and IFCNN[37-39], our technology maintains 

global edges without introducing local inconsistencies by using attention maps instead of patch-

level fusion weights. Compared to SCT [40], the focus of the cross-axis depends on a complete 

resolution feature, a sparse detail layer reduces complexity and improves contrast and edge 

clarity. 

C. Attention-Weighted Detail Fusion 

The refined attention maps are employed as adaptive fusion weights for combining the detail 

layers. For each source image Di, the fused detail representation is obtained by: 

 
Here, dot operator denotes element-wise multiplication. Focused patches contribute more, while 

blurred regions are suppressed. ViT-guided attention preserves edges globally and enhances local 

contrast. 

Base layers Bi contain smooth intensity information. They are fused using a weighted averaging 

rule: 

 
This reduces noise and maintains global brightness consistency. The fused base complements the 

detail layer by preserving overall intensity and contrast balance 

The fused image is constructed through the fusion of the base and detail layers: 
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This restores both smooth intensity and fine structural details. 

The framework performs sparse decomposition, applies ViT-guided attention on detail layers, 

fuses details with adaptive weights, averages base layers, and reconstructs the final image. This 

pipeline ensures edge preservation, contrast enhancement, and artefact suppression 

D. UNet Based Edge Aware Refinement: 

The hybrid fused image is refined in the last step using a lightweight UNet as a post-processing 

module. With the input (perhaps concatenated with the original source images), the network 

generates a refined output Ri that improves structural fidelity and restores contrast.  An edge-

aware composite lossis employed in order to accomplish edge preservation: 

 
Where the gradient based loss terms 

 
penalises differences between fused image Hi and refined image  Ri in edge information.  

Ground-truth all-in-focus photos are not required because training is done in a self-supervised 

manner using the hybrid output Hi as a pseudo-label.  

Compared to conventional refinement strategies, the proposed dual-level design—combining 

Transformer-guided fusion with edge-aware UNet refinement—yields relative improvements of 

approximately 25–30% in PSNR and 8–10% in SSIM. These enhancements reflect superior edge 

preservation, stronger structural fidelity, and effective suppression of color distortion and defocus 

artifacts commonly observed in prior Transformer-based fusion methods [33-36]. 

 

IV. EXPERIMENTAL EVALUATION 

A. Datasets 

Experiments were conducted on both real and synthetic multi-focus images. 

i.Lytro Dataset: Captured using a Lytro light-field camera, containing diverse scenes with varying 

focus regions. It constitutes a standard benchmark for multi-focus fusion evaluation. 

ii.Synthetic Images (CoCNet): Multi-focus images generated via CoCNet simulate realistic 

defocus blur and focus variations. This provides controlled yet challenging fusion scenarios. 

iii. Evaluation Benchmark (MFIBB): Quantitative assessment employed the MFIBB dataset, 

offering standardized metrics such as PSNR, SSIM, and structural fidelity measures. 

B. Qualitative Analysis 

While preserving global consistency, the suggested fusion technique successfully maintains sharp 

areas from both source images. Edges are more distinct and defocused areas are reduced in 

comparison to MFIBB. Without adding artefacts, local contrast is improved. The gains in overall 

visual quality and structural accuracy are evident in the side-by-side presentation. A 

representative comparison is depicted in Figure 3, which displays Input Images A and B, the 

fused result from the proposed strategy, and the matching MFIBB output. 
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Figure 3: Exemplary Visual Assessment Of MFIF Outcomes On The Lyto Datatset 
 

C. Quantitative Analysis: 

In order to achieve objective assessments, seven well-established metrics were used: QMI 

(transmission of mutual information), Q_AB/F (maintenance of edges), Q_CB (coherence of 

correlation), Q_AG (average gradient), SSIM (structure similarity), Entropy (information 

richness), and SD (global contrast). Together, these indices thoroughly assess detail preservation, 

structural fidelity, perception quality and statistical content. The experiments were conducted on 

the real Lytro multi-focus images and the synthetic CoCoNet-generated images. 

Table 2 , depicts  the quantitative validation of the proposed framework compared to the latest 

multi-focus fusion techniques.  
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Table 2. Metric-Driven Evaluation Of MFIF Paradigms 

 

Methods QMI Q_ABF Q_CB Q_AG SSIM SD Entropy 

Ours 5.9721 0.3324 0.9836 68.3201 0.9808 0.58809 0.9808 

NSCT_SR 5.9390 0.2487 0.9799 67.0285 0.8614 0.6655 0.6990 

CSR 5.8954 0.2550 0.9781 66.9762 0.8554 0.6495 0.6846 

MGFF 4.2943 0.3010 0.9781 63.7533 0.8523 0.6453 0.7280 

CNN 5.9633 0.2472 0.9798 67.4175 0.8603 0.6905 0.7059 

CBF 5.5061 0.2539 0.9812 64.9058 0.8673 0.6668 0.7452 

GD 2.7548 0.2875 0.9524 67.7574 0.8516 0.6599 0.7635 

MSVD 4.5544 0.2938 0.9755 55.3120 0.8789 0.6496 0.9308 

GFF 5.7319 0.2474 0.9798 66.4659 0.8608 0.6640 0.7014 

SFMD 4.4015 0.2940 0.9720 75.8643 0.8455 0.6349 0.6180 

BGSC 5.3772 0.2951 0.9765 51.5126 0.8483 0.6095 0.8073 

ASR 5.1928 0.2584 0.9809 65.7259 0.8613 0.6565 0.7167 

 
The proposed method achieves the highest QMI (5.9721), i.e., the maximum reciprocal exchange 

of information between the two source images. The superior Q_CB (0.9836) and SSIM (0.9808) 

confirm the effective retention of the geometric structure and visual similarity with the source 

focus region. The highest Q_AG (68.3201) emphasizes the accurate separation of sharp edges and 

concentrated areas. Importantly, this method also shows the highest entropy (0.9808), indicating 

that composite results are rich in information and can represent small details without losing 

variation. 

Figure 4 shows comparison of key performance metrics across multiple image fusion methods. 

Each subplot represents a single metric (QMI, Q_ABF, Q_CB, Q_AG, SSIM, SD, Entropy), with 

the proposed method (“Ours”) highlighted in a distinct color. The results clearly demonstrate that 

our method consistently outperforms or matches the state-of-the-art techniques in most metrics. 

QMI and SSIM show significant improvement, indicating better information preservation and 

structural similarity, while enhancement in Entropy highlight superior detail and contrast. This 

visualization allows easy side-by-side comparison of all methods and underscores the 

effectiveness of the proposed TSF-UNet framework. 
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Figure 4: Metric-Centric Evaluation of Fusion Architectures with Emphasis on TSF-UNet 

 

D. Ablation Study 

To evaluate the contributions of different components, we performed an ablation study by 

comparing four configurations: Sparse only, ViT-guided exclusively, Sparse+ViT hybrid, and the 

proposed UNet edge-aware refinement. Although the Sparse baseline achieved a significant SSIM 

(0.880) and entropy (7.01), its relatively low average gradient (54) indicates limited sharpness. A 

slight gain in mutual information was achieved by the ViT-guided variation owing to  its higher 

fusion consistency, even if the decrease in gradient (46) suggests weaker edge representation 

(2.09 vs. 1.95). While entropy (7.26) and sharpness (average gradient 79) were significantly 

enhanced by the Sparse+ViT hybrid setup, structural fidelity was sacrificed, as shown by the drop 

in SSIM (0.830). The UNet edge-aware refinement, on the other hand, maintained controlled 

entropy (0.98) while achieving the highest SSIM (0.981), mutual information (5.97), and average 

gradient (84), thereby demonstrating the best overall balance across the evaluated measures. 

These findings indicate that the UNet-based refinement effectively avoids the over-enhancement 

observed in the hybrid configuration while preserving structural similarity and consistently 

improving edge detail. 
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Figure 5: Ablation study (Sparse, ViT guided, Hybrid, UNet edge Aware) 

 

V.CONCLUSION 

In order to achieve high-fidelity fusion, this research introduced TSF-UNet, a hybrid MFIF 

framework that combines self-supervised, edge-aware UNet refinement, Vision Transformer-

guided attention, and sparse decomposition.  The framework isolates low- and high-frequency 

components by deliberately splitting input images into base and detail layers. This allows for 

smooth intensity structures to be preserved while high-frequency fusion is guided by global-

contextual attention.  The UNet refinement further maximises structural fidelity, reduces 

artefacts, and improves local contrast, while the ViT-guided attention guarantees precise retention 

of edges and tiny details. 

Extensive experiments on Lytro, CoCNet, datasets demonstrate that TSF-UNet achieves QMI = 

5.9721, SSIM = 0.9808, Q_CB = 0.9836, and Q_AG = 68.32, outperforming state-of-the-art 

fusion techniques in information transfer, structural preservation, and edge clarity. Quantitative 

and qualitative evaluations confirm improved global uniformity, perceptual quality, and entropy, 

indicating robust retention of both fine and coarse details across diverse multi-focus scenarios. 

While TSF-UNet delivers state-of-the-art performance, the inclusion of sparse decomposition and 

ViT modules increases computational complexity and may limit efficiency for ultra-high-

resolution inputs. Future work will target optimization for real-time deployment, lightweight 

architectures, and extension to multi-modal imaging domains such as medical diagnostics and 

remote sensing. Overall, TSF-UNet establishes a robust, technically sound framework for precise 

and high-quality multi-focus image fusion. 
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