

Automated Web Vulnerability Scanner

Dr. Joshi Padma. N1, K. Vaishnavi 2, K. Anusha3, Ch. Satish4, M. Gangadhar5

1Associate Professor, Dept of CSE, Sreyas Institute of Engineering and Technology.

2Ug scholar, Sreyas Institute of Engineering and Technology.

3Ug scholar, Sreyas Institute of Engineering and Technology.

 4Ug scholar, Sreyas Institute of Engineering and Technology.

 5Ug scholar, Sreyas Institute of Engineering and Technology.

Corresponding Author: Dr. Joshi Padma. N

Associate professor, Dept of CSE, Sreyas Institute of Engineering and Technology.

Abstract: The increasing number of web-based attacks highlights the urgent need for effective vulnerability detection tools

to ensure the security of web applications. This project presents the development of an Automated Web Vulnerability Scanner

designed to identify common web vulnerabilities, including SQL Injection, Cross-Site Scripting (XSS), Remote Code

Execution (RCE), Cross-Site Request Forgery (CSRF), and more. The scanner is implemented using the Flask framework

and integrates multiple Python libraries to achieve real-time, efficient, and accurate vulnerability detection. The project

features a secure and user-friendly web interface for vulnerability scanning. This scanner is lightweight and minimizes

dependency on external databases, with optional database support for enhanced functionality, such as advanced SQL injection

detection. Testing across various scenarios demonstrated the scanner’s capability to detect vulnerabilities effectively while

maintaining low false-positive rates. This tool addresses key limitations of existing scanners, offering a flexible and adaptable

solution for developers, administrators, and organizations to secure their web applications. Potential future improvements

include extending detection capabilities for advanced vulnerabilities and leveraging machine learning to improve scanning

accuracy.

Keywords: Web Vulnerability Scanner, SQL Injection, Cross-Site Scripting (XSS), Cross-Site Request Forgery (CSRF),

Remote Code Execution (RCE), Flask Framework, Cybersecurity, Automated Security Tools, Web Application Security.

I. INTRODUCTION

Web applications have become a fundamental part of modern digital ecosystems, supporting diverse functionalities such

as e-commerce, online banking, and social networking. However, their ubiquity has also made them prime targets for

cyberattacks. According to recent cybersecurity reports, web application vulnerabilities remain a leading entry point for

attackers, exploiting flaws such as SQL Injection, Cross-Site Scripting (XSS), and Remote Code Execution (RCE). These

vulnerabilities often arise due to poor coding practices, misconfigurations, or inadequate security testing during the

development lifecycle. To address these challenges, automated web vulnerability scanners play a crucial role in identifying

and mitigating potential security flaws. They offer an efficient and cost-effective alternative to manual testing, providing

developers and security teams with the tools to detect vulnerabilities in real-time. Despite the availability of various

scanners, existing solutions often exhibit limitations, such as a lack of advanced detection techniques, high false-positive

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 1 2025

PAGE N0: 76

rates, and an over-reliance on internet connectivity. Furthermore, many scanners primarily focus on well-documented

vulnerabilities, leaving gaps in detecting more sophisticated or emerging threats. This project introduces an Automated

Web Vulnerability Scanner, a lightweight and adaptable solution designed to address the shortcomings of existing tools.

Built using the Flask framework and Python libraries, the scanner is equipped to detect critical vulnerabilities such as SQL

Injection, XSS, RCE, Cross-Site Request Forgery (CSRF), and others. Key features include a user-friendly web interface,

real-time scanning capabilities, and dynamic report generation. This project aims to contribute to the ongoing efforts to

enhance web application security and foster a more secure digital environment.

II. OBJECTIV

The primary objective of the Automated Web Vulnerability Scanner is to identify and mitigate security vulnerabilities in

web applications in real-time, ensuring robust protection against cyberattacks. It aims to provide an easy-to-use interface

for users to scan websites for common vulnerabilities such as SQL Injection, Cross-Site Scripting (XSS), Remote Code

Execution (RCE), and Cross-Site Request Forgery (CSRF). The scanner is designed to generate detailed reports with

vulnerability remediation strategies while functioning offline and without requiring a database for saving scan results. By

offering an efficient and user-friendly solution, the system aspires to enhance web application security and promote

proactive vulnerability detection.

III. LITERATURE SURVEY

Web vulnerability scanners have been widely studied and implemented to address the growing concerns of cybersecurity

in web applications. Numerous tools, such as OWASP ZAP, Burp Suite, and Nessus, have been developed to automate the

detection of vulnerabilities like SQL Injection, Cross-Site Scripting (XSS), and Remote Code Execution (RCE). These

tools provide varying levels of functionality, from basic scanning to advanced penetration testing. However, existing

scanners face challenges such as high false-positive rates, lack of detection for complex vulnerabilities, and limited offline

functionality. Moreover, many scanners rely heavily on predefined vulnerability signatures, making them less effective

against zero-day attacks or novel exploitation techniques. Researchers have also highlighted the importance of real-time

scanning, user-friendly interfaces, and robust reporting mechanisms, which are often lacking in traditional solutions. These

gaps underscore the need for innovative approaches that enhance accuracy, usability, and adaptability, forming the

foundation for the development of the proposed Automated Web Vulnerability Scanner.

IV. IMPLEMENTATION

The Automated Web Vulnerability Scanner is implemented using a variety of technologies and tools to provide a

seamless and effective scanning process. The application is primarily built using Flask, a lightweight Python web

framework, which handles user interactions and request processing. The front-end of the system is developed using

HTML, CSS, and JavaScript, ensuring a responsive and intuitive user interface for tasks such as user registration, login,

and initiating vulnerability scans. Upon user authentication, the Flask application acts as a controller that processes

requests for scans, initiating the necessary vulnerability detection techniques. The vulnerability detection module is

integrated within the backend and includes several key scanning functionalities: SQL Injection, Cross-Site Scripting

(XSS), Remote Code Execution (RCE), and Cross-Site Request Forgery (CSRF). These scanners analyse user-provided

URLs or web applications for common vulnerabilities by injecting malicious payloads and observing system responses.

The vulnerability detection methods are programmed to inspect the application's response to these payloads, identifying

potential security flaws. For managing the data and scan reports, the application uses SQL Alchemy as an ORM to

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 1 2025

PAGE N0: 77

interact with an SQLite database. This database stores scan logs, user information, and scanning history. However, the

system is designed to operate without an internet connection and does not rely on external databases for storing scan

results, opting instead to generate and store reports locally. This makes the application lightweight and adaptable for

offline environments, a key feature for organizations needing secure, offline scanning tools. Once a scan is completed,

the application generates detailed reports for each vulnerability discovered. These reports provide both the findings and

actionable remediation steps for administrators and developers. The system also includes features for sending email

notifications to users upon the completion of scans and to alert them about critical vulnerabilities that require

immediate attention.

Fig. 1: Scanning Vulnerabilities

Fig. 2: Scan Result generated

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 1 2025

PAGE N0: 78

A. Architecture Diagram:

The architecture diagram outlines the workflow of the Automated Web Vulnerability Scanner, which facilitates a

streamlined vulnerability detection process. It begins with the User Interface, where users log in and input a valid URL for

scanning. The request is then processed by the Application Layer, which validates the input and forwards it to the

Vulnerability Scanning module. This module performs a thorough scan of the provided URL to identify potential

vulnerabilities such as SQL Injection, XSS, CSRF, and RCE. Once the scan is complete, the system generates a detailed

report in the Report Generation and Remediation stage, highlighting detected vulnerabilities and providing actionable

remediation steps. Finally, the results and recommendations are delivered back to the user through the interface, ensuring

a comprehensive and user-friendly vulnerability scanning experience.

B. Test Cases:

Testing is a critical phase in the development of the Automated Web Vulnerability Scanner to ensure its functionality,

reliability, and effectiveness. The system undergoes multiple levels of testing, including unit testing, integration testing,

and functional testing, to validate its individual components and their interactions. During unit testing, modules such as

user authentication, URL validation, and scanning algorithms are tested independently to ensure they perform as intended.

Integration testing ensures seamless communication between the user interface, application layer, and the vulnerability

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 1 2025

PAGE N0: 79

scanning module. Functional testing verifies that the system detects vulnerabilities like SQL Injection, XSS, CSRF, and

RCE accurately. Performance testing is conducted to measure the scanner's speed and efficiency under varying loads, while

security testing ensures the scanner itself is not prone to attacks. Test cases are designed to simulate real-world scenarios,

including valid and invalid inputs, to assess the system's robustness and error-handling capabilities. The results of testing

help refine the scanner, ensuring its accuracy, reliability, and user satisfaction before deployment.

V. DISCUSSION

A. Comparative Analysis:

When comparing different vulnerability scanning tools and techniques, several key aspects must be considered. First, the

detection methods vary widely, with some tools focusing on static analysis (examining the source code) while others rely

on dynamic analysis (testing a running application). Each has its strengths and weaknesses in terms of coverage and

accuracy. Static analysis tools tend to detect vulnerabilities early in the development process, but they may produce false

positives and struggle with complex, dynamic applications. On the other hand, dynamic analysis tools can catch runtime

vulnerabilities but may miss certain static code flaws. Another significant comparison point is the scope of vulnerabilities

detected. While some scanners focus on common issues like SQL Injection, XSS, and CSRF, others may cover a broader

range, including newer or less common vulnerabilities like Server-Side Request Forgery (SSRF). Speed and scalability are

also important factors, with some tools offering real-time scanning capabilities, while others take longer and may struggle

with large-scale applications. Furthermore, ease of use and integration with CI/CD pipelines is a critical factor for

developers looking to automate security testing. Finally, some tools are open-source and free, whereas others are

proprietary, with varying costs and licensing models.

B. Positive Aspects

Vulnerability scanning tools provide many advantages that enhance the security of web applications. They help developers

identify and mitigate risks early in the development lifecycle, which can significantly reduce the cost and impact of

potential breaches. Automated scanners save time and effort, allowing security teams to focus on more complex issues

while handling routine tasks like vulnerability identification. By offering detailed reports on detected vulnerabilities, these

tools also promote transparency and accountability, making it easier to track and manage security risks. Moreover, many

scanners are capable of detecting a wide range of vulnerabilities, ensuring comprehensive protection against threats such

as SQL Injection, Cross-Site Scripting, and Remote Code Execution. Real-time scanning can alert developers to issues as

they arise, enabling quicker response times and more effective patching. Many modern scanners are highly customizable,

allowing users to tailor scan settings and detection algorithms to their specific needs. Furthermore, the integration of

vulnerability scanners into CI/CD pipelines ensures that security is continuously addressed throughout the development

process. By automating repetitive tasks, these tools also reduce the potential for human error and increase overall system

reliability.

VI. CONCLUSION AND FUTURE SCOPE

The development of the Automated Web Vulnerability Scanner has successfully addressed the need for a tool capable of

detecting and mitigating common web vulnerabilities such as SQL Injection, XSS, RCE, and CSRF. Using technologies

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 1 2025

PAGE N0: 80

like Flask, SQL Alchemy, and Python libraries, the tool has been designed to function offline without the need for an

internet connection or a database to store reports, ensuring enhanced security and privacy for its users. The project

integrates an intuitive admin dashboard for managing scans and generating detailed vulnerability reports, enabling web

developers and security professionals to quickly identify and address potential threats. Although the tool can currently

handle basic scanning tasks effectively, there is room for further improvement, especially in terms of expanding the range

of vulnerabilities detected and integrating more sophisticated scanning techniques. By refining its capabilities and

addressing some limitations, the scanner can provide even more value to organizations aiming to secure their web

applications. As the landscape of cyber threats continues to evolve, continuous updates and feature enhancements will be

necessary to maintain the tool's relevance and effectiveness.

 In the future, the Automated Web Vulnerability Scanner could incorporate machine learning algorithms to better predict

and identify emerging vulnerabilities. Integrating a comprehensive database for real-time reporting and collaboration

among users could enhance the system's usability and support a wider range of attack scenarios. The ability to scan dynamic

content, such as web applications using JavaScript-heavy frameworks, would be a valuable addition. Furthermore,

including real-time notifications for vulnerability alerts can improve response time to threats. Enhancing the UI/UX of the

admin dashboard for more user-friendly navigation and incorporating multi-platform support for broader accessibility are

key areas for improvement. By integrating cloud storage, users could save and retrieve scan reports securely from any

device, enabling greater flexibility. Expanding the detection capabilities to cover additional vulnerabilities and attack types

would make the scanner even more comprehensive. Furthermore, the scanner could include more advanced reporting and

analytics tools to provide deeper insights into the security posture of web applications. Finally, integrating the tool with

CI/CD pipelines could automate vulnerability scanning within the development process, increasing efficiency and security.

VII. REFERENCES

1. Mihaila, S., & Popescu, D. (2019). "Web Application Security: A Survey of Vulnerability Detection Tools."

2. Anwar, M. M., & Khalil, I. (2020). "A Survey on Vulnerability Detection in Web Applications."

3. Zhou, X., & Xu, W. (2018). "Automated Detection of SQL Injection Vulnerabilities in Web Applications: A Survey."

4. Chen, C., & Li, S. (2017). "An Analysis of Web Application Security and Vulnerability Detection Approaches."

5. Li, H., Zhang, Y., & Wu, L. (2019). "XSS Detection and Mitigation in Web Applications: A Survey."

6. Yang, S., & Chen, J. (2021). "A Study on the Automatic Detection of Remote Code Execution Vulnerabilities in Web

Applications."

7. Rao, S., & Gupta, R. (2020). "Dynamic Vulnerability Scanning Techniques for Web Applications: A Review."

8. Zhang, C., & Liu, W. (2018). "Automated Vulnerability Scanning and its Challenges."

9. Sharma, M., & Singh, A. (2017). "Web Application Vulnerabilities and Detection Techniques: A Comparative Study."

COMPUTER RESEARCH AND DEVELOPMENT (ISSN NO:1000-1239) VOLUME 25 ISSUE 1 2025

PAGE N0: 81

